(3.238.96.184) 您好!臺灣時間:2021/05/10 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李崙暉
研究生(外文):Lun-Hui Lee
論文名稱:應用故障樹分析評估發輸電及開關場保護系統之可靠度
論文名稱(外文):Application of Fault-Tree Analysis to Assess Reliability of the Generation/Transmission and the Switchyard Protection Systems
指導教授:洪穎怡洪穎怡引用關係
指導教授(外文):Ying-Yi Hong
學位類別:博士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:故障樹分析模糊故障樹可靠度發輸電系統開關場保護系統
外文關鍵詞:Composite SystemReliabilityFuzzy Fault TreeProtection System for a SwitchyardFault Tree Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
電力系統可靠度的問題涵蓋非常廣泛,本文選擇對電力系統可靠度較具影響的發輸電系統和開關場保護系統進行可靠度評估研究。
本論文對發輸電系統的可靠度評估提出一種結合問題判定和故障樹分析的新方法,此方法的第一個步驟是產生各種偶發事故對輸電系統的影響,然後第二步是將結果歸納分成三類,分別為「正常」、「局部問題」和「系統問題」等三類,第三步驟使用故障樹分析評估輸電系統的可靠度,最後是以風險降低價值重要性指標做為評估各元件對系統可靠度的影響。本文選用台電的輸電系統做範例,採用提出的方法做可靠度評估。
本文同時亦提出模糊故障樹為結合故障樹與不準度觀念的方法用以評估開關場保護系統可靠度。本文以模糊集合表示元件不可用率之不準度,使用故障樹分析結合模糊集合完成可靠度評估。除此之外,元件影響系統可靠度的重要性是以模糊重要性量測指標表示。本文以台電核能三廠的345kV開關場保護系統進行可靠度評估。
本文對發輸電系統和開關場保護系統分別以所提的可靠度評估方法進行模擬和驗證,研究結果顯示方法之適用性,且不僅可以獲得可靠度指標,同時也可得知元件對系統可靠度重要性指標,瞭解系統的弱點及需改善加強的部分,可做為後續可靠度提升及改善之依據。
Reliability of an electric power system is a diverse problem. The reliabilities of a composite system and a protection system for a switchyard are studied in this dissertation because they are important in electric power system.
This dissertation presents a method that integrates deterministic approach with fault-tree analysis for reliability assessment of a composite system (generation and transmission). The contingency screening is conducted in the first step. The results are further classified into three clusters in the second step: normal, local trouble and system trouble. The fault tree analysis is used to assess the reliability of the composite system in the third step. Finally, Risk Reduction Worth is adopted as a measure of importance for identifying the crucial element that has significant impact on the reliability. In this dissertation, a composite system in Taiwan serves as an example for illustrating the simulation results attained by the proposed method.
This dissertation also proposes a method for reliability assessment of the protection system for a switchyard by fault-tree analysis considering uncertainty. Availability of an element with uncertainty is expressed with the fuzzy set. The fault-tree analysis incorporating with the fuzzy set is employed to conduct the reliability assessment. Besides, the importance of elements influencing reliability can be achieved by Fuzzy Importance Measure. A 345kV switchyard in the 3rd nuclear power plant in Taiwan serves as an example for illustrating the results of the proposed method.
The proposed methods for reliability assessment of a composite system and switchyard protection system are verified through simulation. Both reliability indices and importance measure indices for components are attained. These outcomes can help enhance the system reliability.
