1.王滿堂,隱形眼鏡學(上冊),藝軒圖書 (2005);957-616-807-4。
2.Nicolson PC, Vogt Jg. Soft contact lens polymers: an evolution. Biomaterials (2001);22:3273-3283.
3.Tatsuro G, Kazuhiko I. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices (2006);3:167-174.
4.Hales RA. Cas-permeable cellulose acetate butyrate (CAB)contact lenses. Ophthalmol (1977);9:1085-1090.
5.黃博偉,全國隱形眼鏡市場及台灣廠商分析,生技與醫療器材報導 (2005);72:68-71.
6.Guillon M, Maissa C. Use of silicone hydrogel material for daily wear. Cont Lens and Anterior Eye (2007);30:5-10.
7.Sants L, Rdrigues D. The influence of surface treatment on hydrophbicity, protein adsorption and microbial colonisation of silicone hydrogel contact lens. Cont Lens Anterior Eye (2007);30:183-188.
8.Kunzler Jay F. Silicone hydrogels for contact lens applications. Trends in Polymer Science (TRIP) (1996);4:52-59.
9.張建成,含親水基聚矽氧水膠薄膜之製備研究,國立雲林科技大學工業化學與災害防治研究所碩士論文 (2000)。10.Bailcy C. Contact lens complications. Optometry Today (1999);6:26-35.
11.Steffen, Robert B. The impact of silicone hydrogel materials on overnight corneal swelling eye and contact lens. Science and Clinical Practice (2007);33 (3):115-120.
12.Mancini W, Korb D, Refojo MF. Hydrogels and articles made therefrom US Patent 3,957,362 (1974).
13.Ronald F.Ofstead. Copolymers of poly(vinyl trifluoroacetate) or poly(vinyl alcohol). US Patent 4,618,649 (1985).
14.Steckler R. Anionic hydrogels based on heterocyclic N-vinyl monomers US Patent 4,036,788 (1975).
15.Minarik L, Rapp J. Protein deposits on individual hydrophilic contact lenses: effects of water and ionicity. The CLAO Journal (1989);15:185-188.
16.Orsborn GN, Zantos SG. Corneal desiccation staining with thin high water content contact lenses. The CLAO Journal (1988);14:81-85.
17.Peppas N, . Yang, Y.M. Contact Lens (1981);7:30.
18.Refojo M F, Leong F L. Water pervaporation through silicone rubber contact lenses: a possible cause of complications. US Patent 3,228,741 (1966).
19.Yoshikawa T. Oxygen permeable soft contact lens material US Patent 4,649,184 (1987).
20.Harvitt DM, Bonanno JA. Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia. Optom Vis Sci (1999);76:712–719.
21.Jones L. Silicone hydrogel contact lenses Optometry Today (2002);20(26-30).
22.Peppas N, Yang W. Properties-based optimisation of the structure of polymers for contact lens application. Cont Intraoc Lens Med J (1981);7:300-314.
23.Tanaka k. US Patent 4,139,513 (1979).
24.Yu Chin L, Louis J. B. Synthesis and Structure-Property Relationships of UV-Curable Urethane Prepolymers with Hard-Soft-Hard Blocks. Journal of Science Applied Polymer Science (1991);42:2039-2044.
25.Yu Chin L. The Role of Bulky Polysiloxanylalkly Methacrylates in polyurethane-Polysiloxane Hydrogels. Journal of Science Applied Polymer Science (1996);60:1193-1199.
26.Yu Chin L. A novel crosslinker for UV copolymerization of N-vinyl pyrrolidone and methacrylates to give hydrogels. Journal of Polymer Science,A, PolymChem (1996);35:1039-1046.
27.Aiba S, Ohishi M, Huang S. Rapid. determination of oxygen permeability of polymer membranes. Industrial and Engineering Chemistry Fundamentals (1968); 7 : 497.
28.Holden BA, Mwrtz GW. Crtical oxygen level to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmology and vision Science (1984);25:1161-1167.
29.Compan V, Andrio A, Lopez-Alemany A, Riande E, Refojo M.F. Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials (2002);23:2767-2772.
30.Weissman BA. Critical corneal oxygen values: a summary. Journalof the American Optometric Association (1986);57:595–598.
31.Ng CO, Tighe BJ. Polymer in contact lens applications VI. The “Dissolved” oxygen permeability of hydrogels and the design of materials for use in Continuous-Wear Lenses. British Polymer Journal (1976 );118:78
32.Holden BA, Mertz GW. Critical oxygen level to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmology and vision Science (1984);25:1161-1167.
33.Megan SL, Stenzel HS. The effect of charged groups on protein interactions with poly(HEMA) hydrogels. Biomaterials (2006);27(4):567-575.
34.Lily Cheng, Susan J. Muller, Clayton J. Radke. Wettability of silicone-hydrogel contact lenses in thepresence of tream-film components. Current Eye Research (2004) 28:93-108.
35.Lin MC, Graham AD P, olse KA, Mandell RB, McNamara NA. Measurement of post-lens tear thickness. Invest Ophthalmology and vision Science (1999);40 2833-2839.
