|
參考文獻 1.Eyre, D.R., Benya, P., Buckwalter, J., et al., 1989. Intervertebral disk: basic science perspectives. In: Frymoyer, J.W., Gordon, S.L., eds. New Perpectives on Low Back Pain. Park Ridge, IL: American Academy of Orthopaedic Surgeons, 147-207. 2.Kelsey, J.L., Mundt, D.F., Golden, A.L., 1992. Epidemiology of low back pain. In: Malcolm, J.I.V., ed. The Lumbar Spine and Back Pain. 4th ed. New York: Churchill Livingstone, 537-549. 3.White, A.A., 1981. Biomechanics of lumbar spine and sacroiliac articulation: relevance to idiopathic low back pain. In: White, A.A., Gordon, S.L., eds. Symposium on Idiopathic Low Back Pain. St. Louis: CV Mosby Co., 296-322. 4.Buckwalter, J.A., 1995. Aging and degeneration of the human intervertebral disc. Spine 20, 1307-1314. 5.Nachemson, A., Lewin, T., Maroudas, A., et al., 1970. In Vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta orthopaedica Scandinavica 41, 589-607. 6.Holm, S., Nachemson, A., 1982. Nutritional changes in the canine intervertebral disc after spinal fusion. Clinical orthopaedics and related research, 243-258. 7.Horner, H.A., Urban, J.P., 2001. Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26, 2543-2549. 8.Bibby, S.R., Fairbank, J.C., Urban, M.R., et al., 2002. Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 27, 2220-2228. 9.Urban, J.P., 2001. The role of the physicochemical environment in determining disc cell behavior. Biochemical Society transactions 30, 858-864. 10.Eyre, D.R., Dickson, I.R., Van Ness, K., 1988. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochemical Journal 252, 495-500. 11.Pokharna, H.K., Phillips, F.M., 1998. Collagen crosslinks in human lumbar intervertebral disc aging [see comment]. Spine 23, 1645-1648. 12.Monnier, V.M., Vishwanath, V., Frank, K.E., Elmets, C.A., Dauchot, P., Kohn, R.R., 1986. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. New England Journal of Medicine 314, 403-408. 13.Bailey, A.J., Sims, T.J., Avery, N.C., Miles, C.A., 1993. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type IV collagen in lens capsules. Biochemical Journal 296, 489-496. 14.Bank, R.A., Bayliss, M.T., Lafeber, F.P., Maroudas, A., Tekoppele, J.M., 1998. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochemical Journal 330, 345-351. 15.Wolffenbuttel, B.H., Boulanger, C.M., Crijns, F.R., Huijberts, M.S., Poitevin, P., Swennen, G.N., Vasan, S., Egan, J.J., Ulrich, P., Cerami, A., Levy, B.I., 1998. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proceedings of the National Academy of Sciences of the United States of America 95, 4630-4634. 16.Chen, A.C., Temple, M.M., Ng, D.M., Verzijl, N., Degroot, J., Tekoppele, J.M., Sah, R.L., 2002. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis and Rheumatism 46, 3212-3217. 17.Verzijl, N., Degroot, J., Ben, Z.C., Brau-Benjamin, O., Maroudas, A., Bank, R.A., Mizrahi, J., Schalkwijk, C.G., Thorpe, S.R., Baynes, J.W., Bijlsma, J.W., Lafeber, F.P., Tekoppele, J.M., 2002. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis and Rheumatism 46, 114-123. 18.Franke, S., Dawczynski, J., Strobel, J., Niwa, T., Stahl, P., Stein, G., 2003. Increased levels of advanced glycation end products in human cataractous lenses. Journal of Cataract and Refractive Surgery 29, 998-1004. 19.Stein, G., Busch, M., Muller, A., Wendt, T., Franke, C., Niwa, T., Franke, S., 2003. Are advanced glycation end products cardiovascular risk factors in patients with CRF? American Journal of Kidney Diseases 41, S52-S56. 20.Adams, M.A., Bogduk, N., Burton, K., Dolan, P., 2002. The Biomechanics of Back Pain. Churchill Livingstone. 21.Hedman, T.P., Satio, H., Vo, C., Chuang, S.Y., 2006. Exogenous cross-linking increase the stability of spinal motion segments. Spine 31, E480-E485. 22.Chuang, S.Y., Odono, R.M., Hedman, T.P., 2007. Effect of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clinical Biomechanics 22, 14-20. 23.Soltz, M.A., Ateshian, G.A., 1998. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of Biomechanics 31, 927-934. 24.Edwards, J., 1967. Physical characteristics of articular cartilage. Proceedings of the Institution of Mechanical Engineers 181, 16-24. 