(3.92.96.236) 您好!臺灣時間:2021/05/07 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林修任
研究生(外文):Hsiu-Jen Lin
論文名稱:交聯製劑梔子素對腰椎椎間盤環狀纖維孔洞黏彈性質之影響
論文名稱(外文):The Effect of Crosslinking Reagent (Genipin) on the Poroviscoelastic Properties in Annulus Fibrosus of Lumbar Disc
指導教授:陳文斌陳文斌引用關係謝瑞香莊仕勇
指導教授(外文):Weng-Pin ChenJui-Hsiang HsiehShih-Youeng Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:外源性交聯椎間盤環狀纖維孔洞黏彈性質雙相通透性應力鬆弛潛變
外文關鍵詞:Stress-relaxationCreepPermeabilityExogenous crosslinkingBiphasicPoroviscoelastic propertiesAnnulus fibrosus of intervertebral discs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
下背痛是近年來常見的脊椎疾病之症狀,其中椎間盤退化是下背痛產生的主要因子之ㄧ。椎間盤在人體中除了扮演重要的力承載角色,亦為最大無血性組織,是由細胞外基質與內在流體組成的雙相材料,具有孔洞黏彈性質,使內在流體可攜帶養分通透至椎間盤,以維持椎間盤營養之供應與負載之傳遞。此外,椎間盤細胞外基質主要成分為膠原蛋白與蛋白多醣,過去相關研究提及,膠原蛋白交聯為提供椎間盤正常機械性質之重要機制。隨著年齡增長,膠原蛋白含量會隨之變化而影響交聯作用,使得椎間盤機械性質受到改變,導致椎間盤產生退化。
先前相關文獻發現,以交聯製劑梔子素對椎間盤作外源性交聯,可以改善因椎間盤退化所引發脊椎不穩定情形,並且增加椎間盤環狀纖維的機械強度。然而,交聯製劑對椎間盤孔洞黏彈性質產生之影響,至今仍無定論。因此,本研究目的在於以豬隻屍體腰椎椎間盤環狀纖進行體外實驗,探討外源性交聯對其孔洞黏彈性質之變化。
實驗中透過潛變與應力鬆弛兩種黏彈性試驗,根據線性雙相模型,以曲線擬合方法計算環狀纖維之通透性。實驗結果發現,外源性交聯會使環狀纖維勁度上升,潛變變形與應力鬆弛比例下降,代表膠原蛋白交聯增加,可以提升環狀纖維抵抗負載的能力,並且改變環狀纖維之黏彈性質。此外,在孔洞性與通透性也有下降的趨勢,說明經過外源性交聯後,會使得環狀纖維細胞外基質結構更為緊密,並改變其內在流體通透機制,進而影響雙相之拖曳作用,使流體於環狀纖維中不易流動,亦可作為其黏彈性質改變之印證。综合本研究之結果,可作為臨床醫師在使用外源性交聯治療退化性椎間盤病症之評估與參考。
Low back pain is a common symptom of spinal diseases in recent years, and the degeneration of the intervertebral disc (IVD) is a primary factor. The IVD plays an important load-bearing role in human body and it is the largest avascular tissue with biphasic material property that composed of extracellular matrix and interstitial fluid which provide the poroviscoelastic properties. The interstitial fluid carries nutrient that permeates through the IVD for maintaining nutrition supply and load transfer. On the other hand, the major components of extracellular matrix of IVD are collagen and proteoglycan. Previous studies suggested that the collagen crosslink can provide an important mechanism for normal mechanical nature of IVDs. When people grow older, collagen contents may be influenced by the crosslinking action, then the mechanical properties of IVDs may be affected and further IVD degeneration may be seen.