36.Miller C, Neogi P. Interfacial phenomena:equilibrium and dynami effectsc. Surfactant Science Series New York:Marcel Dekker (1985):54-85.
37.Lam CNC, Wu R, Li D, Hair ML, Neumann AW. Study of the advancing and receding contact angles;Liquid sorpingas a cause of contact angle hysteresis. Advvances In Colloid Interface Science (2002);96:169-191.
38.Holly FJ, Refojo MF. Wettability of hydrogels I. Poly(2-hydroxyethyl methacrylate). Journal of Biomedical Materials Research (1975);96:315-326.
39.Fatt I. Observations of tear film breakup on model eyes.The CLAO Journal (1991);17:267-281.
40.Efron N. Contact lens-induced changes in the anterior eye as observed in vivo with the confocal microscope. Progress in Retinal and Eye Research (2007);26: 398-436.
41.魏文龍,以亞磷酸二乙酯作為熱延遲性的環氧樹脂硬化劑及其硬化樹脂性質研究,私立中原大學化學工程系碩士論文 (2003)。42.Mark VB. Immobilized hyaluronic acid containing model silicone hydrogels reduce protein adsorption. Journal of biomaterials Science Polymer Edition (2008);19:1425-1436.
43.Lorentz HI. Lipid deposition on hydrogel contact lense. MSc, University of Waterloo (Canada) (2006).
44.Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem (1976);72:248-254.
45.Kissinger HE. Variation of peak temperature with heating rate in different thermal analysis. Journal of Research of the National Bureau of Standards(US) (1956);57:217.
46.Pedley D, Tighe B. Water binding properties of hydrogel polymer for reverse osmosis and related applications.British Polymer Journal (1979);11:130.
47.Lohmann. Morphology requirment for on-eye mobility of soft oxygen permeable contact lenses. Polym mater Sci eng (1997);76:42-43.
48.Paul CN. Extended wear ophthalmic lens USPatent 5,760,100 (1995).
49.Bambury. Vinyl carbonate and vinyl carbamate contact lens material monomers. USPatent 5,610,252 (1997).
50.Cabe M. Biomedical devices containing internal wetting agents USPatent 6,822,016 (2002).
51.Abbasi F MH, Katbab A-A. . Modification of polysiloxanes for biomedical applications: a review. Polym Int (2001);50:1279–1287.
52.P.C. Nicolson JV. Soft contact lens polymers: an evolution. Biomaterials (2001);22:3273–3283.
53.Annie CM. Hydrogel with internal wetting agent. USPatent 6,367,929 B1 (2000).
54.Lin CH. Fabrication and characterization of opthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Colloids and Surfaces B: Biointerfaces (2009); 71:36-44.
55.Kevin PMC. Biomedical devices containing internal wetting agents USPatent 7,052,131B2 (2002).
56.Lira M. Changes in UV-Visible Transmittance of silicone-hydrogel contact lenses induced by wear. optometry and vision science (2009);86:332-339.
57.Leahy CD, Mandell RB, Lin ST. Initial in vivo tear protein deposition on individual hydrogel contact lenses. Optometry&Vision Science (1990);67:504 -511.
58.Baines M CF, Backman H. Adsorption and removal of protein bound to hydrogel contact lenses. Optometry&Vision Science (1990);67:807-810.
59.Jones L MA, Evans K, Franklin V, Tighe B An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent-replacement contact lenses. Optometry&Vision Science (2000);77: 503-510.
60.Jones L EK, Sariri R, Franklin V, Tighe B. Lipid and protein deposition of N-vinyl pyrrolidone containing group II and group IV frequent replacement contact lenses. The CLAO Journal (1997);23:122-126.
61.Maissa C FV, Guillon M, Tighe B. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optometry&Vision Science (1998);75:697-705.
62.McNally J MC. A clinical look at a silicone hydrogel extended wear lens. Contact Lens Spectrum (2002);17:38 - 41.
63.Court JL RR, Wang JH, Leppard SW, Obyrne VJ, Small SA, Lewis AL, Jones SA, Stratford PW. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials (2001);22:3261-3272.
64.McKenney C BN, Thomas S, Castillo-Krevolin C, Grant T. Lens deposits with a high Dk hydrophilic soft lens. Optometry&Vision Science (1998);75:276.
65.Nicolson PC VJ. Soft contact lens polymers: an evolution. Biomaterials (2001);22:3273-3283.
66.Weikart CM MY, Winterton L, Yasuda HK. Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. Journal of Biomedical Materials Research (2001);54:597-607.
67.Grobe GL. 3rd: Surface engineering aspects of silicone-hydrogel lenses. Contact Lens Spectrum (1999);14:14 - 17.
68.Lopez-Alemany A CV, Refojo MF. Porous structure of purevision versus focus night&day and conventional hydrogel contact lenses. Journal of Biomedical Materials Research (Appl Biomat) (2002);63:319 - 325.
69.Bruinsma GM, Busscher HJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials (2001);22:3217-3224.