跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧卉明
研究生(外文):Hui-Ming Dan
論文名稱:矽單體組成對矽水膠薄膜性質與表面潤濕性質影響之研究
論文名稱(外文):The Effect of Silicone Monomer on the Membrane Properties and the Surface Wettability of Silicone Hydrogel
指導教授:謝明發謝明發引用關係
指導教授(外文):Ming-Fa Hsieh
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:表面潤濕性動態接觸角聚乙烯基吡咯烷酮矽水膠隱形眼鏡
外文關鍵詞:dynamic contact anglesilicone hydrogelcontact lenswettability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1717
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
矽水膠材料有高透氧性質及抵抗蛋白質沉澱的能力,為近年來隱形眼鏡發展的趨勢。但矽水膠材料疏水的特性容易滋生細菌,在臨床上會造成眼睛發炎等問題。故本研究以市售甲基丙烯酸-三(三甲基矽氧)矽丙酯做為矽水膠材料配方中的矽單體並添加甲基丙烯酸二羥乙酯,二甲基丙烯胺,二甲基丙烯酸乙二醇酯。為改善矽水膠材料表面的潤濕性並測試不同矽單體比例對材料性質之影響,本研究添加聚乙烯基吡咯烷酮於配方。當甲基丙烯酸-三(三甲基矽氧)矽丙酯含量由15 mol%增加至45 mol%時,材料的彈性模數也由0.22 MPa 提高為4.61 MPa,同時透氧率也由60 barrers提升至110 barrers,但含水率卻由48 %降低至13 %。這樣的結果可由配方三元相圖分析中可看出趨勢。在添加聚氯乙烯基吡咯烷酮的矽水膠薄膜,表面變得較潤濕,其接觸角由90 o降低至78 o。蛋白質吸附試驗中,使用蛋白質定量法分析,其結果顯示添加潤濕劑的矽水膠薄膜其蛋白質吸附含量比未添加的矽水膠薄膜低。另外在脂質吸附方面,其結果顯示當矽單體含量增加時,材料變得更疏水,脂質吸附的含量相對增加。在細胞毒性實驗結果,本實驗中的試驗組與市售隱形眼鏡比較後,在ASTM F-895標準判定皆屬於1級。由以上實驗結果可得知,材料表面的特性與配方中添加的單體成份及比例有關。當矽水膠材料添加潤濕劑後,改善了表面潤濕性。
Silicone hydrogel contact lenses are new generation contact lenses because of its high oxygen permeability and low protein adsorption, which could increase comfort during wear. These characteristic properties are all attributed to the surface properties of silicone hydrogel. The purpose of this study was to evaluate the effects of 3-(methacryloyloxypropyl)-tris(trimethylsiloxy)silane (TRIS) on the surface properties of silicone hydrogels. In addition, polyvinyl pyrrolidone (PVP) was employed as a surface wetting agent and its effect on the surface hydrophobicity of silicone hydrogel was observed. The silicone hydrogel membrane consisted of 2-hydroxyethyl methacrylate, N,N-dimethylacryl amide, ethylene glycol dimethacrylate and TRIS monomers. In the first part of this study, it was found that the modulus increased from 0.22 MPa to 4.61 MPa as the amount of TRIS increased from 15 to 45 mol%. In addition, the oxygen permeability (DK) of the silicone hydrogel membrane increased from 60 to 110 barrers and the water content decreased from 48% to 13% given the same conditions. Based on these results, a ternary phase diagram was plotted. On the other hand, the second part of this study showed that the wetting agent PVP can notably decrease the contact angle of the membrane from 90o to 78o, bringing its value close to that of conventional contact lenses. In the third part of this study, it was found that significantly low protein adsorption on the membrane was obtained. However, increased membrane adsorption of lipid was found as the TRIS content increased. Lastly, the in vitro cytotoxicity tests showed that the silicone hydrogel and the conventional contact lenses are of the same 1 class according to ASTM F-895 standard. In conclusion, the present study reports various surface properties as a function of the composition of silicone hydrogel. This study suggests that the selection of the TRIS composition depends on a compromise between Dk and the water content of the silicone membranes. Furthermore, a surface wetting agent may be used with silicon hydrogel so as to avoid dry-eye symptom.