Previous literature suggested that by utilizing crosslinking reagent such as genipin for exogenous crosslinking to IVDs can improve spinal instability that induced by IVD degeneration, and increase the mechanical strength of annulus fibrosus. However, the effects of the crosslinking reagent on the poroviscoelastic properties of IVD are still unclear. Therefore, this study aims to investigate the effects of exogenous crosslinking on the poroviscoelastic properties of annulus fibrosus of lumbar IVD using in vitro experiments of porcine cadaver lumbar IVDs. Both the creep and stress-relaxation experiments were implemented. The curve-fitting method based on a linear biphasic model was used to calculate the permeability of annulus fibrosus of IVDs. From the result findings, the stiffness increased while the creep deformation and relaxation ratio decreased when exogenous crosslinking was applied to annulus fibrosus. This represents that increasing collagen crosslink can promote load resistance ability and change the viscoelastic properties of annulus fibrosus. Besides, the porosity and permeability were reduced. This result explains that when the structure of extracellular matrix becomes more compact, the permeability mechanism of interstitial fluid will be changed, and then the drag induced from biphasic interaction may cause fluid flowing difficulty in annulus fibrosus. This observation may be a further demonstration on the change of poroviscoelastic properties. In summary, this study can provide assessment and reference to clinicians when utilizing exogenous crosslinking treatment for intervertebral degenerative disc disease.
總目錄
摘要 I
Abstract III
謝誌 IV
總目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究背景 3
1-3 研究目的 4
1-4 文獻回顧 5
1-4-1 利用力學測試探討流體通透性之相關研究 5
1-4-2 加入外源性因子改變椎間盤機械性質之相關研究 13
第二章 理論基礎 18
2-1 椎間盤生理結構 18
2-1-1 脊椎解剖構造 18
2-1-2 椎間盤解剖構造 18
2-1-3 椎間盤營養傳導與衰退 19
2-2 膠原蛋白交聯機制 23
2-3 交聯製劑梔子素概述 24
2-4 雙相孔洞黏彈性材料 27
2-4-1 孔洞性與通透性關係 27
2-4-2 黏彈性材料 29
2-4-2-1 潛變 29
2-4-2-2 應力鬆弛 30
第三章 材料與方法 31
3-1 材料製備 31
3-1-1 試片製備 31
3-1-2 交聯劑製備 31
3-2 實驗流程 34
3-3 孔洞性分析 35
3-4 力學測試 36
3-4-1 潛變試驗 37
3-4-2 應力鬆弛試驗 38
3-5 通透性分析之數學模型 41
3-6 統計分析 43
第四章 結果 44
4-1 孔洞性結果 44
4-2 黏彈性結果 46
4-2-1 潛變試驗結果 46
4-2-2 應力鬆弛試驗結果 51
4-3 通透性結果 54
第五章 討論 58
5-1 孔洞性討論 59
5-2 黏彈性討論 61
5-3 通透性討論 64
5-4 研究限制 68
第六章 結論 69
參考文獻 70

表目錄
表一 實驗組與控制組之孔洞性結果 44
表二 10N潛變下,實驗組與控制組之勁度與潛變變形結果 47
表三 20N潛變下,實驗組與控制組之勁度與潛變變形結果 47
表四 30N潛變下,實驗組與控制組之勁度與潛變變形結果 48
表五 10N應力鬆弛下,實驗組與控制組之應力鬆弛結果 52
表六 20N應力鬆弛下,實驗組與控制組之應力鬆弛結果 52
表七 30N應力鬆弛下,實驗組與控制組之應力鬆弛結果 52
表八 10N之通透性結果 54
表九 20N之通透性結果 55
表十 30N之通透性結果 55

圖目錄
圖1 脊椎:(A)前視(B)後視(C)側視 20
圖2 人體椎間盤與韌帶之側視 21
圖3 人體椎間盤與韌帶:(A)前視(B)上視 21
圖4 人體椎間盤構造 22