25.Mankin, H.A., Thrasher, A.Z., 1975. Water content and binding in normal and osteoarthritic human cartilage. The Journal of bone and joint surgery. American volume 57, 76-80. 26.Torzilli, P.A., Mow, V.C., 1976. On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function--I. The formulation. Journal of Biomechanics 9, 541-552. 27.McCutchen, C.W., 1962. The Frictional properties of animal joints. Wear 5, 1-17. 28.Mansour, J.M., Mow, V.C., 1976. The permeability of articular cartilage under compressive strain and at high pressures. The Journal of Bone and Joint Surgery 58, 509-516. 29.Mow, V.C, Kuei, S.C., Lai, W.M., Armstrong, C.G., 1980. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Journal of Biomechanical Engineering 102, 73-84. 30.Hayes, W.C., Bodine, A.J., 1978. Flow-independent viscoelastic properties of articular cartilage matrix. Journal of Biomechanics 11, 407-419. 31.Lai, W.M., Mow, V.C., 1980. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111-123. 32.Suh, J.K.F., DiSilvestro, M.R., 1999. Biphasic poroviscoelastic behavior of hydrated biological soft tissue. Journal of Applied Mechanics 66, 528-535. 33.DiSilvestro, M.R., Zhu, Q., Wong, M., Jurvelin, J.S., Suh, J.K.F., 2001. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—Simultaneous prediction of reaction force and lateral displacement. Journal of Biomechanical Engineering 123, 191-197. 34.DiSilvestro, M.R., Zhu, Q., Suh, J.K.F., 2001, Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage:II—Effect of variable strain rates. Journal of Biomechanical Engineering 123 , 198-200. 35.Zarek J.M., Edwards J., 1965. Dynamic considerations of the human skeletal system. In: Kenedi, R., ed. Biomechanics and related Bio-Engineering Topics, Pergamon Press, Oxford, 187-203. 36.Armstrong, C.G., Mow, V.C., Lai, W.M., 1984. An analysis of unconfined compression of articular cartilage. Journal of Biomechanical Engineering 106, 165-173. 37.Ateshian, G.A., 1997. A theoretical formulation forboundary friction in articular cartilage. Journal of Biomechanical Engineering 119, 81-86. 38.Ateshian, G.A., Wang, H., Lai W.M., 1998. The role of intestitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. Journal of Tribology 120, 241-251. 39.Iatridis, J.C., Setton, L.A., Foster, R.J., Rawlins, B.A., Weidenbaum, M., Mow, V.C., 1998. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. Journal of Biomechanics 31, 535-544. 40.Yao, H., Justiz, M.A., Flagler, D., Gu, W.Y., 2002. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Annals of Biomedical Engineering 30, 1234-1241. 41.Houben, G.B., Drost, M.R., Huyghe, J.M.,Janssen, J.D., Huson, A., 1997. Nonhomogeneous permeability of canine anulus fibrosus. Spine 22, 7-16. 42.Gu, W.Y., Mao, X.G., Forster, R.J., Weidenbaum, M., Mow, V.C., Rawlins, B.A., 1999. The anisotropic hydraulic permeability of human lumbar annulus fibrosus. Spine 24, 2449-2455. 43.Périé, D., Korda, D., Iatridis, J.C., 2005. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability . Journal of Biomechanics 38, 2164-2171. 44.Reihsner, R., Menzel, E.J., 1998. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. Journal of Biomechanics 31, 985-993. 45.Wagner, D.R., Reiser, K.M., Lotz, J.C., 2006. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. Journal of Biomechanics 39, 1021-1029. 46.Miyamoto, K., Masuda, K., Kim, J.G., Inoue, N., Akeda, K., Andersson, G.B.J., An, H.S., 2006. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. The Spine Journal 6, 692-703. 47.Moore, K.L., Agur, A.M.R. 著,陳建行 總翻譯,1997年。臨床解剖學精華。合記圖書發行。 48.Buckwalter, J.A., Mow, V.C., Boden, S.D., Eyre, D.R., Weidenbaum, M, 2000. Intervertebral disk structure, composition, and mechanical function. In: Buckwalter, J.A., Einhorn, T.A., Simon, S.R., eds. Orthopaedic basic science-biology and biomechanics of the musculoskelettal system. Rosemont, IL: American Academy of Orthopaedic Surgeons, 548-555. 49.Anderson, G.D., Tannoury, C., 2005. Molecular pathogenic factor in symptomatic disc degeneration: II. Disc Regeneration. The Spine Journal 5, 260S-266S. 50.