目錄
摘要……………………………………………………………………………I
Abstract …………………………………………………………………………II
誌謝……………………………………………………………………………IV
中英文對照表…………………………………………………………………V
目錄……………………………………………………………………………VII
圖索引…………………………………………………………………………X
表索引…………………………………………………………………………XIII
第一章 緒論…………………………………………………………………1
1-1研究背景…………………………………………………………………1
1-2研究動機及目的…………………………………………………………2
第二章 文獻回顧及探討……………………………………………………4
2-1隱形眼鏡的發展…………………………………………………………4
2-2隱形眼鏡的分類…………………………………………………………5
2-3矽水膠隱形眼鏡…………………………………………………………6
2-4矽單體-甲基丙烯酸-三(三甲基矽氧)矽丙酯…………………………7
2-5隱形眼鏡材料的特殊性質………………………………………………8
2-6 淚液與蛋白質吸附……………………………………………………11
2-7 熱反應動力學…………………………………………………………13
第三章 材料及實驗方法…………………………………………………14
3-1 研究方法………………………………………………………………14
3-2 實驗設備及藥品配置…………………………………………………16
3-2-1儀器設備及藥品……………………………………………………16
3-3 矽水膠薄膜製備………………………………………………………19
3-3-1矽水膠熱聚合成膜…………………………………………………21
3-3-2矽水膠薄膜脫膜萃取程序…………………………………………21
3-4 材料性質分析…………………………………………………………22
3-4-1材料熱性質分析……………………………………………………22
3-4-2材料機械性質測試…………………………………………………22
3-4-3材料含水率測試……………………………………………………23
3-4-4材料表面接觸角測試………………………………………………24
3-4-5材料透氧性質測試…………………………………………………25
3-4-6材料透光率測試……………………………………………………26
3-5 細胞毒性測試…………………………………………………………27
3-6 脂質吸附測試 ………………………………………………………29
3-7 蛋白質吸附測試 ……………………………………………………30
第四章 結果與討論………………………………………………………32
4-1 配方設計概念…………………………………………………………32
4-3 機械性質測試結果……………………………………………………33
4-4 含水率測試結果………………………………………………………34
4-5 接觸角測試結果………………………………………………………35
4-6 動態接觸角測試結果…………………………………………………36
4-7 透氧率測試結果………………………………………………………38
4-8 透光率測試結果………………………………………………………38
4-9 配方三元相圖分析……………………………………………………39
4-10 蛋白質吸附測試結果………………………………………………40
4-11 脂質吸附測試結果…………………………………………………42
4-12 細胞毒性測試結果…………………………………………………43
第五章 結論………………………………………………………………77
參考文獻…………………………………………………………………79
圖索引
圖 3 - 1研究架構…………………………………………………………15
圖 3 - 2聚合反應圖………………………………………………………20
圖 3 - 3製造矽水膠薄膜裝置……………………………………………21
圖 3 - 4拉伸強力試片樣品 ………………………………………………23
圖 3 - 5前進接觸角及後退接觸角………………………………………24
圖 3 - 6各厚度(L)對L/DK做圖的斜率及截距 ……………………………25
圖 4- 1配方設計概念………………………………………………………45
圖 4- 2 TRIS單體的LN(Â/TP2)對1/TP作圖………………………………46
圖 4- 3不同比例TRIS矽水膠之彈性模數…………………………………47
圖 4- 4不同比例TRIS矽水膠之含水率……………………………………48
圖 4- 5不同比例TRIS矽水膠之純水接觸角………………………………49
圖 4- 6配方1SH添加不同比例PVP(MW=50000)矽水膠之純水接觸角…50
圖 4- 7 PVP8000分子量的矽水膠薄膜連續7天動態接觸角……………51
圖 4- 8不同比例TRIS矽水膠之透氧率……………………………………52
圖 4- 9不同比例TRIS矽水膠之透光率……………………………………53
圖 4- 10添加不同比例分子量8000 PVP透光率…………………………54
圖 4- 11添加不同比例分子量50000 PVP透光率…………………………54
圖 4- 12三元相圖 …………………………………………………………55
圖 4- 13脂質標準液HPLC圖譜……………………………………………56
圖 4- 14脂質標準液之檢量線………………………………………………56
圖 4- 15與市售商品比較之蛋白質吸附……………………………………57