圖5 椎間盤組成方式:(A)細胞外基質(B)流體通透示意圖 22
圖6 (A)健康椎間盤(B)退化椎間盤 22
圖7 梔子素分子結構式 25
圖8 梔子花與其果實 25
圖9 梔子素於水中開環機制之示意圖 26
圖10 梔子素與甲胺基反應之示意圖 26
圖11 流體通透示意圖 28
圖12 (A)潛變時組織表現示意圖(B)潛變之力量與位移對照圖 29
圖13 (A)應力鬆弛時組織表現示意圖 30
圖14 豬隻腰椎 32
圖15 豬隻腰椎活動元 32
圖16 取樣之套管針 32
圖17 試片之幾何尺寸:(A)直徑3mm(B)厚度5mm 33
圖18 取樣區域示意圖 33
圖19 試片於離心管內進行浸泡 33
圖20 實驗流程圖 34
圖21 力學測試用夾治具 39
圖22 試片放置處:(A)拘束性金屬環(B)具孔洞金屬薄板 39
圖23 夾治具之底座 39
圖24 夾治具之探頭 39
圖25 力學測試示意圖 40
圖26 環狀纖維受力學測試裝置圖 40
圖27 實驗組與控制組之孔洞性比較 45
圖28 實驗組與控制組之勁度比較:(A)10N(B)20N(C)30N 49
圖29 實驗組與控制組之潛變變形比較:(A)10N(B)20N(C)30N 50
圖30 實驗組與控制組之應力鬆弛比例比較:(A)10N(B)20N(C)30N 53
圖31 潛變下,實驗組與控制組之通透性比較:(A)10N(B)20N(C)30N 56
圖32 應力鬆弛下,實驗組與控制組之通透性比較:(A)10N(B)20N(C)30N 57
圖33 控制組之各區域試片孔洞性與過去文獻比較 60
圖34 不同區域孔洞性比較 60
圖35 不同負載之勁度比較 63
圖36 使用線性雙相模型曲線擬合情形(A)潛變擬合(B)應力鬆弛擬合 67
參考文獻
1.Eyre, D.R., Benya, P., Buckwalter, J., et al., 1989. Intervertebral disk: basic science perspectives. In: Frymoyer, J.W., Gordon, S.L., eds. New Perpectives on Low Back Pain. Park Ridge, IL: American Academy of Orthopaedic Surgeons, 147-207.
2.Kelsey, J.L., Mundt, D.F., Golden, A.L., 1992. Epidemiology of low back pain. In: Malcolm, J.I.V., ed. The Lumbar Spine and Back Pain. 4th ed. New York: Churchill Livingstone, 537-549.
3.White, A.A., 1981. Biomechanics of lumbar spine and sacroiliac articulation: relevance to idiopathic low back pain. In: White, A.A., Gordon, S.L., eds. Symposium on Idiopathic Low Back Pain. St. Louis: CV Mosby Co., 296-322.
4.Buckwalter, J.A., 1995. Aging and degeneration of the human intervertebral disc. Spine 20, 1307-1314.
5.Nachemson, A., Lewin, T., Maroudas, A., et al., 1970. In Vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta orthopaedica Scandinavica 41, 589-607.
6.Holm, S., Nachemson, A., 1982. Nutritional changes in the canine intervertebral disc after spinal fusion. Clinical orthopaedics and related research, 243-258.
7.Horner, H.A., Urban, J.P., 2001. Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26, 2543-2549.
8.Bibby, S.R., Fairbank, J.C., Urban, M.R., et al., 2002. Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 27, 2220-2228.
9.Urban, J.P., 2001. The role of the physicochemical environment in determining disc cell behavior. Biochemical Society transactions 30, 858-864.
10.Eyre, D.R., Dickson, I.R., Van Ness, K., 1988. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochemical Journal 252, 495-500.
11.Pokharna, H.K., Phillips, F.M., 1998. Collagen crosslinks in human lumbar intervertebral disc aging [see comment]. Spine 23, 1645-1648.
12.Monnier, V.M., Vishwanath, V., Frank, K.E., Elmets, C.A., Dauchot, P., Kohn, R.R., 1986. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. New England Journal of Medicine 314, 403-408.