目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究目標與步驟 4
1.4 論文貢獻 5
1.5 論文架構 6
第二章 問題描述 8
2.1 前言 8
2.2 發輸電系統可靠度 9
2.3 開關場保護系統可靠度 14
第三章 可靠度評估 23
3.1 既有評估方法 23
3.2 元件數學模型及可靠度指標 26
3.3 事故存在關係 29
3.3.1 事故並聯關係 29
3.3.2 事故串聯關係 30
3.4 元件重要性分析 31
3.4.1 使用確定量測統計數據之元件重要性 31
3.4.2 使用不確定量測統計數據之元件重要性 34
第四章 故障樹 36
4.1 背景 36
4.2 故障樹分析步驟 38
4.3 布林運算 40
4.4 最小切集 42
4.5 模糊集合 46
第五章 論文所提評估方法 49
5.1 發輸電可靠度評估 49
5.1.1 輸電系統規劃準則 49
5.1.2 所提發輸電系統可靠度評估方法 50
5.1.3 發輸電系統整體故障樹 53
5.1.4 發輸電系統3個次頂端事件 54
5.2 開關場保護系統 56
5.2.1 開關場保護系統描述 56
5.2.2 論文所用開關場保護系統可靠度評估方法 59
5.2.3 開關場保護系統整體故障樹 61
5.2.4 開關場保護系統5個次頂端事件 62
第六章 模擬分析及驗證 68
6.1 台電發輸電系統可靠度評估 68
6.1.1 發輸電系統描述 68
6.1.2 歷史運轉可靠度資料 71
6.1.3 偶發事故篩選結果 72
6.1.4 發輸電系統故障樹分析結果 79
6.1.5 發輸電系統之風險降低價值重要性評估 81
6.2 開關場保護系統可靠度評估 84
6.2.1 元件可靠度資料 84
6.2.2 開關場保護系統故障樹分析結果 86
6.2.2.1 量測統計數據確定之可靠度評估 86
6.2.2.2 量測統計數據不確定之可靠度評估 87
6.2.3 開關場保護系統之風險降低價值重要性評估 89
6.2.4 開關場保護系統之模糊重要性量測評估 91
第七章 結論 95
參考文獻 97

圖目錄
圖2-1 電力系統可靠度評估分層架構 9
圖2-2 RBTS測試系統單線圖 12
圖2-3 RBTS測試系統單線圖(輸電線1事故) 13
圖2-4 雙匯流排1-1/2斷路器架構圖 15
圖2-5 345kV電壓等級氣體斷路器 18
圖2-6 345kV電壓等級匯流排比壓器 18
圖2-7 匯流排保護 20
圖2-8 輸電線保護 20
圖2-9 斷路器失效保護 21
圖2-10 遙控跳脫保護 21
圖2-11 發電機後衛保護 22
圖3-1 液體輸送系統示意圖 23
圖3-2 液體輸送系統可靠度區塊圖 24
圖3-3 液體輸送系統故障樹 24
圖3-4 元件之Two-State模型 27
圖3-5 兩事故事件之並聯關係 30
圖3-6 兩事故事件之串聯關係 31
圖4-1 故障樹分析步驟流程圖 39
圖4-2 較複雜的液體輸送系統故障圖 40
圖4-3 化簡最小切集範例之故障樹 43
圖4-4 模糊集合三角形歸屬函數圖 47
圖4-5 三角形歸屬函數α-切集 47
圖5-1 論文所提發輸電系統可靠度評估流程 52
圖5-2 無法符合N-1和N-2準則之故障樹 54
圖5-3 無法符合N-1準則之故障樹 55
圖5-4 無法符合N-2(LL)準則之故障樹 55
圖5-5 無法符合N-2(GL)準則之故障樹 56
圖5-6 開關場架構圖 57
圖5-7 故障樹用於開關場保護系統可靠度評估流程 60
圖5-8 模糊故障樹用於開關場保護系統可靠度評估流程 60
圖5-9 開關場保護系統失效之故障樹 61
圖5-10 匯流排保護系統失效之故障樹 63
圖5-11 輸電線保護系統失效之故障樹 64
圖5-12 斷路器失效保護系統失效之故障樹 65
圖5-13 發電機後衛保護系統失效之故障樹 66
圖5-14 遙控跳脫保護系統失效之故障樹 67
圖6-1 台電電力系統架構圖 69
圖6-2 六輸規劃的台電345kV發輸電系統 70
圖6-3 台東地區161kV輸電架構示意圖 82

表目錄
表2-1 匯流排佈置方式 14
表3-1 液體輸送系統狀態列表 25
表4-1 故障樹分析結果分類 37
表6-1 發電機組的事故統計資料 72
表6-2 輸電線的事故統計資料 72
表6-3 N-1偶發事故篩選結果 73
表6-4 N-2偶發事故篩選結果 73
表6-5 N-1偶發事故影響系統列表 75
表6-6 N-2(LL)偶發事故影響系統列表 77
表6-7 N-2(GL)偶發事故影響系統列表 79
表6-8 發輸電系統可靠度評估(論文提出的方法) 80
表6-9 發輸電系統可靠度評估(TPLAN軟體驗證) 80
表6-10無法符合N-1準則次頂端事件的風險降低價值重要性 83
表6-11無法符合N-2(LL)準則次頂端事件的風險降低價值重要性 83
表6-12無法符合N-2(GL)準則次頂端事件的風險降低價值重要性 84
表6-13發輸電系統頂端事件的風險降低價值重要性 84
表6-14開關場事故事件之不可用率 85
表6-15開關場保護系統可靠度評估(故障樹) 86
表6-16開關場保護系統可靠度評估(模糊故障樹) 88
表6-17開關場保護系統可靠度評估(蒙地卡羅模擬法驗證) 88
表6-18匯流排保護功能之風險降低價值重要性指標 89
表6-19輸電線保護功能之風險降低價值重要性指標 89
表6-20斷路器失效保護功能之風險降低價值重要性指標 90
表6-21發電機後衛保護功能之風險降低價值重要性指標 90
表6-22遙控跳脫保護功能之風險降低價值重要性指標 90
表6-23開關場保護功能之風險降低價值重要性指標 91
表6-24匯流排保護功能之模糊重要性量測指標 92
表6-25輸電線保護功能之模糊重要性量測指標 92
