跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建志
研究生(外文):Chien-Chuh Lau
論文名稱:利用田口法分析對PBGA封裝體之錫球的可靠度影響
論文名稱(外文):The Reliability of the Solder Joints in PBGA Package by Taguchi Method
指導教授:鍾文仁鍾文仁引用關係
指導教授(外文):Wen-Ren Jong
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:溫度循環負載有限元素無鉛錫球幾何尺寸裂縫增長率疲勞壽命田口法
外文關鍵詞:Finite Element AnalysisLead-Free Solder BallFatigue LifeGeometry Sizecrack growth rattemperature cyclic loadingTaguchi method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先引用文獻來做一連串的比對驗證,以確保本文研究內涵的可信度,然後再利用有限元素軟體(ANSYS)探討IC封裝之無鉛銲錫(95.5Sn-3.9Ag-0.6Cu)在溫度循環負載作用下之每個循環的累積潛變應變與累積潛變應變能密度的特性,進一步配合田口方法,分析IC封裝模型受到溫度循環設計下對疲勞壽命的影響;於此,規劃五個主要之溫度負載因子分別為高溫恆溫溫度、低溫恆溫溫度、升降溫率、高溫恆溫時間和低溫恆溫時間,各因子具有四個水準,依據田口法中的L16直交表,以三種不同IC封裝體PBGA-256、PBGA-388和CCGA-1657作為干擾因子,並運用Schubert與Dudek兩位學者依其實驗所推導的疲勞壽命公式,將求得之疲勞壽命數用田口方法及ANOVA分析比較,找出無鉛錫球在受溫度循環作用下的主要影響因子,探討溫度循環因子對無鉛銲錫之疲勞壽命與可靠度的影響。第二部分針對裂縫錫球進行溫度循環測試,一開始以有限元素分析軟體(ANSYS)模擬3D裂縫錫球在溫度循環負載下的熱機械特性分佈情況;接著進一步配合田口實驗法設計出不同幾何尺寸之錫球,探討錫球幾何尺寸對錫球裂縫增長率的關係,依據田口法L9直交表,規劃了4個錫球幾何因子分別為錫球上圓直徑尺寸、錫球下圓直徑尺寸、錫球高度及錫球最大直徑尺寸,每個因子各具有三個水準值,並以無鉛銲錫(95.5Sn-3.9Ag-0.6Cu與96.5Sn-3.5Ag)及有鉛銲錫(62Sn-36Pb-2Ag)作為干擾因子,最後使用Lau所推導之裂縫增長率公式,以裂縫增長率之數據作ANOVA分析後,找出在設計錫球時錫球幾何參數對裂縫增長之影響,並找出最佳化參數與原始設計之錫球幾何作比較,以期望未來在制定無鉛銲錫之溫度循環測試規範(Criteria)的參考資訊,以及在設計封裝小型化之錫球階段能提供具有效益的資訊。
Firstly, finite element analysis software (ANSYS) is used to investigate the accumulated creep strain range and accumulated creep stain energy density properties of the lead-free solder (95.5 Sn-3.9 Ag-0.6 Cu) in IC packages under the temperature cyclic loading by the Garofalo-Arrhenius hyperbolic sine law. Then, the Taguchi method is further used to analyze the effects of the IC package on the fatigue life subjected to the temperature cyclic loading. The five main factors are the high and low temperature dwells, the temperature ramp rate, and the dwell time of both high and low temperatures, respectively. Moreover, each factor has four levels. According to the L16 orthogonal arrays of the Taguchi method, three different IC packages PBGA-256, PBGA-388 and CCGA-1657 are used as the noise factors. Furthermore, the Schubert’s model is used in Taguchi method and the purpose of ANOVA analysis is to find the main influence factors on the fatigue life and reliability of the lead-free