13.Bailey, A.J., Sims, T.J., Avery, N.C., Miles, C.A., 1993. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type IV collagen in lens capsules. Biochemical Journal 296, 489-496.
14.Bank, R.A., Bayliss, M.T., Lafeber, F.P., Maroudas, A., Tekoppele, J.M., 1998. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochemical Journal 330, 345-351.
15.Wolffenbuttel, B.H., Boulanger, C.M., Crijns, F.R., Huijberts, M.S., Poitevin, P., Swennen, G.N., Vasan, S., Egan, J.J., Ulrich, P., Cerami, A., Levy, B.I., 1998. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proceedings of the National Academy of Sciences of the United States of America 95, 4630-4634.
16.Chen, A.C., Temple, M.M., Ng, D.M., Verzijl, N., Degroot, J., Tekoppele, J.M., Sah, R.L., 2002. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis and Rheumatism 46, 3212-3217.
17.Verzijl, N., Degroot, J., Ben, Z.C., Brau-Benjamin, O., Maroudas, A., Bank, R.A., Mizrahi, J., Schalkwijk, C.G., Thorpe, S.R., Baynes, J.W., Bijlsma, J.W., Lafeber, F.P., Tekoppele, J.M., 2002. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis and Rheumatism 46, 114-123.
18.Franke, S., Dawczynski, J., Strobel, J., Niwa, T., Stahl, P., Stein, G., 2003. Increased levels of advanced glycation end products in human cataractous lenses. Journal of Cataract and Refractive Surgery 29, 998-1004.
19.Stein, G., Busch, M., Muller, A., Wendt, T., Franke, C., Niwa, T., Franke, S., 2003. Are advanced glycation end products cardiovascular risk factors in patients with CRF? American Journal of Kidney Diseases 41, S52-S56.
20.Adams, M.A., Bogduk, N., Burton, K., Dolan, P., 2002. The Biomechanics of Back Pain. Churchill Livingstone.
21.Hedman, T.P., Satio, H., Vo, C., Chuang, S.Y., 2006. Exogenous cross-linking increase the stability of spinal motion segments. Spine 31, E480-E485.
22.Chuang, S.Y., Odono, R.M., Hedman, T.P., 2007. Effect of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clinical Biomechanics 22, 14-20.
23.Soltz, M.A., Ateshian, G.A., 1998. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of Biomechanics 31, 927-934.
24.Edwards, J., 1967. Physical characteristics of articular cartilage. Proceedings of the Institution of Mechanical Engineers 181, 16-24.
25.Mankin, H.A., Thrasher, A.Z., 1975. Water content and binding in normal and osteoarthritic human cartilage. The Journal of bone and joint surgery. American volume 57, 76-80.
26.Torzilli, P.A., Mow, V.C., 1976. On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function--I. The formulation. Journal of Biomechanics 9, 541-552.
27.McCutchen, C.W., 1962. The Frictional properties of animal joints. Wear 5, 1-17.
28.Mansour, J.M., Mow, V.C., 1976. The permeability of articular cartilage under compressive strain and at high pressures. The Journal of Bone and Joint Surgery 58, 509-516.
29.Mow, V.C, Kuei, S.C., Lai, W.M., Armstrong, C.G., 1980. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Journal of Biomechanical Engineering 102, 73-84.
30.Hayes, W.C., Bodine, A.J., 1978. Flow-independent viscoelastic properties of articular cartilage matrix. Journal of Biomechanics 11, 407-419.
31.Lai, W.M., Mow, V.C., 1980. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111-123.
32.Suh, J.K.F., DiSilvestro, M.R., 1999. Biphasic poroviscoelastic behavior of hydrated biological soft tissue. Journal of Applied Mechanics 66, 528-535.
33.DiSilvestro, M.R., Zhu, Q., Wong, M., Jurvelin, J.S., Suh, J.K.F., 2001. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—Simultaneous prediction of reaction force and lateral displacement. Journal of Biomechanical Engineering 123, 191-197.