徐國成,韓邱生,霍琨 主編,馮琮涵 總校閱,2004年6月初版。系統解剖學彩色圖譜。新文京開發出版股份有限公司。 51.李沐勳,李威 著,2001年初版。常用中草藥手册。國立中國醫藥硏究所出版,勝昌藥誌發行。 52.蔡承致,2000年。由中藥梔子果實裡萃取純化天然交聯劑Genipin 及其在生醫材料上的應用。國立中央大學化學工程研究所。 53.Nordin, M., Frankel, V.H., 2001. Basic Biomechanics of the musculoskeletal system. Lippincott Williams&Wilkins. 54.Panjabi, M.M., White III, A.A.. Biomechanics in the musculoskeletal system. Churchill livingstone. 55.Adams, M.A., McNally, D.S., Dolan, P., 1996. Stress distributions inside intervertebral discs. The effects of age and degeneration. The Journal of bone and joint surgery. British volume 78, 965-972. 56.Sung, H.W., Huang, R.N., Huang, L.L., 1999. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition 10, 63-78. 57.Beckstein, J.C., Sen, S., Schaer, T.P., Vresilovic, E.J., Elliott, D.M., 2008. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc. Spine 33, E166-E173. 58.Urban, J.P.G., McMullin, J.F., 1985. Swelling pressure of the intervertebral disc: Influence of proteoglycan and collagen contents. Biorheology 22, 145-157. 59.Urban, J.P.G., McMullin, J.F., 1988. Swelling pressure of the lumbar intervertebral discs: Influence of age, spinal level, composition, and degeneration. Spine 13, 179-187. 60.Brown, M.D., Tsaltas, T.T., 1976. Studies on the permeability of the intervertebral disc during skeletal maturation. Spine 1, 240-244. 61.Yerramalli, C.S., Chou, A.I., Miller, G.J., Nicoll, S.B., Chin, K.R., Elliott, D.M., 2007. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomechan Model Mechanobiol 6, 13-20. 62.Mimura, M., Panjabi, M.M., Oxlan, T.R., Crisco, J.J., Yamamoto, I., Vasavada, A., 1994. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19, 1371-1380. 63.Natarajan, R.N., Andersson, G.B.J., 1999. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 24, 1873-1881. 64.Sung, H.W., Chang, Y., Chiu, C.T., Chen, C.N., Liang, H.C., 1999a. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. Journal of Biomedical Material Research 47, 116-126. 65.Acaroglu, E.R., Iatridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M., 1995. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20, 2690-2701. 66.Best, B.A., Guilak, F., Setton, L.A., Zhu, W., Saed-Nejad, F., Ratcliffe, A., Weidenbaum, M., Mow, V.C., 1994. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine 19, 212-221. 67.Gu, W.Y., Justiz, M.A., Yao, H., 2002. Electrical conductivity of lumbar anulus fibrosis: effects of porosity and fixed charge density. Spine 27, 2390-2395. 68.Setton, L.A., Zhu, W.B., Mow, V.C., 1993. The biphasic poroviscoelasitic behavior of articular cartilage in compression: Role of the surface zone. Journal of Biomechanics 26, 581-592. 69.Yamano, T., Tsujimoto, Y., Noda, T., Shimizu, M., Ohmori, M., Morita, S., Yamada, A., 1990. Hepatotoxicity of geniposide in rats. Food and Chemical Toxicology 28, 515-519. 70.Ryousuke, T., Kenichiro, I., Yoshio, T., Masahiko, Y., 1994. Studies on the blue pigments produced from genipin and methylamine. I. structures of the brownish-red pigments, intermediates leading to the blue pigment. Chemical and Pharmaceutical Bulletin 42, 668-673. 71.Ryousuke, T., Kenichiro, I., Yoshio, T., Masahiko, Y., 1994. Studies on the blue pigments produced from genipin and methylamine. II. on the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. Chemical and Pharmaceutical Bulletin 42, 1571-1578. 72.Touyama, R., Inoue, K., 1994. Studies on the blue pigments form genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the bule pigment formation. Pharmaceutical Society of Japan 42, 1517. 73.Nimni, M., Harkness, R., 1988. Molecular structure and functions of collagen. In “Collagen”, 1-77. Boca Raton, Florida: CRC Press. 74.Yamauchi, M., Mechanic, G., 1988. Crosslink of collagen. In “Collagen”, 157-186. Boca Raton, Florida: CRC press. 75.Yamauchi, M., Banes, A.J., Kuboki, Y., 1981. A comparative study of the distribution of the stable crosslink, pyridinoline, in bone collagens from normal, osteoblastoma, and vitamin D-deficient chicks. Biochemical and Biophysical Research Communications 102, 59-65.
|