(18.204.227.34) 您好!臺灣時間:2021/05/14 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林家弘
研究生(外文):Chia-Hung Lin
論文名稱:奈米線機電性質量測方法之研究
論文名稱(外文):Nanomechanical and Electrical characterization Measurements for Nanowires
指導教授:章明章明引用關係
指導教授(外文):Ming Chang
學位類別:博士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:截面積奈米線奈米操作器
外文關鍵詞:cross-sectionalnanowirenanomanipulator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米線、奈米帶和奈米棒等一維奈米材料之應用為目前最有發展潛力與被關注的研究主題,主要是由於奈米材料的樣式相當多,且其力學特性與宏觀尺度下有極大的差異性。過去相關之研究多偏重在材料的製備技術,目前製備技術已經愈來愈成熟,但當奈米材料在進行構裝時,經常會在接縫處斷裂而造成故障,甚至破壞了組裝好的奈米結構,因此需要更深入的了解奈米材料之基本結構及其材料特性,奈米材料的機電特性亦成為當前極為關鍵且重要的課題。
本研究係通過自行研發一套放置於掃描式電子顯微鏡真空腔內部的多自由度奈米機械操作平台對奈米材料的機電性質做量測,此平台整合了三組X、Y、Z及θ軸精密平台、壓電陶瓷、馬達控制及人機介面等,經由電腦直接下指令進行控制,具有在立體空間中進行奈米加工及測試的功能,並對不同之奈米線材,進行單根奈米線抽離、拉伸實驗、挫屈實驗及電性測試,以測得材料之楊氏係數及導電性質等材料特性,並且利用切薄片的方式測量奈米線截斷面積與形狀來提高其準確度。
經實驗測試與分析結果驗證,一維奈米線突顯了非等向性材料在不同的方性上對於材料性質的影響,以硫化鋅奈米線來說,在米勒指數[100]上之楊氏係數為12.3GPa較米勒指數[111]方向的楊氏係數35.9GPa小了2.9倍,結晶硼奈米線其米勒指數[111]的楊氏係數190GPa大於其米勒指數[100]方向的72.7GPa約2.77倍。在一維材料的導電性上也因體積縮小而限制了電子傳導的路徑而造成電阻率的提升,由實驗所測得的金奈米線其電阻率2.07×10-4Ωm,雖因接觸電阻而與巨觀下金之電阻常數2.4×10-8Ωm有極大差異為,但也觀測到一維材料側向電阻率隨直徑的增加而有漸減的關係變化。
Nanostructures materials have stimulated broad attention in the past decades because of their potential applications ranging from nano composite to nanoelectromechanical systems (NEMS). The small dimensions of such materials impose a tremendous challenge for experimental studies of their intrinsic mechanical, electrical and other device related properties.
This study describes about the development of a mechanical manipulation system that can perform five degrees of freedom nanomechanical manipulation inside a scanning electron microscope (SEM). Experiments are carried out by constructing a precise machining platform integrated with picomotors, linear stages and monolithic-silicon-based tips which is generally used in atomic-force microscope (AFM). This integrated system can easily manipulate the atoms in a workpiece inside a SEM. The platform consists of three translational stages of resolution 30 nm along XYZ axis direction and one rotational stage having angular resolution 1 mrad.
This manipulation system is used to monitor three dimensional nano manipulation processes and study the mechanical behavior of ZnS nanobelt, crystalline boron and Au nanowires. Electron beam induced deposition (EBID) method is used to clamp nanowire to the AFM tip inside the SEM vacuum chamber. The mechanical properties of the nanowires are observed by applying continuously increasing load on it. SEM image is analyzed to observe the deformation of the nanowire during tensile and buckling test. Transmission electron microscope (TEM) and atomic force microscope (AFM) are used to measure the cross-sectional areas of the nanowires. The Young’s moduli of the boron and ZnS nanowires have been measured to be (190 ± 15) GPa, and 12.3GPa respectively. The manipulation system has been used to measure the resistivity of a Au nanowire and determined to be 2.07×10-4Ωm. It is observed that the resistivity of nanowire decreases with the increase in diameter.