表6-26斷路器失效保護功能之模糊重要性量測指標 93
表6-27發電機後衛保護功能之模糊重要性量測指標 93
表6-28遙控跳脫保護功能之模糊重要性量測指標 93
表6-29開關場保護功能之模糊重要性量測指標 94
〔1〕M. Th. Schilling, R. Billinton, A. M. Leite da Silva, and M. A. El-Kady, “Bibliography on Composite System Probabilistic (1962-1988),” IEEE Trans. Power Systems, Vol. 5, No. 1, Feb., 1990, pp. 1-11.
〔2〕EPRI, “Composite System Reliability Evaluation: Phase I—Scoping Study,” Report EL-5290, Dec., 1987.
〔3〕M. Th. Schilling, R. Billinton, A. M. Leite da Silva, and M. A. El-Kady, “Bibliography on Composite System Reliability (1964-1988),” IEEE Trans. Power Systems, Vol. 4, Aug., 1989, pp. 1122-1132.
〔4〕IEEE Committee Report, “IEEE Reliability Test System,” IEEE Transactions PAS-98, 1979, pp. 2047-2054.
〔5〕R. Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel, E. Khan, P. Kos, G. Nourbakhsh, and J. Oteng-Adjei, “A Reliability test System for Educational Purpose - Basic Data,” IEEE Trans. Power Systems, Vol. 4, No. 3, Aug, 1989.
〔6〕M. A. Ei-Damcese, “Reliability of Systems Subject to Common-Cause Hazards Assumed to Obey an Exponential Power Model,” Nuclear Engineering and Design, Vol. 167, 1996, pp. 85-90.
〔7〕A. M. Salem, and M. A. Ei-Damcese, “Reliability of Systems Subject to Common-Cause Hazards,” Nuclear Engineering and Design, Vol. 227, 2004, pp. 349-354.
〔8〕I. O. Habiballah, R. Ghosh-Roy, and M. R. Irving, “Markov Chains for Multipartitioning Large Power System State Estimation Networks,” Electric Power Systems Research, Vol. 45, 1998, pp. 135-140.
〔9〕M. Tanrioven, Q. H. Wu, D. R. Turner, C. Kocatepe, and J. Wang, “A New Approach to Real-Time Reliability Analysis of Transmission System using Fuzzy Markov Model,” Electric Power and Energy Systems, Vol. 26, 2004, pp. 821-832.
〔10〕C. S. Kumar, A. J. Arul, O. P. Singh, and K. S. Rao, “Reliability Analysis of shutdown System,” Annals of Nuclear energy, Vol. 32, 2005, pp. 63-87.
〔11〕R. Billinton and X. Tang, “Selected Considerations in Utilizing Monte Carlo Simulation in Quantitative Reliability Evaluation of Composite Power Systems,” Electric Power Systems Research, Vol. 69, 2004, pp. 205-211.
〔12〕L. Goel, and S. Ren,, “Comprehensive Reliability Assessment of Substation Originated Outages using the Monte Carlo Simulation Technique,” Electric Power Systems Research, Vol. 52, 1999, pp. 151-159.
〔13〕M. Sanaye-Pasand, B. Arya, and M. R. Dadashzadeh, “Reliability Evaluation of Transmission Line Protective Schemes Using Static Fault Tree,” 39th International Universities Power Engineering Conference, Vol. 2, UK, Sept., 2004, pp. 800-804.
