(3.236.231.61) 您好!臺灣時間:2021/05/11 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳明駿
研究生(外文):Ming-Chun Wu
論文名稱:微幫浦驅動之微流體晶片的研究
論文名稱(外文):Development of Microfluidic Chip with Micropump
指導教授:張耀仁張耀仁引用關係
指導教授(外文):Yaw-Jen Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:60
中文關鍵詞:紫外光硬化樹聚二甲基矽氧烷微機電系統技術微幫浦壓電片
外文關鍵詞:UV adhesivePolydimethylsiloxane (PDMS)PiezoelectricMicropumpMicro-electro-mechanical-systems (MEMS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
MEMS是整合微電子技術與機械工程行程的一項技術,微機電技術是一門跨領域整合型科學,將機械元件微小化,並與電子、光學、流體元件整合成一微型系統來達到各種不同的功能。
微流體系統是生物晶片技術應用領域中一個研究重點,微流體系統整合了微米尺寸之微流道、微幫浦、微閥門、微混合器、微感測器等常見流體控制元件整合於一晶片上針對微小體積流體來做傳輸、循環、分離、混合、程序控制,可用於生化分析、醫學檢測、能源工程、微冷卻等功能。微流體系統最常使用於生物晶片上,生物晶片具有下列幾項優點,如:反應檢測時間短、減少人為操作的錯誤、減少試劑的使用量與具有高穩定性等優點。
本文利用SU-8負型光阻做為微流道與微幫浦之結構,使用紫外光硬化樹脂(FP-4272)為薄膜材料,並選用壓電蜂鳴片為致動器,來製作出微幫浦晶片。所有的製程皆在一間普通非無塵室的環境下製作,只使用了一層光罩、旋塗機與簡易型的曝光機便可達到微幫浦晶片的製作,因此整個製程的複雜度降低且能達到低成本的效果。
Micro-electro-mechanical systems (MEMS) integrate microelectronics and mechanical engineering. MEMS technology is a cross-field integrated science that miniaturizes mechanical components and integrates electrical, optical, fluidic components into a miniature system to reach various complicated functions.
The microfluidic system is one of the research focuses among the various applications in the field of bio-chip. Microfluidic system basically integrates micro scale microchannel, micropump, microvalve, micromixer, microsensor and common flow control components into one chip to counter miniature size for transmission, circulation, separation, mixing, and process control, and it can be used for biochemical analysis, biomedical detection, energy engineering, and micro-cooling, etc. The most popular application of microfluidic system should be bio-chip. Biochip has the advantages such as shortened detect time, reduced manual errors, reduced consumption of sample, and high stability.
In this study, we used SU-8 negative photoresist as main structure layer material and UV adhesive FP-4272 as diaphragm material, and used the piezoceramic buzzer as actuator to produce the micropump chip. All processes are performed in ordinary laboratory: We use only one mask, spin coater and simple exposure machine. Therefore, the manufacture is simple and low cost.
Contents

摘要 Ⅰ
ABSTRACT Ⅱ
誌謝 Ⅲ
Contents Ⅳ
List of Figures Ⅵ
List of Tables Ⅸ
1. Introduction 1
1-1 Research Background 1
1-2 Types of Micropumps 2
1-2-1 Mechanical micropumps 4
1-2-1-1 Check-valve micropumps 5
1-2-1-2 Valve-less micropumps 9
1-2-1-3 Peristaltic micropumps 10
1-2-1-4 Rotary micropumps 10
1-2-2 Non-mechanical micropumps 11
1-2-3 Development of Piezoelectric valve-less micropump 13
1-3 Purpose of Research 17
1-4 Overview 17
2. Theory of Piezoelectric Valve-less Micropump 18
2-1 Basic Theory of Piezoelectricity 18
2-1-1 Piezoelectric effect 18
2-1-2 Piezoelectric materials 19
2-2 Theory of Valve-less Micropump 20
3. Manufacturing Procedure of Micropump Chip 22
3-1 Materials of Micropump 22
3-1-1 SU-8 Photoresist 22
3-1-2 UV Adhesive 23
3-1-3 Polydimethylsiloxane (PDMS) 24
3-1-4 Piezoceramic buzzer 25
3-2 Photolithography Techniques 26
3-3 Equipments of the Fabrication 30
3-4 Fabrication of Micropump chip 33
4. Experimental Results and Discussions 39
4-1 Equipment of the Experiment and Measurement 39
4-1-1 Function generator 39
4-1-2 Power Amplifier 39
4-1-3 3D microscopy measurement systems 40
4-2 Feature Size Measurement and Experiment result 40
4-2-1 Feature Size Measurement 40
4-2-2 Experiment result 43
4-3 Discussions 46
5. Conclusions and Future Prospects 48
5-1 Conclusions 48
5-2 Future Prospects 49
Reference 50