solders. It is thus expected to provide reference data for the setting lead-free solder temperature cycle testing criteria in the future. Secondly, the purpose is aimed to investigate temperature effect on crack solder ball. It uses ANSYS to simulate the 3D crack solder ball under the temperature cyclic loading. Then, cooperating with Taguchi method to design various geometrized size of solder ball and discuss the relation between the geometrized size and the crack growth rate of solder ball. According to L9 orthogonal arrays, 4 solder ball geometrized factors are studied, which are upper round diameter size of the solder ball, lower round diameter size of the solder ball, the height of the solder ball and the biggest diameter size of the solder ball. There are three levels are used on each factor and using 95.5Sn-3.9Ag-0.6Cu, 96.5Sn-3.5Ag,and 62Sn-36Pb-2Ag as noise factor. Finally, we use the crack growth rate which Lau used to find out the effect of geometry parameter on the crack growth. To set up the information of temperature cyclic test standard of lead-free solder and supply useful information to the stage of packaging miniaturization, are compared the best design and the original design of solder ball geometry are compared.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究背景與歷史[1][2][3] 1
1-2 研究動機與目的 4
1-3 文獻回顧 4
1-4 本文架構 6
第二章 理論基礎與文獻驗證 7
2-1 前言 7
2-2 理論基礎 7
2-2-1 材料特性 7
2-2-2 降伏準則 9
2-2-3 潛變理論 10
2-2-4 溫度循環測試 11
2-3 模擬分析之規劃 12
2-3-1 材料參數選定 12
2-3-2 模型結構與網格之相容性 13
2-3-3 負載與邊界條件 16
2-4 文獻之驗證 17
第三章 溫度負載設計對IC封裝之無鉛銲錫的疲勞壽命分析 22
3-1 前言 22
3-2 相關理論基礎 24
3-2-1 田口式品質工程[20] 24
3-2-2 品質特性與品質計量法[20] 25
3-2-3 干擾因子及穩健品質設計[20] 26
3-2-4 ANOVA分析[20] 26
3-2-5 錫球疲勞壽命預測式 28
3-3 CAE模擬分析 30
3-3-1 材料特性 30
3-3-2 模型結構 31
3-4 熱循環負載及邊界條件 33
3-5 實驗規劃 35
3-6 結果與討論 38
第四章 錫球幾何設計對錫球裂縫增長率的影響 44
4-1 前言 44
4-2 基礎理論 45
4-2-1 田口法 45
4-2-2 疲勞與裂縫產生之影響 48
4-2-3 封裝體之錫球破壞行為[22] 49
4-2-4 Lau之裂縫增長率公式[22] 50
4-3 錫球裂縫之分析與探討 52
4-3-1 二維錫球裂縫模型[10] 52
4-4 CAE模擬分析 55
4-4-1 材料特性與參數 55
4-4-2 模型結構與網格 56
4-4-3 溫度循環負載及邊界條件 58
4-4-4 實驗規劃及設計 60
4-5 結果與討論 62
第五章 結論與未來展望 66
5-1 結論 66
5-2 未來展望 67
參考文獻 68
簡歷 71

圖目錄
圖1-1 IC元件在引腳腳距的發展演進 1
圖1-2 PBGA結構圖[4] 2
圖1-3 CBGA與CCGA結構圖 3
圖2-1 牛頓-瑞佛森法疊代示意圖 8
圖2-2 修正後的牛頓-瑞佛森法疊代示意圖 9
圖2-3 降伏軌跡圖 10
圖2-4 潛變應變與時間關係圖 11
圖2-5 錫球受到溫度循環變化之變形示意圖 12