〔14〕T. Y. Hsiao, C. E. Shief, and C. N. Lu, “Reliability Evaluation of a Taipower System Protection Scheme,” IEEE PES 2004 Power Systems Conference and Exposition, Vol. 1, New York, Oct., 2004, pp. 157-162.
〔15〕M. Lammintausta, R. Hirvonen, and M. Lehtonen, “Modeling of Power System Components for Reliability Analysis,” IEEE Bologna PowerTech Conference, Vol. 4, Italy, June, 2003, pp. 23-26.
〔16〕M. Ding, G. Wang, and X. Li, “Reliability Analysis of Digital Relay,” IEE Conference on Developments in Power System Protection, Vol. 1, UK, Apr., 2004, pp. 268-271.
〔17〕M. V. F. Pereira, and N. J. Balu, “Composite Generation/ Transmission Reliability Evaluation,” Proceedings of The IEEE, Vol. 80, No. 4, 1992, pp. 470-491.
〔18〕J. Endrenyi, M. P. Bhavaraju, K. A. Clements,, K. J. Dhir, M. F. McCoy, K. Medicherla, N. D. Reppen,, L. A. Salvaderi, S. M. Shahidehpour, C. Singh, and J. A. Stratton, “Bulk Power System Reliability Concepts and Applications,” IEEE Transactions on Power Systems, Vol. 3, No. 1, 1988, pp. 109-117.
〔19〕W. K. Li, K. Jerry, and G. Armanini, “Application of probabilistic reliability evaluation in transmission system operation: BC hydro’s, approach and experience,” 7th International Conference on Probabilistic Methods Applied to Power System, Naples, Italy, 2002, pp. 217-222.
〔20〕R. Allan, and R. Billinton, “Probabilistic assessment of power systems,” Proceedings of The IEEE, Vol. 88, No. 2, 2000, pp. 140-162.
〔21〕NERC, “Planning Standards,” North American Electric Reliability, Sep., 1997.
〔22〕鄭進成,”MD系統(345kV開關場)”,台灣電力公司第三核能發電廠電氣課簡報,95年1月。
〔23〕ISA-TR84.00.02-2002, The Instrumentation, Systems, and Automation Society (ISA), 2002.
〔24〕IEEE Std 1413.1-2002, “IEEE Guide for Selecting and Using Reliability Predictions Based on IEEE 1413,” IEEE, 2002.
〔25〕Y. Dutuit, and A. Rauzy, “Efficient Algorithms to Assess Component and Gate Importance in Fault Tree Analysis,” Reliability Engineering and System Safety, Vol. 72, No. 2, 2001, pp. 213-222.
〔26〕L. Xing, K. N. Fleming, and W. T. Loh, “Comparison of Markov Model and Fault Tree Approach in Determining Initiating Event Frequency for Systems with Two Train Configurations,” Reliability Engineering and System Safety, Vol. 53, 1996, pp. 17-29.
〔27〕A. C. Brombacher, and B. Knegtering, “Generating Micro Markov Models for Quantitative Safety and Reliability Assessment for Applications in the Process Industry,” The Instrumentation, Systems, and Automation Society (ISA), 1998.
〔28〕R. Billinton, and A. Sankarakrishnan, “A Comparison of Monte Carlo Simulation Techniques for Composite Power System Reliability Assessment,” WESCANEX 95. Communications, Power and Computing, Conference Proceedings, IEEE, Vol. 1, May, 1995, pp. 145-150.
〔29〕J. F. L. Van Castern, M. H. J. Bollen, and M. E. Schmieg, “Reliability Assessment in Electric Power Systems: The Weibull-Markov Stochastic Model,” IEEE Transactions on Industry Applications, Vol. 36, No. 3, 2000, pp. 911-915.
〔30〕Andrea, M. Rei, Armando, M. Leite da Silva, Jorge, L. Jardim, and Joâo Carlos de Oliveira Mello, “Static and Dynamic Aspects in Bulk Power System Reliability Evaluations,” IEEE Transactions on Power Systems, Vol. 15, No. 1, 2000, pp. 189-195.
〔31〕“TPLAN users’ guide,” Stone & Webster Consultants Division of Power Technologies Inc., New York, 2001.
