跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/26 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鋒政
研究生(外文):Fong-Cheng Chang
論文名稱:金奈米線機械性質測試技術研究
論文名稱(外文):Testing Techniques for Mechanical Characterization of Gold Nanowire
指導教授:章明章明引用關係
指導教授(外文):Ming Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:47
中文關鍵詞:拉伸試驗奈米操作系統金奈米線電子照射誘發沉積法挫曲試驗掃描式電子顯微鏡彎曲試驗
外文關鍵詞:tension testbuckling testscanning electron microscopenano-manipulate systemgoldnanowireelectron beam induced depositionbending test
相關次數:
  • 被引用被引用:4
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以一套可在掃描式電子顯微鏡(Scanning Electron Microscope, SEM)內部執行三維奈米機械操作之系統,使用挫屈、彎曲、拉伸等試驗方法,對金奈米線進行機械性質測試研究。此系統整合壓電馬達、精密移動平台等設備,建構出一個三個平移軸及一個旋轉軸之四自由度的精密操作系統,具有在立體空間中進行奈米操作的功能。
在機械性質量測部份,本研究以電子照射誘發沉積法 (Electron Beam Induced Deposition, EBID)將單根金奈米線固定於原子力顯微鏡(AFM)探針上,根據彎曲、挫曲及拉伸試驗等不同的量測方式,分別將金奈米線安裝於不同的位置與角度,以掃描式電子顯微鏡所擷取的影像,分析探針懸臂樑變形量和奈米線形變,搭配高解析度之場發式掃描式電子顯微鏡(SEM S-4100)量得之截面積,應用材料力學之基礎理論公式,即可算出金奈米線之機械性質。目前以彎曲試驗測得楊氏模數約為21.14±2.77GPa 挫屈試驗測得楊氏模數約為22.18±1.23GPa及拉伸試驗測得楊氏模數21.36GPa、降伏應力125.34MPa 與破裂強度222.15MPa。
The present investigation describes about the applications of a four degrees of nanomanipulator system for nanomechanical characterization of gold nanowire by bending test, buckling test, and tension test inside a scanning electron microscope (SEM). The nanomanipulation system consists of precisely machined platform, picomotors and monolithic-silicon-based tips which are generally used in atomic-force microscopes (AFM). The electron beam induced deposition (EBID) method is used to clamp NWs to the AFM tips attached to the nanomanipulator platform inside the SEM vacuum chamber. The nanomechanical characterization of the NWs is determined using the basis of theoretical formula of mechanics of materials. To measure the cross sectional area of the NWs, aluminum is coated on NWs to improve resolution of SEM images. The Young’s modulus of gold NWs has been measured by bending test, buckling test, and tension test to be 21.14±2.77GPa, 22.18±1.23, and 21.36GPa, the Yield Strength and Rupture Strength has been measured by tension test to be 125.34MPa and 222.15Mpa.
摘要 ............................................................................................................. I
Abstract ...................................................................................................... II
目錄 .......................................................................................................... IV
圖目錄 ..................................................................................................... VII
表目錄 ...................................................................................................... IX
第一章 緒論 ........................................................................................ 1
1-1 前言 ...................................................................................... 1
1-2 文獻回顧 .............................................................................. 2
1-3 研究目的 .............................................................................. 3
1-4 論文架構 .............................................................................. 4
第二章 金奈米線製備 ........................................................................ 5
2-1 引言 ...................................................................................... 5
2-2 實驗物品 .............................................................................. 5
2-3 實驗步驟 .............................................................................. 6
第三章 實驗設備 ................................................................................ 8
3-1 實驗儀器 .............................................................................. 8
3-1-1 傳統式掃描電子顯微鏡(SEM) ...................................... 8
3-1-2 場發式掃描電子顯微鏡 ................................................. 8
3-1-3 穿隧式電子顯微鏡(TEM) .............................................. 9
3-2 奈米操作系統 ...................................................................... 9
3-2-1 奈米操作平台 ................................................................. 9
3-2-2 AFM 探針 ..................................................................... 12
3-3 控制架構 .................................................................................... 13
第四章 彎曲試驗 .............................................................................. 15
4-1 研究方法 ............................................................................ 15
4-2 單根奈米線抽離 ................................................................ 16
4-3 彎曲試驗 ............................................................................ 17
4-4 奈米線截面積量測 ............................................................ 19
4-5 實驗結果與分析 ................................................................ 20
第五章 挫屈試驗 .............................................................................. 22
5-1 研究方法 ............................................................................ 22
5-2 單根奈米線抽離 ................................................................ 23
5-3 挫屈試驗 ............................................................................ 24
5-4 實驗結果與分析 ................................................................ 25
第六章 拉伸試驗 .............................................................................. 27
6-1 研究方法 ............................................................................ 27
6-2 單根奈米線抽離 ................................................................ 28
VI