圖2-6 PBGA-388模型之結構 14
圖2-7 CCGA-1657模型之結構 15
圖2-8 溫度循環負載 16
圖2-9 PBGA-388條狀模型之邊界拘束條件 17
圖2-10 CCGA-1657條狀模型之邊界拘束條件 17
圖2-11 PBGA-388之剪應力對時間關係圖 18
圖2-12 CCGA-1657之剪應力對時間關係圖 18
圖2-13 PBGA-388之潛剪應變對時間關係圖 19
圖2-14 CCGA-1657之潛剪應變對時間關係圖 19
圖2-15 PBGA-388剪應力對潛剪應變之遲滯迴圈 19
圖2-16 CCGA-1657剪應力對潛剪應變之遲滯迴圈 20
圖2-17 PBGA-388之潛變應變能密度對時間關係圖 20
圖2-18 CCGA-1657之潛變應變能密度對時間關係圖 21
圖3-1 PBGA-256模型尺寸圖 32
圖3-2 PBGA-388模型尺寸圖 32
圖3-3 CCGA-1657模型尺寸圖 33
圖3-4 溫度循環負載 34
圖3-5 PBGA-256條狀模型之邊界拘束條件 34
圖3-6 PBGA-388條狀模型之邊界拘束條件 34
圖3-7 CCGA-1657條狀模型之邊界拘束條件 35
圖3-8 溫度循環之控制因子 36
圖3-9 L16之16組實驗設定 38
圖3-10 各因子S/N回應圖 41
圖3-11 各因子S/N回應圖 43
圖4-1 WLCSP錫球裂縫成長 50
圖4-2 銲錫之穩態潛變本質方程式[22] 52
圖4-3 WLCSP錫球模型 53
圖4-4 node平面應變元素 54
圖4-5 錫球之位移量 54
圖4-6 錫球之應力圖 55
圖4-7 PBGA-388錫球裂縫模型 56
圖4-8 PBGA-388錫球之應力應變最大區域 57
圖4-9 三維裂縫平面 57
圖4-10 錫球之應力 58
圖4-11 PBGA-388錫球裂縫模型 58
圖4-12 裂縫平面之端點網格 58
圖4-13 溫度循環負載 59
圖4-14 邊界條件負載 60
圖4-15 錫球幾何因子 61
圖4-16 規劃之9組模型實驗 62
圖4-17 裂縫尖端之應力、應變及累積前變硬變密度 64
圖4-18 各因子S/N回應圖 65

表目錄
表2-1 材料性質[15] 13
表2-2 潛變參數[15] 13
表2-3 簡化與無簡化錫球網格之等效應力值比較 15
表2-4 簡化與無簡化錫球網格之等效潛應變值比較 15
表2-5 簡化與無簡化錫球網格比較 15
表3-1 疲勞壽命預測係數[16] 29
表3-2 無鉛錫球之累積潛變應變的疲勞壽命預測[16] 29
表3-3 無鉛錫球之累積潛變應變能密度的疲勞壽命預測[16] 29
表3-4 材料特性[16] 30
表3-5 潛變參數[16]、[21] 31
表3-6 控制因子水準設定 36
表3-7 直交表 36
表3-8 實驗結果數據 40
表3-9 實驗之因子回應表(S/N比) 41
表3-10 實驗之ANOVA分析(S/N比) 41
表3-11 實驗結果數據 42
表3-12 實驗之因子回應表(S/N比) 42
表3-13 實驗之ANOVA分析(S/N比) 43
表4-1 裂縫增長率係數 51
表4-2 潛變裂縫增長率係數 52
表4-3 材料特性[23] 56
表4-4 潛變參數[23] 56
表4-5 各因子水準設定 61
表4-6 直交表 62
表4-7 實驗結果數據 64
表4-8 實驗之因子回應表(S/N比) 65
表4-9 分析之ANOVA分析(S/N比) 65
表4-10 最佳化參數與原始參數的比較 65
參考文獻
[1]J. H. Lau, “Ball Grid Array Technology”, McGraw-Hill, New York, 1995.
[2]IC封裝製程與CAE應用(修訂版),鍾文仁、陳佑任,全華科技圖書股份有限公司,2005年。
[3]半導體電子元件構裝技術,田民波編著、顏怡文修訂,五南圖書出版股份有限公司,2005年。
[4]http://www.spil.com.tw/
[5]Z. Ghaffarian, N. P. Kim, ”Effect of Thermal Cycling Ramp Rate on CSP Assembly Relability”, Electronic Components and Technology Conference, 2001.
[6]J. Pitarresi, S. Chaparala, B. Sammakia, ”A Parametric Solder Joint Reliability Model for Wafer Level-Chip Scale Package”, Electronic Components and Technology Conference, pp.1323-1328, 2002.
[7]A. Syed, ”Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for SnAgCu Solder Joints”, Electronic Components and Technology Conference, Vol.1, pp.737-746, 2004.