目錄
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 X
表目錄 XVI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 4
1-4 研究方法 6
1-5 本文架構 6
第二章 研究方法 8
2-1 奈米材料探討 8
2-1-1 硫化鋅 (ZnS) 8
2-1-2 硼(B) 9
2-1-3 金(Au) 11
2-2測試樣品製備 12
2-2-1奈米線碰觸 13
2-2-3奈米線黏著固定 13
2-2-4奈米線摘除 15
2-2-5 奈米線之擷取 17
2-3 拉伸實驗、挫屈實驗與電性實驗 18
2-3-1奈米拉伸實驗之研究方法 18
2-3-2 奈米挫屈實驗之研究方法 19
2-3-3奈米電性測試之研究方法 22
2-4 探針懸臂受力測定方式 24
2-4-1 AFM探針懸臂之梁彈性常數K校正 24
2-4-2懸臂梁小變形量 25
2-4-3懸臂梁大變形量 26
2-5奈米線截面形狀測定方式 28
2-5-1使用AFM與TEM 28
2-5-2使用TEM配合切片方法 30
第三章 實驗設備 33
3-1 掃瞄電子顯微鏡(SEM:SCANNING ELECTRON MICROSCOPE) 33
3-2原子力顯微鏡(AFM:ATOMIC FORCE MICROSCOPE) 34
3-3穿透式電子顯微鏡(TEM) 35
3-4電性量測設備 36
3-4-1 Agilent 數位電表 36
3-4-2 電性量測電路 37
3-5 奈米操作器 38
3-5-1單模組奈米操作器設計 38
3-5-2 元件選用 39
3-5-3多模組奈米操作器設計 44
3-5-4奈米操作器電路控制之系統設計 45
3-5-5 奈米操作器軟體設計與控制介面 49
3-5-6 機台校正 50
3-6 奈米操作器實驗探針 52
3-6-1 AFM探針之選用 52
3-6-2 自製鎢探針之設計與製作 54
3-6-3 微夾持器之設計與製作 62
第四章 實驗結果與探討 66
4-1 拉伸實驗 66
4-1-1 單根奈米線抽離 66
4-1-2拉伸實驗 67
4-1-3 探針懸臂變形量量測 68
4-1-4截面積之量測 69
4-1-5 實驗結果與分析 70
4-2單端固定挫屈實驗 71
4-2-1 單根奈米線抽離 71
4-2-2 單端固定挫屈實驗 72
4-2-3探針懸臂變形量量測 73
4-2-4 奈米線兩端點距離量測 74
4-2-5 截面積之量測 75
4-2-6 實驗結果與分析 75
4-3 雙端固定挫屈實驗 77
4-3-1 單根奈米線抽離 77
4-3-2探針懸臂變形量量測 78
4-3-3 奈米線兩端點距離量測 78
4-3-4 截面積之量測 80
4-3-5 實驗結果與分析 81
4-4 電性實驗 84
4-4-1 量測迴路校正 84
4-4-2 金奈米線量測 86
4-4-3實驗結果與分析 87
第五章 結論與未來展望 89
參考文獻 91
PUBLICATION LIST 97
個人簡歷 98

圖目錄
圖2.1 硫化鋅奈米條壓痕測試圖[25] 9
圖2.2 硫化鋅奈米條壓痕測試材料破裂圖[48] 9
圖2.3 硼奈米線 10
圖2.4 以TEM所截取到之結晶硼奈米線影像圖 10
圖2.5 硼奈米線之原子結構 11
圖2.6 金奈米線 11
圖2.7 實驗流程 12
圖2.8奈米線碰觸圖 13
圖 2.9電子照射誘發沉積法(EBID) [46] 14
圖2.10使用EBID將探針與奈米線固定 14
圖2.11 不同時間照射之EBID沉積數量圖[48] 15
圖2.12 探針接觸並抽離單根硫化鋅奈米線之情況一影像圖 16
圖 2.13 探針接觸並抽離單根硫化鋅奈米線之情況二影像圖 17
圖2.14 奈米線夾持擷取過程 17
圖 2.15 應變與應力的關係圖 18
圖2.16奈米拉伸實驗方法圖 19
圖2.17單端固定奈米挫屈實驗方法圖 21
圖2.18雙端固定奈米挫屈實驗方法圖 21
圖 2.19 探針與量測相關位置圖 22
圖2.20直接量測法示意圖 23
圖2.21 電性量測迴路示意圖 23
圖2.22 AFM探針共振圖 24
圖2.23 探針共振頻率與彈簧常數曲線圖 25
圖2.24 AFM探針懸臂位移量影像測定方式 25
圖2.25大撓曲參數圖 26
圖2.26 放置奈米線 29
圖2.27硼奈米線之TEM圖 29
圖2.28 AFM量測剖面 30
圖2.29 移除AFM探針之硼奈米線 31
圖2.30 固定奈米線示意圖 31
圖2.31研磨後示意圖 31
圖2.32 奈米線與AFM探針的影像及其示意圖 32
圖 3.1 ESEM FEI QUANTA 200儀器實體圖 33
圖3.2 VEECO DIMENSION 3100 AFM 35
圖3.3 TEM 外觀圖 35
圖 3.4 AGILENT數位電表34410A 36
圖3.5 量測設備迴路 37
圖 3.6 五軸奈米操作器模組 39