圖 4- 16與市售商品比較之脂質吸附 ……………………………………58
圖 4- 17陽性對照組樣品覆蓋底下的細胞型態 …………………………59
圖 4- 18陽性對照組樣品周邊區域的細胞型態 …………………………59
圖 4- 19陰性對照組樣品覆蓋底下的細胞型態……………………………60
圖 4- 20陰性對照組樣品周邊區域的細胞型態……………………………60
圖 4- 21對照組ETAFILCON A樣品覆蓋底下的細胞型態…………………61
圖 4- 22對照組ETAFILCON A樣品周邊區域的細胞型態…………………61
圖 4- 23試驗組1E樣品覆蓋底下的細胞型態………………………………62
圖 4- 24試驗組1E樣品周邊區域的細胞型態………………………………62
圖 4- 25試驗組2E樣品覆蓋底下的細胞型態………………………………63
圖 4- 26試驗組2E樣品周邊區域的細胞型態………………………………63
圖 4- 27試驗組1SH樣品覆蓋底下的細胞型態………………………………64
圖 4- 28試驗組1SH樣品周邊區域的細胞型態………………………………64
圖 4- 29試驗組2SH樣品覆蓋底下的細胞型態………………………………65
圖 4- 30試驗組2SH樣品周邊區域的細胞型態………………………………65
圖 4- 31試驗組PVP-50000-3樣品覆蓋底下的細胞型態……………………66
圖 4- 32試驗組PVP-50000-3樣品周邊區域的細胞型態 ……………………66
圖 4-33對照組Etafilcon A直接貼附法樣品底下的細胞型態…………………67
圖 4-34試驗組1E直接貼附法樣品底下的細胞型態…………………………67
圖 4-35試驗組2E直接貼附法樣品底下的細胞型態…………………………68
圖 4-36試驗組1SH直接貼附法樣品底下的細胞型態…………………………68
圖 4-37試驗組2SH直接貼附法樣品底下的細胞型態…………………………69
圖 4-38試驗組PVP-50K-3直接貼附法樣品底下的細胞型態…………………69
表索引
表 3 - 1儀器設備目錄…………………………………………………………16
表 3 - 2藥品目錄………………………………………………………………17
表 3 - 3拉伸強力試片各部尺寸………………………………………………23
表 4 - 1不同的升溫速率測得各單體的放熱峰的溫度………………………70
表 4 - 2不同的升溫速率各單體的熱焓值……………………………………70
表 4 - 3矽水膠薄膜連續測試7天的動態接觸角……………………………71
表 4 - 4配方組成表……………………………………………………………72
表 4 - 5矽水膠薄膜性質表……………………………………………………73
表 4 - 6蛋白質標準液濃度與吸光值…………………………………………74
表 4 - 7市售商品與實驗組之蛋白質吸附實驗結果…………………………74
表 4 - 8市售商品與實驗組之脂質吸附實驗結果……………………………75
表 4 - 9細胞毒性判定結果……………………………………………………76
1.王滿堂,隱形眼鏡學(上冊),藝軒圖書 (2005);957-616-807-4。
2.Nicolson PC, Vogt Jg. Soft contact lens polymers: an evolution. Biomaterials (2001);22:3273-3283.
3.Tatsuro G, Kazuhiko I. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices (2006);3:167-174.
4.Hales RA. Cas-permeable cellulose acetate butyrate (CAB)contact lenses. Ophthalmol (1977);9:1085-1090.
5.黃博偉,全國隱形眼鏡市場及台灣廠商分析,生技與醫療器材報導 (2005);72:68-71.
6.Guillon M, Maissa C. Use of silicone hydrogel material for daily wear. Cont Lens and Anterior Eye (2007);30:5-10.
7.Sants L, Rdrigues D. The influence of surface treatment on hydrophbicity, protein adsorption and microbial colonisation of silicone hydrogel contact lens. Cont Lens Anterior Eye (2007);30:183-188.
8.Kunzler Jay F. Silicone hydrogels for contact lens applications. Trends in Polymer Science (TRIP) (1996);4:52-59.
9.張建成,含親水基聚矽氧水膠薄膜之製備研究,國立雲林科技大學工業化學與災害防治研究所碩士論文 (2000)。
10.Bailcy C. Contact lens complications. Optometry Today (1999);6:26-35.
11.Steffen, Robert B. The impact of silicone hydrogel materials on overnight corneal swelling eye and contact lens. Science and Clinical Practice (2007);33 (3):115-120.