[8]J. Lau, W. Dauksher, ”Effects of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints”, Electronic Components and Technology Conference, pp.1292-1298, 2005.
[9]S. C. Chaparala, B. D. Roggeman, ”Effect of Geometry and Temperature Cycle on the Reliability of WLCSP Solder Joints”, IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 3, 2005.
[10]J. H Lau, C Chang, S. W. R. Lee, ”Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies”,IEEE Transactions on Components and Packaging Technologies, Vol.24, 2001.
[11]J. H. Lau, S. H. Pan, C. Chang, ”A New Thermal-Fatigue Life Prediction Model for Wafer Level Chip Scale Package (WLCSP) Solder Joints”, Journal of Electronic Packaging, Vol. 124, 2002.
[12]J. Lau, D. Shangguan, ”HDPUG's failure analysis of high-density packages’ lead-free solder joints”, Soldering & Surface Mount Technology, Vol. 16 No.2, pp.69-76, 2003.
[13]M. Roellig, ”Novel Test Concept for Experimental Lifetime Prediction of Miniaturized Lead-Free Solder Contacts”, 28th Int. Spring Seminar on Electronics Technology, 2005.
[14]P. Limaye, ”Crack Growth Rate Measurement and Analysis for WLCSP Sn-Ag-Cu Solder Joints”, SMTA International, 2005.
[15]J. H. Lau, W. Dauksher, J. Smetana, I. Menis, ”HDPUG's Design for Lead-Free Solder Joint Reliability of High-Density Packages”, Proceedings of APEX, Anaheim, CA, CD-ROM, March 2003.
[16]C. T. Huang, ”Comparison on Creep Behaviors and Fatigue Strength Prediction of Lead-Free Solder Joint in High Density Packages”, Dept. of Mechanical Engineering, Chung Yuan Christian University, Taiwan, 2007.
[17]G. Z. Huang, ”The Influences of Temperature Cycling Factors on the Reliability of the Solder Joints in IC Packages”, Dept. of Mechanical Engineering, Chung Yuan Christian University, Taiwan, 2008.
[18]W. R. Jong, H. C. Tsai, ”The Effects of Temperature Cyclic Loading on Lead-Free Solder Joints of Wafer Level Chip Scale Package by Taguchi Method”, Transactions of the ASME, Journal of Electronic Packaging, to be appeared, 2008.
[19]H. C. Tsai, W. R. Jong, ”Comparison of Inelastic Behaviors of Lead-Free and Sn-Pb Solder Joints”, Transactions of the SAGE, Journal of Reinforced plastics and composites, 2008.
[20]H. H. Li, ”Taguchi Methods: Principles and Practices of Quality Design”, Gauli, ISBN 957-584-808-X. (in Chinese), 2000.
[21]J. Lau, ”Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, New York, NY. 1997.
[22]J. H. Lau, S. W. R. Lee, ”Microvias, for Low Cost High Density Interconnect”, McGraw-Hill, New York, 2001.
[23]H. C. Tsai, W. R. Jong, ”Comparison of Inelastic Behaviors of Lead-Free and Sn-Pb Solder Joints”, Transactions of the SAGE, Journal of Reinforced plastics and composites, 2008.
[24]G. Z. Huang, ”The Influences of Temperature Cycling Factors on the Reliability of the Solder Joints in IC Packages”, Dept. of Mechanical Engineering, Chung Yuan Christian University, Taiwan, 2008.
[25]C. T. Huang, ”Comparison on Creep Behaviors and Fatigue Strength Prediction of Lead-Free Solder Joint in High Density Packages”, Dept. of Mechanical Engineering, Chung Yuan Christian University, Taiwan, 2007.
[26]J. H. Lau, W. Dauksher, J. Smetana, I. Menis, ”HDPUG's Design for Lead-Free Solder Joint Reliability of High-Density Packages”, Proceedings of APEX, Anaheim, CA, CD-ROM, March 2003.
[27]S. C. Chaparala, B. D. Roggeman, ”Effect of Geometry and Temperature Cycle on the Reliability of WLCSP Solder Joints”, IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 3, 2005.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