圖3.7 XY軸移動平台實體圖 40
圖3.8 Z軸移動平台實體圖 40
圖 3.9 直線型PICOMOTOR實體圖 41
圖 3.10 旋轉型PICOMOTOR實體圖 42
圖 3.11 壓電陶瓷實體圖 43
圖 3.12 奈米操作器之機構實體圖 44
圖3.13多模組奈米操作器以90-180度環狀排列 45
圖 3.14 多模組奈米操作器以120度環狀排列 45
圖 3.15 奈米操作器控制系統架構圖 46
圖 3.16 PICOMOTOR控制系統架構圖 47
圖3.17 形狀記憶合金電路控制示意圖 48
圖3.18 電性量測迴路示意圖 48
圖 3.19 奈米操作器之控制介面圖 49
圖 3.20 奈米操作之控制介面圖 50
圖 3.21 奈米操作之控制介面圖 50
圖 3.22 單軸位移曲線 51
圖 3.23 探針懸臂梁位移變形量之示意圖 52
圖 3.24 CSG11與NSG20之AFM探針外型圖 53
圖 3.25 AFM探針外型圖 53
圖 3.26 AFM探針夾治具之示意圖與實體圖 53
圖 3.27鎢針蝕刻示意圖 55
圖3.28 以傳統蝕刻法製作鎢針之SEM實體圖 55
圖 3.29 鎢針之製作流程圖 56
圖3.30 放電蝕刻機之控制電路示意圖 57
圖3.31軟體介面圖 58
圖 3.32 鎢針製作過程量測之電流曲線圖 58
圖3.33 系統架構圖 59
圖3.34 系統實體圖 60
圖3.35 鎢針蝕刻尖端 61
圖3.36 奈米夾持器之示意圖與實體圖 62
圖3.37 奈米夾持器之尖端 62
圖3.38 POM之撓性機構示意圖 63
圖3.39 微夾持器在光學顯微鏡底下之影像圖 64
圖3.40 夾持氧化鋅奈米線之光學影像圖 65
圖4.1 抽出單根奈米線 66
圖 4.2 硫化鋅拉伸實驗之影像圖 67
圖4.3 硫化鋅拉伸實驗在SEM底下之結果圖 68
圖4.4奈米線受力曲線圖 68
圖4.5奈米線應變曲線圖 69
圖4.6奈米線截面積量測圖 69
圖4.7 拉伸實驗之應力與應變圖 70
圖4.8 探針接觸並黏著單根硼奈米線之影像 71
圖4.9 抽離之單根硼奈米線 71
圖4.10 使用平板頂住硼奈米線 72
圖4.11 單端點固定挫屈 72
圖4.12 AFM懸臂梁移動距離 73
圖4.13 硼奈米線受力曲線 73
圖 4.15 奈米線兩端點間距離 74
圖4.16 硼奈米線兩端點距離變化曲線圖 75
圖 4.17 使用TEM與AFM量測不同視角 75
圖 4.18 硼奈米線壓縮載荷與變形曲線圖 76
圖 4.19 單端點固定之等效長度LE 76
圖4.21 雙端點固定之挫屈 77
圖4.22 AFM懸臂梁移動距離 78
圖4.23 硼奈米線受力曲線 78
圖 4.24 奈米線兩端點間距離 79
圖4.25 硼奈米線兩端點距離變化曲線圖 79
圖 4.26 奈米線與AFM探針截面形狀 80
圖4.27 硼奈米線截面形狀 80
圖 4.28 硼奈米線壓縮載荷與變形曲線圖 81
圖 4.29等效長度LE 81
圖4.30 硼奈米線斷裂面 82
圖4.31 挫屈方向 83
圖4.32 鎢探針接觸 84
圖4.33 鎢探針接觸時之電阻 84
圖4.34 鎢探針接觸標準電阻 85
圖4.35 校正前後量測曲線 85
圖4.36 接觸金奈米線 86
圖4.37 接觸金奈米線時量測電壓變化 86
圖4.38金奈米線直徑與電阻率關係曲線 88


表目錄

表2-1 不同邊界下,柱之等效長度 20
表3-1 ESEM FEI QUANTA 200規格性能表 34
表3-2 AGILENT 34410A數位電表功能與規格表 36
表3-3 XY軸移動平台規格性能表 40
表3-4 Z軸移動平台規格性能表 41
表3-5 直線型PICOMOTOR規格性能表 41
表3-6 旋轉型PICOMOTOR規格性能表 42
表3-7 壓電陶瓷規格性能表 43
表3-8 SEM影像解析度 51
表4-1 硼奈米線量測結果 76
表4-2 硼奈米線量測結果 82
表4-3 量測迴路校正數據 85
表4-4 金奈米線電性量測結果 87
1.D.M. Eigler and E. k. Schweizer, “Positioning single atoms with a scanning tunneling microscope," Nature, Vol.344, pp.524, 1990.
2.S. Iijima, “Helical microtubules of graphitic carbon," Nature, Vol.354, pp.56, 1991.
3.H.J. Qi, K.B.K. Teo, K.K.S. Lau, M.C. Boyce, W.I. Milne, J. Robertson, and K.K. Gleason, “Dtermination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation," Journal of Mechanics and Physics of Solids, Vol.51, pp.2213, 2003.