12.Mancini W, Korb D, Refojo MF. Hydrogels and articles made therefrom US Patent 3,957,362 (1974).
13.Ronald F.Ofstead. Copolymers of poly(vinyl trifluoroacetate) or poly(vinyl alcohol). US Patent 4,618,649 (1985).
14.Steckler R. Anionic hydrogels based on heterocyclic N-vinyl monomers US Patent 4,036,788 (1975).
15.Minarik L, Rapp J. Protein deposits on individual hydrophilic contact lenses: effects of water and ionicity. The CLAO Journal (1989);15:185-188.
16.Orsborn GN, Zantos SG. Corneal desiccation staining with thin high water content contact lenses. The CLAO Journal (1988);14:81-85.
17.Peppas N, . Yang, Y.M. Contact Lens (1981);7:30.
18.Refojo M F, Leong F L. Water pervaporation through silicone rubber contact lenses: a possible cause of complications. US Patent 3,228,741 (1966).
19.Yoshikawa T. Oxygen permeable soft contact lens material US Patent 4,649,184 (1987).
20.Harvitt DM, Bonanno JA. Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia. Optom Vis Sci (1999);76:712–719.
21.Jones L. Silicone hydrogel contact lenses Optometry Today (2002);20(26-30).
22.Peppas N, Yang W. Properties-based optimisation of the structure of polymers for contact lens application. Cont Intraoc Lens Med J (1981);7:300-314.
23.Tanaka k. US Patent 4,139,513 (1979).
24.Yu Chin L, Louis J. B. Synthesis and Structure-Property Relationships of UV-Curable Urethane Prepolymers with Hard-Soft-Hard Blocks. Journal of Science Applied Polymer Science (1991);42:2039-2044.
25.Yu Chin L. The Role of Bulky Polysiloxanylalkly Methacrylates in polyurethane-Polysiloxane Hydrogels. Journal of Science Applied Polymer Science (1996);60:1193-1199.
26.Yu Chin L. A novel crosslinker for UV copolymerization of N-vinyl pyrrolidone and methacrylates to give hydrogels. Journal of Polymer Science,A, PolymChem (1996);35:1039-1046.
27.Aiba S, Ohishi M, Huang S. Rapid. determination of oxygen permeability of polymer membranes. Industrial and Engineering Chemistry Fundamentals (1968); 7 : 497.
28.Holden BA, Mwrtz GW. Crtical oxygen level to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmology and vision Science (1984);25:1161-1167.
29.Compan V, Andrio A, Lopez-Alemany A, Riande E, Refojo M.F. Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials (2002);23:2767-2772.
30.Weissman BA. Critical corneal oxygen values: a summary. Journalof the American Optometric Association (1986);57:595–598.
31.Ng CO, Tighe BJ. Polymer in contact lens applications VI. The “Dissolved” oxygen permeability of hydrogels and the design of materials for use in Continuous-Wear Lenses. British Polymer Journal (1976 );118:78
32.Holden BA, Mertz GW. Critical oxygen level to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmology and vision Science (1984);25:1161-1167.
33.Megan SL, Stenzel HS. The effect of charged groups on protein interactions with poly(HEMA) hydrogels. Biomaterials (2006);27(4):567-575.
34.Lily Cheng, Susan J. Muller, Clayton J. Radke. Wettability of silicone-hydrogel contact lenses in thepresence of tream-film components. Current Eye Research (2004) 28:93-108.
35.Lin MC, Graham AD P, olse KA, Mandell RB, McNamara NA. Measurement of post-lens tear thickness. Invest Ophthalmology and vision Science (1999);40 2833-2839.
36.Miller C, Neogi P. Interfacial phenomena:equilibrium and dynami effectsc. Surfactant Science Series New York:Marcel Dekker (1985):54-85.
37.Lam CNC, Wu R, Li D, Hair ML, Neumann AW. Study of the advancing and receding contact angles;Liquid sorpingas a cause of contact angle hysteresis. Advvances In Colloid Interface Science (2002);96:169-191.
38.Holly FJ, Refojo MF. Wettability of hydrogels I. Poly(2-hydroxyethyl methacrylate). Journal of Biomedical Materials Research (1975);96:315-326.
39.Fatt I. Observations of tear film breakup on model eyes.The CLAO Journal (1991);17:267-281.
