跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李俊德
研究生(外文):Jiun-De Li
論文名稱:利用基因演算法尋求液晶顯示器背光模組中發光二極體之最佳擺放角度研究
論文名稱(外文):Optimizing the Angular Placement of the LEDs in a LCD Backlight Module by Genetic Algorithm
指導教授:黃健生黃健生引用關係
指導教授(外文):Jeng-Sheng Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:55
中文關鍵詞:直下式背光模組發光二極體基因演算法錐形光學透鏡
外文關鍵詞:Cone-Shaped LensLEDGenetic AlgorithmDirectly-Lit Backlight Unit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要針對發光二極體(Light Emitting Diode, LED)之光源設計一創新錐形透鏡,以應用於大尺寸LED背光模組(Backlight Unit, BLU)中,期望在厚度20mm極短混光距離中獲得高光源使用率之背光模組,進而發展出高效能薄型化大尺寸液晶電視。此創新錐形透鏡的使用,主要在於設計並改善每一顆發光二極體的光源強度分布,利用透鏡的設計提高每一顆LED光源的均勻性,並減少傳統高光源耗損率之光學擴散片的使用,最後在符合業界均勻性標準下發展出一高光使用率之背光模組。在此創新透鏡的設計上,主要利用在錐形表面上所蒸鍍之鋁質反射面的設計,將大部分由LED所發散出之光源反射引導至四周水平方向,以避免過強的LED光源造成光斑的現象並提升整體背光模組均勻性。透過TracePro光學軟體的模擬,將建置一近似實際光學環境之設值模型,以驗證論文中所提出之創新錐形透鏡設計角度與背光模組之LED光源空間配置設計。此外為了進一步地實現高色彩飽和與降低色差表現的效能,本論文利用著名的基因演算法(Genetic Algorithm, GA) 於搜尋計算每一顆RGB LED模組於整體背光模組中最佳的擺放角度,並將最佳化結果與實驗驗證,明顯降低背光模組色差值並獲得高色彩平衡與高輝度均勻度的效能表現。在本論文最後,建立在此最佳化結果之上,透過實際製作一37吋之液晶電視背光模組原型,以直接實驗量測的方式,驗證本篇論文所提出之最佳化演算法與所設計之光學透鏡能提供之高效能。
The objective of this study are to design a novel cone-shaped lens cap on LEDs and establish the optimal design process for achieving high optical efficiency in an ultra-thin, directly-lit RGB LED backlight unit (BLU) for large-sized LCD-TVs. The usage of the novel lens cap could play the role of a diffuser, a low light-efficiency component in BLU, in order to gain higher efficiency and simultaneously provide satisfactory uniformity of light distribution. The novel cone-shaped lens is coated with aluminum on the outside surface of cone for mirroring effects to reflect most part of LED light horizontally and then reflected at BLU boundaries, finally to the output plane. In this way, bright spots on the output plane of the BLU can be avoided and leading to an increased uniformity. Simulations are conducted to design and optimize varied aspects of the designed lens and BLU, including the cone angle of the proposed lens and the LED spacing (pitch). To further achieve high color balance, the known Genetic Algorithm is employed to search for the optimal angular placement of each RGB LED, resulting in better color balance. Finally, a prototype BLU for large-sized 37” LCD-TVs with the proposed lens and optimal process are built to verify the performance expected.
摘要 I
Abstract II
致謝 III
Contents IV
Figure Captions V
Table Titles VII
1.Introduction 1
2.Design of the Novel Cone-Shaped Lens 4
3.Optical Design of an Ultra-thin LED Backlight Module 9
3.1Optical Property Settings of Optical Films 9
3.2Design of the Reflective Cavity 11
3.2.1 Optimal placement of LEDs for using GA in the small-size backlight module 12
3.2.2 Design of the reflective cavity 16
4.Numerical Result and Experimental Validation 18
5.Conclusions 20
References 22
Figures 24
Tables 41
Resume 48



Figure Captions
Fig. 1 Illustration of directly-lit LED backlight units: (a) An ordinary LED BLU; (b)
The BLU with the proposed novel cone-shaped lenses on LEDs ..................... 24
Fig. 2 (a) Optic schematic of LED with the novel cone-shaped lens. (b) Top view of
the LED with the novel cone-shaped lens, (c) Photograph of the LED module
with the novel cone-shaped lens ....................................................................... 25
Fig. 3 (a) Photograph of Everlight LED 6123. (b) Dimensions of Everlight LED 6123
........................................................................................................................... 26
Fig.4 (a) Intensity profiles of a single LED 6123; (b) Intensity profiles of the LED
6123 with the proposed novel cone-shaped lens ............................................... 27
Fig. 5Numerical intensity profiles for the lens with three different cone angles .......... 28
Fig. 6 Numerical intensity profiles of the LED with the 45° lens in (a) and that with
45° lens and a polymer coating doped with silica particle on top circular
surface in (b) ..................................................................................................... 29
Fig. 7 Measured intensity profiles of three different novel cone-shaped lenses ........... 30
Fig. 8 (a-c) Photograph of prototype BLU module and (b-d) Numerical model of
prototype BLU module ..................................................................................... 31