4.M.J. Treacy, T.W. Ebbeaen, and J.M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, Vol.381, pp.678-680, 1996.
5.E.W. Wong, P.E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity,strength, and toughness of nanorods and nanotubes,” Science, Vol.277, pp.1971-1975, 1977.
6.P. Poncharal, Z.L. Wang, D. Ugarte, and W.A.D. Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes,” Science, Vol. 283, pp.1513-1516, 1999.
7.M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, Vol.287, pp.637-640, 2000.
8.A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, and M.M.J. Treacy, “Young’s modulus of single-walled nanotubes,” Phys. Rev. B, Vol.58, pp.14013-14019, 1998.
9.J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, and L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Phys. Aev. Lett., Vol. 82, pp.944 – 947, 1999.
10.M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., Vol.84, pp.5552-5555, 2000.
11.W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, and H. Park, "Fabry-Perot interference in a nanotube electron waveguide," Nature, Vol. 411, pp.665-669, 2001.
12.S. Frank, P. Poncharal, Z.L. Wang, and W.A.D. Heer, "Carbon nanotube quantum resistors," Science, Vol.280, pp.1744-1746, 1998.
13.P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, "Thermal transport measurements of individual multiwalled nanotubes," Phys. Rev. Lett., Vol.87, pp.215502-1 – 215502-4, 2001.
14.R.H. Baughman, A.A. Zakhidov, and W.A.D. Heer, "Carbon nanotubes – the route toward applications," Science, Vol.297, pp.787-792, 2002.
15.P. Poncharal, Z.L. Wang, D. Ugarte, and W.A.D. Heer, "Electrostatic deflections and electromechanical resonances of carbon nanotubes," Science, Vol.283(5407), pp.1513-6, 1999.
16.E.W. Wong, P.E. Sheehan, and C.M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes," Science, Vol.277(5334), pp.1971-5, 1997.
17.M.F. Yu, B.S. Files, S. Arepalli, and R.S. Ruoff, “Tensile Loading of Ropes of SingleWall Carbon Nanotubes and their Mechanical Properties,” PHYSICAL REVIEW LETTERS , Vol.84, No.24 , 2000.