List of Figures

Fig.1.1. Schematic of peristaltic micropumps 3
Fig.1.2. Idea of diaphragm micropump 5
Fig.1.3 Electrostatic check-valve micropump 6
Fig.1.4 Thermo-pneumatic actuation check-valve micropump 7
Fig.1.5 Piezoelectric check-valve micropump 8
Fig.1.6 Electromagnetic actuation check-valve micropum 8
Fig.1.7 SMA actuation check-valve micropump 9
Fig.1.8 Piezoelectric actuation valve-less micropump 10
Fig.1.9 Peristaltic micropump 10
Fig.1.10 Rotary micropumps 11
Fig.1.11 Ultrasonic micropump 11
Fig.1.12 Electrohydrodynamic micropump 12
Fig.1.13 Megnetohydrodynamic micropump 12
Fig.1.14 1995 Olsson piezoelectric valve-less micropump 13
Fig.1.15 1996 Olsson piezoelectric valve-less micropump 14
Fig.1.16 2000 Andersson, piezoelectric valve-less micropump 15
Fig.1.17 2002 Lee Jun-Xian, piezoelectric valve-less micropump 16
Fig.1.18 2003 Zheng De-Jun, piezoelectric valve-less micropump 16
Fig.2.1 Direct piezoelectric effect 18
Fig.2.2 Converse piezoelectric effect 19
Fig.2.3 Principle of nozzle/diffuser micropump 21
Fig. 3.1 Fabrication sequence schedule 22
Fig. 3.2 The Piezoceramic buzzer 25
Fig. 3.3 Piezoceramic buzzer drive principle 26
Fig. 3.4 The mask 27
Fig. 3.5 The top view of the micropump chip 28
Fig. 3.6 Schematic of a photoresist spin coater 29
Fig. 3.7 Basically two methods of Exposure 30
Fig. 3.8 Spin coater 31
Fig. 3.9 Hot plate 31
Fig. 3.10 Exposure machine 32
Fig. 3.11 Vacuum oven 32
Fig. 3.12 Manufacturing flow chart 34
Fig. 3.13 Overview of the micropump chip 35
Fig. 3.14 Bonding UV adhesive on SU-8 37
Fig. 3.15 Gumming tubes on inlet and outlet 37
Fig. 3.16 Complete of micropump chip 38
Fig. 4.1 Schematic diagram of experimental equipment 39
Fig. 4.2 3D microscopy measurement systems 40
Fig. 4.3 SU-8 structure geometry graph 41
Fig. 4.4 The thickness of SU-8 structure from rotation speed 1500 rpm to 3500 rpm 41
Fig. 4.5 The diaphragm 42
Fig. 4.6 The thickness of FP-4274 diaphragm from rotation speed 1000 rpm to 5000 rpm 42
Fig. 4.7 Schematic diagram the fluid fill 43
Fig. 4.8 The fluid at initial position 44
Fig. 4.9 The fluid start movement (1) 44
Fig. 4.10 The fluid start movement (2) 45
Fig. 4.11 The fluid start movement (3) 45
Fig. 4.12 The stress generate in SU-8 structure 46
Fig. 4.13 Overexposure of SU-8 structure 46
Fig. 4.14 UV adhesive collapsed on the silicon wafer 47