6-3 拉伸試驗 ............................................................................ 29
6-4 實驗結果與分析 ................................................................ 31
第七章 結論與未來展望 .................................................................. 33
7-1 結論 .................................................................................... 33
7-2 建議與展望 ........................................................................ 34
文獻回顧 ................................................................................................... 36
圖目錄
圖2-1 製備金奈米線之裝置示意圖 ...................................................... 7
圖2-2 排列整齊之金奈米線 .................................................................. 7
圖3-1 系統元件(a)New Focus Picomotor 8301-V (b)8341-V .......... 10
圖3-2 三維奈米操作系統 .................................................................... 10
圖3-3 AFM 探針AIST fpC10 在SEM 中的外觀 .............................. 12
圖3-4 AFM 探針AIST fpN10 在SEM 中的外觀 .............................. 12
圖3-5 壓電馬達控制介面 .................................................................... 14
圖4-1 彎曲試驗示意圖 ........................................................................ 15
圖4-2 EBID 產生之沉積物 .................................................................. 16
圖4-3 抽出金奈米線 ............................................................................ 17
圖4-4 尖端較鈍之特製探針 ................................................................ 18
圖4-5 彎曲試驗之實際情況 ................................................................ 18
圖4-6 真空蒸鍍機 ................................................................................ 19
圖4-7 金奈米線之截面SEM 影像 ...................................................... 19
圖4-8 彎曲試驗之形變-受力關係圖 ................................................... 20
圖5-1 挫屈試驗示意圖 ........................................................................ 23
圖5-2 抽離長柱狀之金奈米線 ............................................................ 24
圖5-3 挫屈試驗(a)初始狀態(b)施加負荷 ........................................... 25
圖5-4 挫屈試驗之形變-受力關係圖 ................................................... 26
圖6-1 拉伸試驗示意圖 ........................................................................ 28
圖6-2 摘離較短金奈米線 .................................................................... 28
圖6-3 拉伸試驗影像 ............................................................................ 30
圖6-4 拉伸試驗連續SEM 影像圖 ...................................................... 30
圖6-5 金奈米線的拉伸破壞 ................................................................ 31
圖6-6 拉伸試驗之應變-應力圖 ........................................................... 32
表目錄
表3-1 機構各部分名稱及功能描述 .................................................... 11
表3-2 AFM 探針之型號與規格 ........................................................... 13
表4-1 金奈米線測試結果(彎曲試驗) ................................................. 21
表5-1 金奈米線測試結果(挫屈試驗) ................................................. 26
[1] H. Gu, Y. Hu, J. You, Z. Hu, Y Yuan, T Zhang, Jour. Appl.Phys. 101,
024319 (2007)
[2] J. U. Jeffry, E. S. Jonathan, O. Lian, S. Y. Wan, H. Park, Adv. Mater.
15, 423 (2003)
[3] S. Xu, Y. Shi, S. G. Kim, Nanotechnology 17, 4497 (2006)
[4] D. M. Eigler and E. k. Schweizer, “Positioning single atoms with a
scanning tunneling microscope,” Nature, Vol.344, p.524, 1990.
[5] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol.354,
p.56, 1991.
[6] H. J. Qi, K. B. Teo, K. S. Lau, M. C. Boyce, W. I. Milne, J. Robertson,
and K. K. Gleason, “Dtermination of mechanical properties of carbon
nanotubes and vertically aligned carbon nanotube forests using
nanoindentation,” Journal of Mechanics and Physics of Solids, Vol.51,
p.2213, 2003.
[7] M. F. Yu, M. J. Dyer, G. D. Skidmore, H. W. Rohrs, X. K. Lu, K. D.
Ausman, J. R. V. Her, and R. S. Rouff, “Three-dimensional manipulation
of carbon nanotubes under a scanning electron microscope,”
Nanotechnology, Vol.10, p.244, 1999.
[8] M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of
ropes of single-walled carbon nanotubes and their mechanical
properties,” Physical Review Letters, Vol.84, p.5552, 2000.
[9] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S.
Ruoff, “Strength and breaking mechanism of multi-walled carbon
nanotubes under tensile load,” Science, Vol.287, p.637, 2000.
[10] L. X. Dong, F. Arai, and T. Fukuda, "Three-Dimensional
Nanorobotic Manipulations of Carbon Nanotubes", J. of Robotics and
Mechatronics, Vol.14, p.245, 2002.
[11] L. X. Dong, F. Arai, and T. Fukuda, “Fabrication and Property
Analysis of MWNT Junctions through Nanorobotic Manipulations,”
Internal Journal of Nonlinear Sciences and Numerical Simulation, Vol.3,
p.753, 2002.
[12] T. Fukuda, F. Arai, and L. X. Dong, “Nanoassembly of Carbon
Nanotubes through Mechanochemical Nanorobotic Manipulations,” Jpm.
J. Appl. Phys., Vol.42, pp.295, 2003.
[13] 方得華, “原子力顯微鏡奈米加工技術研究”, 國立成功大學機械
學系博士論文, 2000.
[14] 吳旻禧, “掃描式電子顯微鏡下的三維奈米加工系統”, 中原大學
機械學系碩士論文, 2006.
[15] 李伸家, “掃描式電子顯微鏡內部的奈米加工與測試技術研究”,
中原大學機械學系碩士論文, 2007.
[16] New Focus, “Intelligent Picomotor Control Modules” , New Focus
User’s Guide, 2003.
[17] R. S. Ruoff, D. Qian, and W. K. Liu, “Mechanical properties of
carbon nanotubes: theoretical predictions and experimental
measurements”, C. R. Physique 4, pp.993–1008, 2003.
[18] W. Ding, D.A. Dikin, X. Chen, X. Wang, X. Li, R. D. Piner, R.S.
Ruoff, and E. Zussman, “Clamping Nano-structures using Electron Beam
Induced Deposition”, NSF Nanoscale Science and Engineering Grantees
Conference, Dec 13-15, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top