18.M.F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, J.R.V. Her, and R.S. Ruoff, “Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope,” Nanotechnology, Vol.10 pp.244–252, 1999.
19.M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, “Strength, and breaking mechanism of multi-walled carbon nanotubes under tensile load,"Science, Vol.287, p637, 2000.
20.M.F. Yu, G.J. Wagner, R.S. Ruoff, and M.J. Dyer, “Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside scanning electron microscope,” Physical Review B, Vol.66, Issue 7, pp.073406-1~073406-4, 2002.
21.D.A. Dikin, X. Chen, W. Ding, G. Wagner, and R. S. Ruoff, “Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation,” Journal of Applied Physics, Vol.93, No.11, pp.226-230, 2003.
22.L.X. Dong, F. Arai, and T. Fukuda “Fabrication and Property Analysis of MWNT Junctions through Nanorobotic Manipulations,"Internal Journal of Nonlinear Sciences and Numerical Simulation, Vol 3, pp.753, 2002.
23.L.X. Dong, F. Arai, and T. Fukuda, “Nanoassembly of Carbon Nanotubes through Mechanochemical Nanorobotic Manipulations,"Jpm. J. Appl. Phys. Vol.42, pp.295, 2003.
24.M.F. Yu, B.I. Yakobson, and R. S. Ruoff, “Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes,” J. Phys. Chem. B, Vol.104, pp.8764-8767, 2000.
25.X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, and Y. Nakayama, “Mechanics of a Carbon Nanocoil,” Nano Letters, Vol.3, No.9 pp.1299-1304, 2003.
26.M.F. Yu, B.I. Yakobson, and R. S. Ruoff, “Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes,” J. Phys. Chem. B, Vol.104, pp.8764-8767, 2000.
27.X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, and Y. Nakayama, “Mechanics of a Carbon Nanocoil,” Nano Letters, Vol.3, No.9 pp.1299-1304, 2003.
28.L.W. Jia, S.J. Young, T.H. Fang, and C.H. Liu, “Buckling characterization of vertical ZnO nanowires using nanoindentation”, Applied Physics Letters, Vol. 90, Issue 3, pp.033109, 2007.
29.R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, “Elasticity Size Effectsin ZnO Nanowires-A combined Experimental-Computational,” Nano Lett., Vol. 8, No.11, pp.3668–3674 , 2008.
30.J. Zhou, P. Fei, Y. Gao, Y. Gu, J. Liu, G. Bao, and Z. Lin Wang, ” Mechanical-Electrical Triggers and Sensors Using Piezoelectric Micowires / Nanowires,” Nano Lett., Vol. 8, No. 9, pp.2725-2730, 2008.
31.X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L. Wang, “Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire,” Nano Lett., Vol. 6, No.12, pp.2768-2772, 2006.
32.S. Xu, Y. Wei, J. Liu, R. Yang, and Z.L. Wang, ”Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes,” Nano Lett., , Vol.8, No.11, pp.4027-4032, 2008.
33.N.A. Weir, D.P. Sierra, and J.F. Jones, “A Review of Research in the Field of Nanorobotics, ” SANDIA REPORT SAND2005-6808 Unlimited Release.
34.C.H. Ke, N. Pugno, B. Peng, and H.D. Espinosa, “Experiments and modeling of carbon nanotube-based NEMS devices,” Journal of the Mechanics and Physics of Solids, Vol. 53, Issue 6, pp.1314-1333, 2005.
35.J.S. Choi, J.S. Lee, G.S. Kang, Y.K. Kwak, and S.H. Kim, ”A Study of Carbon Nanotube Array for Fabrication of Carbon Nanotube Tip,” The 2nd Intemational Symposium on Nanomanufacturing, Vol.3, No5, pp.391-393, 2004.
36.X.F. Wang, L. Vincent, M.F. Yu, Y. Huang, and C. Liu, ”Architecture of a Three-Probe MEMS Nanomanipulator with Nanoscale End-Effectors,” Advanced Intelligent Mechatronics, pp.891-896, 2003.