40.Efron N. Contact lens-induced changes in the anterior eye as observed in vivo with the confocal microscope. Progress in Retinal and Eye Research (2007);26: 398-436.
41.魏文龍,以亞磷酸二乙酯作為熱延遲性的環氧樹脂硬化劑及其硬化樹脂性質研究,私立中原大學化學工程系碩士論文 (2003)。
42.Mark VB. Immobilized hyaluronic acid containing model silicone hydrogels reduce protein adsorption. Journal of biomaterials Science Polymer Edition (2008);19:1425-1436.
43.Lorentz HI. Lipid deposition on hydrogel contact lense. MSc, University of Waterloo (Canada) (2006).
44.Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem (1976);72:248-254.
45.Kissinger HE. Variation of peak temperature with heating rate in different thermal analysis. Journal of Research of the National Bureau of Standards(US) (1956);57:217.
46.Pedley D, Tighe B. Water binding properties of hydrogel polymer for reverse osmosis and related applications.British Polymer Journal (1979);11:130.
47.Lohmann. Morphology requirment for on-eye mobility of soft oxygen permeable contact lenses. Polym mater Sci eng (1997);76:42-43.
48.Paul CN. Extended wear ophthalmic lens USPatent 5,760,100 (1995).
49.Bambury. Vinyl carbonate and vinyl carbamate contact lens material monomers. USPatent 5,610,252 (1997).
50.Cabe M. Biomedical devices containing internal wetting agents USPatent 6,822,016 (2002).
51.Abbasi F MH, Katbab A-A. . Modification of polysiloxanes for biomedical applications: a review. Polym Int (2001);50:1279–1287.
52.P.C. Nicolson JV. Soft contact lens polymers: an evolution. Biomaterials (2001);22:3273–3283.
53.Annie CM. Hydrogel with internal wetting agent. USPatent 6,367,929 B1 (2000).
54.Lin CH. Fabrication and characterization of opthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Colloids and Surfaces B: Biointerfaces (2009); 71:36-44.
55.Kevin PMC. Biomedical devices containing internal wetting agents USPatent 7,052,131B2 (2002).
56.Lira M. Changes in UV-Visible Transmittance of silicone-hydrogel contact lenses induced by wear. optometry and vision science (2009);86:332-339.
57.Leahy CD, Mandell RB, Lin ST. Initial in vivo tear protein deposition on individual hydrogel contact lenses. Optometry&Vision Science (1990);67:504 -511.
58.Baines M CF, Backman H. Adsorption and removal of protein bound to hydrogel contact lenses. Optometry&Vision Science (1990);67:807-810.
59.Jones L MA, Evans K, Franklin V, Tighe B An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent-replacement contact lenses. Optometry&Vision Science (2000);77: 503-510.
60.Jones L EK, Sariri R, Franklin V, Tighe B. Lipid and protein deposition of N-vinyl pyrrolidone containing group II and group IV frequent replacement contact lenses. The CLAO Journal (1997);23:122-126.
61.Maissa C FV, Guillon M, Tighe B. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optometry&Vision Science (1998);75:697-705.
62.McNally J MC. A clinical look at a silicone hydrogel extended wear lens. Contact Lens Spectrum (2002);17:38 - 41.
63.Court JL RR, Wang JH, Leppard SW, Obyrne VJ, Small SA, Lewis AL, Jones SA, Stratford PW. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials (2001);22:3261-3272.
64.McKenney C BN, Thomas S, Castillo-Krevolin C, Grant T. Lens deposits with a high Dk hydrophilic soft lens. Optometry&Vision Science (1998);75:276.
65.Nicolson PC VJ. Soft contact lens polymers: an evolution. Biomaterials (2001);22:3273-3283.
66.Weikart CM MY, Winterton L, Yasuda HK. Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. Journal of Biomedical Materials Research (2001);54:597-607.
67.Grobe GL. 3rd: Surface engineering aspects of silicone-hydrogel lenses. Contact Lens Spectrum (1999);14:14 - 17.
68.Lopez-Alemany A CV, Refojo MF. Porous structure of purevision versus focus night&day and conventional hydrogel contact lenses. Journal of Biomedical Materials Research (Appl Biomat) (2002);63:319 - 325.
69.Bruinsma GM, Busscher HJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials (2001);22:3217-3224.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