〔32〕謝鎮安,”特殊保護系統之可靠度分析”,國立中山大學碩士論文,94年6月。
〔33〕J. D. Andrews, and C. A. Ericson II, “Fault Tree and Markov Analysis Applied to Various Design Complexities,” Proceeding of the 18th International System Safety Conference, 2000.
〔34〕M. C. Cheok, G. W. Parry, and R. R. Sherry, “Use of importance measures in risk-informed regulatory application,” Reliability Engineering and System Safety, Vol. 60, 1998, pp. 213-226.
〔35〕J. D. Andrews, and S. Beeson, “Birnbaum’s Measure of Component Importance for Noncoherent Systems,” IEEE Transactions on Reliability, Vol. 52, No.2, 2003, pp. 213-219.
〔36〕P. V. Suresh, A. K. Babar, and V. Venkat Raj, “Uncertainty in Fault Analysis : a Fuzzy Approach,” Fuzzy Sets and Systems, Vol. 83, 1996, pp. 135-141.
〔37〕Report NUREG-0492, “Fault Tree Handbook,” NUREG, 1981.
〔38〕S. U. Chang, C. R. Lin, and C. T. Chang, “A Fuzzy Diagnosis Approach using Dynamic Fault Trees,” Chemical Engineering Science, Vol. 57, 2002, pp. 2971-2985.
〔39〕D. Yuhua, and Y. Datao, “Estimation of Failure Probability of Oil and Gas Transmission Pipelines by Fuzzy Fault Tree Analysis,” Journal of Loss Prevention in the Process Industries, Vol. 18, 2005, pp. 83-88.
〔40〕E. O. Schweitzer III, B. Fleming, T. J. Lee and P. M. Anderson, “Reliability Analysis of Transmission Protection Using Fault Tree Methods,” Proceedings of the 24th Annual Western Protective Relay Conference, Spkane, Washington, October 21-23, 1997.
〔41〕G. W. Scheer, and R. E. Moxley, “Digital Communications Improve Contact I/O Reliability,” SEL Literature CD, 2005.
〔42〕C. L. Su, “Effects of Communication Network on Reliability of a Wide Area Protection Scheme,” Proceedings Energy and Power Systems - 2006, Chiang Mai, Thailand, March 29-31, 2006.
〔43〕Y. He, L. Soder, and R. N. Allan, “Distribution Automation: Impact of Communication System on Reliability of Automatic Control,” 2001 IEEE Power Tech Proceedings, Porto, Vol. 3, Sep 10-13, 2001.
〔44〕M. A. Azarm, R. Bari, M. Yue, and Z. Musicki, “Electrical Substation Reliability Evaluation with Emphasis on Evolving Interdependence on Communication Infrastructure,” International Conference on Probabilistic Methods Applied to Power Systems, Sep 12-16, 2004.
〔45〕L. R. C. Ferreira, P. A. Crossley, J. Goody, and R. N. Allan, “Reliability Evaluation of Substation Control Systems,” IEE Generation, Transmission and Distribution, Vol. 146, pp. 626-632, Nov. 1999.
〔46〕吳景輝,”故障樹分析(FTA)”,中華民國第6屆可靠度與維護度研討會簡報,94年9月。
〔47〕John B. Blowles, and Colón E. Peláez, “Application of Fuzzy Logic to Reliability Engineering,” Proceedings of the IEEE, Vol. 83, No. 3, 1995, pp. 435-449.
〔48〕系統規劃處,”台灣電力公司輸電系統規劃準則”,台灣電力公司,民國94年10月。
〔49〕C. W. Taylor, “Power System Voltage Stability,” New York: McGraw-Hill, 1996.
〔50〕程序書編號311.1,”345kV系統開關場運轉”,台灣電力公司第三核能發電廠,95年1月。
〔51〕電力調度處和供電處,”機電系統事故統計資料”,台灣電力公司,民國81年至民國90年。
〔52〕T. L. Huang, J. A. Jiang, K. L. Lai, Y. C. Wang, C. S. Chen, M. H. Shih, and Y. T. Hsiao, “Reliability Analysis of Wind Power Generation Grid Connection Using Fault Tree Method,” The 26th Symposium on Electric Power Engineering, Taiwan, 2005, pp. 2195-2200.
〔53〕美國加州獨立系統運轉公司(California ISO)網站,網址http://www.casio.com/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