37.S. Fatikow, V. Eichhorn, T. Wich, H. Hülsen, O. Hänßler, and T. Sievers, ” DEVELOPMENT OF AN AUTOMATIC NANOROBOT CELL FOR HANDLING OF CARBON NANOTUBES,” IARP_2006 final 09, Vol.2, No.10, 2006.
38.I. Utkea, A. Luisier, P. Hoffmann, D. Laub, and P. A. Buffat, ” Focused-electron-beam-induced deposition of freestanding threedimensional nanostructures of pure coalesced copper crystals,” Appl. Phys. Lett., Vol. 81, No. 17, 2002.
39.P. Bøggild, T.M. Hansen, C. Tanasa, and F. Grey, ”Fabrication and actuation of customized nanotweezers with a 25 nm gap,” Nanotechnology, Vol.12, Issue 3, pp. 331-335, 2001.
40.Q. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing, L.C.L.Y. Voon, B. Lassen, and P.C. Eklund, “Optical Properties of Rectangular Cross-sectional ZnS Nanowires,” Nano Letters Vol.4, No.9, pp.1663-1668, 2004.
41.Q. Xiong, J. Wang, O. Reese, L.C.L.Y. Voon, and P.C. Eklund, “Raman Scattering from Surface Phonons in Rectangular Cross-sectional w-ZnS Nanowires,” Nano Letters Vol.4, No.10, pp.1991-1996, 2004.
42.X. Li, X. Wang, Q. Xiong and P. C. Eklund, “Mechanical Properties of ZnS Nanobelts” Nano Lett., Vol.5,No.10, pp.1982–1986 , 2005.
43.H. Ni and X. Li, ”Self-assembled composite nano-/micronecklaces with SiO2 beads in boron strings,” Applied Physics Letters, Vol.89, Issue 5, pp.053108-05110, 2006.
44.H. Ni and X. Li, ”Synthesis, structural and mechanical characterization of amorphous and crystalline boron nanobelts,” Journal of Nano Research Vol.1, pp.10-22, 2008.
45.W. Ding and L. Calabri, “Mechanics of Crystalline Boron Nanowires”, Composites Science and Technology, Vol.66, pp.1112-1124, 2006.
46.H.W. P. Koops, J. Kretz, M. Rudolph, M.S. Weber, and K.L. Lee, ”Characterization and Application of Materials Grown by Electron-Beam-Induced Deposition,” Jpn.J. Appl. Phys., Vol.33, No.12B, pp.7099-7107, 1994.
47.W. Ding, D.A. Dikin, X. Chen, X. Wang, X. Li, R.D. Piner, R.S. Ruoff, and E. Zussman, “Clamping Nano-structures using Electron Beam Induced Deposition,” NSF Nanoscale Science and Engineering Grantees Conference, Dec 13-15, 2004.
48.U. Hübner , R. Plontke , M. Blume , A. Reinhardt, and H.W.P. Koops,” On-line nanolithography using electron beam induced deposition technique,” MNE 2000 Micro- and Nano-Engineering. International Conference, Vol.57-58, No.1079, pp. 953-958, 2001.
49.G.G. Harmon and T. Higier, "Some properties of dirty contacts on semiconductors and resistivity measurements by a two-terminal method," J. Appl. Phys., Vol.33, pp.2198, 1962.
50.T. Bel´endez, Neipp, and A. Bel´endez, “Large and small deflections of a cantilever beam,” Eur. J. Phys. Vol.23, pp.371–379, 2002.
51.C. Baykara, U. Guven, and I. Bayer, “Large Deflections of a Cantilever Beam of Nonlinear Bimodulus Material Subjected to an End Moment,” Journal of Reinforced Plastics and Composites, Vol.24, No.12, pp.1321-1326, 2005.
52.K.E. Bisshopp and D.C. Drucker, “Large Deflection of Cantilever Beams,” Quarterly of applied Math, Vol.3, No.3, pp 272-275, 1945.
53.F.N. Tavadze and J.V. Lominadze, “The Effect of Impurities on the Mechanical Properties of Zone-Melted Boron,” J. Less-Common Met., Vol.82, pp.95-97, 1981.
54.C.P. Tally, “ Mechanical Properties of Glassy Boron”, Jour. Applied Physics, Vol. 30, No.7, pp.1114-1115, 1959.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