Fig. 9 Spectrum reflectances of the coated reflector and white reflector ..................... 32
Fig. 10 View angle of the BLUs with and without BEF III .......................................... 33
Fig. 11 Numerical brightness uniformity of the LED BLU with the novel cone-shaped
lens applied versus varied LED pitch in the 2” BLU ........................................ 34
Fig. 12 Fitness function values in the process of GA optimization .............................. 35
Fig. 13 Optimized angular placement pattern of LEDs for the test small-sized BLU .. 36
Fig. 14 The novel boudary structures designed for the BLU cavity ............................. 37
Fig. 15 Optical performances of the original and novel reflective cavities .................. 38
Fig. 16 Intuitive improved symmetry in the angular placement of RGB LEDs ........... 39
Fig. 17 Photographs of (a) the self-designed automatic optical inspection system; (b)
the large-sized 37” BLU for test ....................................................................... 40


Table Titles
Table 1 Drive Currents and Simulated Lumens of the LED 6123. ............................... 41
Table 2 Comparison between numerical simulations and experimental measurements
for the LED BLU without the novel cone-shaped lens adopted ....................... 42
Table 3 Parameters Setting for GA ............................................................................... 43
Table 4 Comparison between original, improved and optimized angular placement for
the LED BLU with the proposed novel cone-shaped lens by 4 LED ............... 44
Table 5 Comparison between original, improved and optimized angular placement for
the LED BLU with the proposed novel cone-shaped lens by 9 LED. .............. 45
Table 6 Comparison between numerical simulations and experimental measurements
for the LED BLU with/without the proposed novel cone-shaped lens and
without a BEF. ................................................................................................... 46
Table 7 Comparison between numerical simulations and experimental measurements
for the LED BLU with/without the proposed novel cone-shaped lens and with
a BEF. ................................................................................................................ 47
[1] Y. Martynov, H. Konijn, N. Pfeffer, S. Kuppens and W. Timmers, “High-efficiency slim LED backlight system with mixing light guide”, SID 03 Digest, p. 1259-1261, 2003.
[2] K. Käläntär and M. Okada, “RGB-LED Backlighting Monitor/TV for Reproduction of Images in Standard and Extended Color Spaces”, IDW 04, pp. 683-686, 2004.
[3] E. F. Schubert, “Light-Emitting Diodes”, New York, Cambridge University Press, pp. 277-280, 2006.
[4] W. Folkerts, “LED Backlighting Concepts with High Flux LEDs,” SID 04 Digest, pp. 1226-1229 , 2004.
[5] Paul C.-P. Chao, L.-D. Liao, C.-W. Chiu, “Design of a Novel LED Lens Cap and Optimization of LED Placement in a Large Area Direct Backlight for LCD-TVs,” Proc. of SPIE, Vol. 6196, p 61960N , 2006.
[6] C. W. Chiu, C. Y. Shen, and C. P. Chao, “Novel lens design and experimental verification for high efficiency direct type backlight module of LCD-TV,” Asian Pacific Conference on Optics Manufacture, 2007.
[7] Paul C.-P. Chao, L.-D. Liao, C.-W. Chiu, “A Light-guiding cap for LEDs,” a patent application filed to TIPO: I286613, Intellectual Property Office of Taiwan, R.O.C., and USPTO, United State Patent and Trademark Office.
[8] R.S. West, H. Konign, S. Kaypens et al, “High brightness direct LED backlight for LCD-TV”, SID 03 Digest, pp.1262-1265, 2003.
[9] I. Moreno, U. Contreras, R. I. Tzonchev, “Cluster configurations of red, green, and blue LEDs for white light”, Proc. SPIE vol. 5739, 2005.
[10] D. Malacara, “Color Vision and Colorimetry : Theory and Applications”, SPIE Press, 2002.
[11] H. Ries, I, Leike, J. Muschaweck, “Mixing colored LED sources”, Proc. SPIE, Vol.5186, 27-32, 2003.
[12] http://www2.produktinfo.conrad.com/datenblaetter/150000-174999/156363-da-01-en-Led_61-23-RGB-TR8.pdf
[13] www.hoffmanengineering.com/bm7_tech_specs.htm.
[14] www.instrumentsystems.de/products/downloads/led_station_english_02.pdf.
[15] http://solutions.3m.com/wps/portal/3M/en_HK/vikuiti/home/ProdInfo/Product/BEF/?PC_7_RJH9U5230GE3E 02LECIE20CPE7_nid=Q2ZGN85GDRbe790JQR261Mgl
[16] AU Optronics Corp., http://www.auo.com.tw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