34.DiSilvestro, M.R., Zhu, Q., Suh, J.K.F., 2001, Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage:II—Effect of variable strain rates. Journal of Biomechanical Engineering 123 , 198-200.
35.Zarek J.M., Edwards J., 1965. Dynamic considerations of the human skeletal system. In: Kenedi, R., ed. Biomechanics and related Bio-Engineering Topics, Pergamon Press, Oxford, 187-203.
36.Armstrong, C.G., Mow, V.C., Lai, W.M., 1984. An analysis of unconfined compression of articular cartilage. Journal of Biomechanical Engineering 106, 165-173.
37.Ateshian, G.A., 1997. A theoretical formulation forboundary friction in articular cartilage. Journal of Biomechanical Engineering 119, 81-86.
38.Ateshian, G.A., Wang, H., Lai W.M., 1998. The role of intestitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. Journal of Tribology 120, 241-251.
39.Iatridis, J.C., Setton, L.A., Foster, R.J., Rawlins, B.A., Weidenbaum, M., Mow, V.C., 1998. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. Journal of Biomechanics 31, 535-544.
40.Yao, H., Justiz, M.A., Flagler, D., Gu, W.Y., 2002. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Annals of Biomedical Engineering 30, 1234-1241.
41.Houben, G.B., Drost, M.R., Huyghe, J.M.,Janssen, J.D., Huson, A., 1997. Nonhomogeneous permeability of canine anulus fibrosus. Spine 22, 7-16.
42.Gu, W.Y., Mao, X.G., Forster, R.J., Weidenbaum, M., Mow, V.C., Rawlins, B.A., 1999. The anisotropic hydraulic permeability of human lumbar annulus fibrosus. Spine 24, 2449-2455.
43.Périé, D., Korda, D., Iatridis, J.C., 2005. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability . Journal of Biomechanics 38, 2164-2171.
44.Reihsner, R., Menzel, E.J., 1998. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. Journal of Biomechanics 31, 985-993.
45.Wagner, D.R., Reiser, K.M., Lotz, J.C., 2006. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. Journal of Biomechanics 39, 1021-1029.
46.Miyamoto, K., Masuda, K., Kim, J.G., Inoue, N., Akeda, K., Andersson, G.B.J., An, H.S., 2006. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. The Spine Journal 6, 692-703.
47.Moore, K.L., Agur, A.M.R. 著,陳建行 總翻譯,1997年。臨床解剖學精華。合記圖書發行。
48.Buckwalter, J.A., Mow, V.C., Boden, S.D., Eyre, D.R., Weidenbaum, M, 2000. Intervertebral disk structure, composition, and mechanical function. In: Buckwalter, J.A., Einhorn, T.A., Simon, S.R., eds. Orthopaedic basic science-biology and biomechanics of the musculoskelettal system. Rosemont, IL: American Academy of Orthopaedic Surgeons, 548-555.
49.Anderson, G.D., Tannoury, C., 2005. Molecular pathogenic factor in symptomatic disc degeneration: II. Disc Regeneration. The Spine Journal 5, 260S-266S.
50.徐國成,韓邱生,霍琨 主編,馮琮涵 總校閱,2004年6月初版。系統解剖學彩色圖譜。新文京開發出版股份有限公司。
51.李沐勳,李威 著,2001年初版。常用中草藥手册。國立中國醫藥硏究所出版,勝昌藥誌發行。
52.蔡承致,2000年。由中藥梔子果實裡萃取純化天然交聯劑Genipin 及其在生醫材料上的應用。國立中央大學化學工程研究所。
53.Nordin, M., Frankel, V.H., 2001. Basic Biomechanics of the musculoskeletal system. Lippincott Williams&Wilkins.
54.Panjabi, M.M., White III, A.A.. Biomechanics in the musculoskeletal system. Churchill livingstone.