List of Tables


Table 1.1 Lists the contrast of actuator 6
Table 3.1 Physics and chemical property of SU-8 photoresis 23
Table 3.2 Physics and chemical property of UV adhesive FP-4272 24
Table 3.3 Physics and chemical property of PDMS SYLGARD 184 25
Table 3.4 Compare of three kinds of mask 27
Table 3.5 Process parameters of SU-8 spinning 33
Table 3.6 Process parameters of SU-8 soft bake 33
Table 3.7 Process parameters of SU-8 expose 35
Table 3.8 Process parameters of SU-8 development 36
Table 3.9 Process parameter of PDMS manufacture 36
[1] Jan G. Smits, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators, A: Physical, Vol. A21-A23, 1990, p 203-206
[2] Yulian Zhang, Pingcan Gu, and Xiqiu Fan, "Progress on Research of MEMS-Based Micropump," 2006 7th International Conference on Electronics Packaging Technology, 2006
[3] D. J. Laser, and J. G. Santiago, “A review of micropumps,” Journal of Micromechanics and Microengineering, v 14, n 6, June, 2004, p R35-R64
[4] N. T. Nguyen, X. Huang, and T. K. Chuan, “MEMS-micropumps A review,” Journal of Fluids Engineering, Transactions of the ASME, v 124, n 2, 2002, p 384-392
[5] P. Woias, ” Micropumps—past, progress and future prospects,” Sensors and Actuators, B: Chemical, v 105, n 1, Feb 14, 2005, p 28-38
[6] R. Zengerle, A. Richter, and H. Sandmaier, “A micro membrane pump with electrostatic actuation,” Proc IEEE Micro Electro Mech Syst Workshop, 1992, p 19-24
[7] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Intergrated micro liquid dosing system,” IEEE Micro Electro Mechanical Systems, 1993, p 254-259
[8] R. Linnemmann, P. Woias, C. D. Senfft, and J. A. Ditterich, ” Self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, p 532-537
[9] S. Bohm, W. Olthuis, and P. Bergveld, “A plastic micropump constructed with conventional techniques and materials,” Sensors and Actuators, A: Physical, v 77, n 3, Nov, 1999, p 223-228
[10] E. Makino, T. Mitsuya, and T. Shibata, “Micromachining of TiNi shape memory thin film for fabrication of Micropump,” Sensors and Actuators, A: Physical, v 79, n 3, Feb, 2000, p 251-259
[11] E. Stemme and G. Stemme “A valveless diffuser nozzle-based fluid pump,” Sensors and Actuators, A: Physical, v 39, n 2, Nov, 1993, p 159-167
[12] J. G. Smits, ‘‘Piezoelectric micropump with three valves working peristaltically,’’ Sensors and Actuators, A: Physical, v 21, n 1-3, 2 Pt2, 1990, p 203-206
[13] C. H. Ahn and M. G. Allen, “Fluid micropumps based on rotary magnetic actuators,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1995, p 408-412
[14] S. H. Ahn and Y. K. Kim, “Fabrication and Experiment of a Planar Micro Ion Drag Pump,” Sensors and Actuators, A: Physical, v 70, n 1-2, Oct 1, 1998, p 1-5
[15] L. J. Love, J. F. Jansen, T. E. McKnight; Y. Roh, T. J. Phelps, L. W. Yeary, and G. T. Cunningham, “Ferrofluid field induced flow for microfluidic applications,” IEEE/ASME Transactions on Mechatronics, v 10, n 1, February, 2005, p 68-76
[16] A. Olsson, G. Stemme, and E. Stemme , “Valve-less planar fluid pump with two pump chambers,” Sensors and Actuators, A: Physical, v 47, n 1-3 pt 4, Mar-Apr, 1995, p 549-556
[17] A. Olsson, P. Enoksson, G. Stemme, and E. Stemme, “Improved valve-less pump fabricated using deep reactive ion etching,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1996, p 479-484
[18] A. Olsson, G. Stemme, and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,” Sensors and Actuators, A: Physical, v 84, n 1, Aug, 2000, p 165-175
[19] H. Andersson, P. Enoksson, K. Noren, G. Stemme, and W. van der Wijngaart, “First self-priming and bi-directional valve-less diffuser micropump for both liquid and gas,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2000, p 674-679
[20] 李俊賢,“可攜式無閥壓電微幫浦之設計製作與應用," 國立臺灣大學應用力學研究所碩士論文,2002.
[21] 鄭德駿,“無閥式壓電微幫浦製程之討論,"雲林科技大學機械工程系碩士論文,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