55.Adams, M.A., McNally, D.S., Dolan, P., 1996. Stress distributions inside intervertebral discs. The effects of age and degeneration. The Journal of bone and joint surgery. British volume 78, 965-972.
56.Sung, H.W., Huang, R.N., Huang, L.L., 1999. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition 10, 63-78.
57.Beckstein, J.C., Sen, S., Schaer, T.P., Vresilovic, E.J., Elliott, D.M., 2008. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc. Spine 33, E166-E173.
58.Urban, J.P.G., McMullin, J.F., 1985. Swelling pressure of the intervertebral disc: Influence of proteoglycan and collagen contents. Biorheology 22, 145-157.
59.Urban, J.P.G., McMullin, J.F., 1988. Swelling pressure of the lumbar intervertebral discs: Influence of age, spinal level, composition, and degeneration. Spine 13, 179-187.
60.Brown, M.D., Tsaltas, T.T., 1976. Studies on the permeability of the intervertebral disc during skeletal maturation. Spine 1, 240-244.
61.Yerramalli, C.S., Chou, A.I., Miller, G.J., Nicoll, S.B., Chin, K.R., Elliott, D.M., 2007. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomechan Model Mechanobiol 6, 13-20.
62.Mimura, M., Panjabi, M.M., Oxlan, T.R., Crisco, J.J., Yamamoto, I., Vasavada, A., 1994. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19, 1371-1380.
63.Natarajan, R.N., Andersson, G.B.J., 1999. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 24, 1873-1881.
64.Sung, H.W., Chang, Y., Chiu, C.T., Chen, C.N., Liang, H.C., 1999a. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. Journal of Biomedical Material Research 47, 116-126.
65.Acaroglu, E.R., Iatridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M., 1995. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20, 2690-2701.
66.Best, B.A., Guilak, F., Setton, L.A., Zhu, W., Saed-Nejad, F., Ratcliffe, A., Weidenbaum, M., Mow, V.C., 1994. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine 19, 212-221.
67.Gu, W.Y., Justiz, M.A., Yao, H., 2002. Electrical conductivity of lumbar anulus fibrosis: effects of porosity and fixed charge density. Spine 27, 2390-2395.
68.Setton, L.A., Zhu, W.B., Mow, V.C., 1993. The biphasic poroviscoelasitic behavior of articular cartilage in compression: Role of the surface zone. Journal of Biomechanics 26, 581-592.
69.Yamano, T., Tsujimoto, Y., Noda, T., Shimizu, M., Ohmori, M., Morita, S., Yamada, A., 1990. Hepatotoxicity of geniposide in rats. Food and Chemical Toxicology 28, 515-519.
70.Ryousuke, T., Kenichiro, I., Yoshio, T., Masahiko, Y., 1994. Studies on the blue pigments produced from genipin and methylamine. I. structures of the brownish-red pigments, intermediates leading to the blue pigment. Chemical and Pharmaceutical Bulletin 42, 668-673.
71.Ryousuke, T., Kenichiro, I., Yoshio, T., Masahiko, Y., 1994. Studies on the blue pigments produced from genipin and methylamine. II. on the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. Chemical and Pharmaceutical Bulletin 42, 1571-1578.
72.Touyama, R., Inoue, K., 1994. Studies on the blue pigments form genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the bule pigment formation. Pharmaceutical Society of Japan 42, 1517.
73.Nimni, M., Harkness, R., 1988. Molecular structure and functions of collagen. In “Collagen”, 1-77. Boca Raton, Florida: CRC Press.
74.Yamauchi, M., Mechanic, G., 1988. Crosslink of collagen. In “Collagen”, 157-186. Boca Raton, Florida: CRC press.
75.Yamauchi, M., Banes, A.J., Kuboki, Y., 1981. A comparative study of the distribution of the stable crosslink, pyridinoline, in bone collagens from normal, osteoblastoma, and vitamin D-deficient chicks. Biochemical and Biophysical Research Communications 102, 59-65.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