|
1.楊淑貞. 短腸症之治療. 靜脈暨腸道營養會訊 93年1月. 2.Howard L, Heaphey L, Fleming C, Lininger L, Steiger E. Four years of North American registry home parenteral nutrition outcome data and their implication for patient management. Journal of Parenteral and Enteral Nutrition 1991;15:384–393. 3.Thompson JS, Harty RJ, Saigh JA, Giger DK. Morphologic and nutritional responses to intestinal patching following intestinal resection. Surgery 1988 Jan;103(1):79-86. 4.Nasseri BA, Ogawa K, Vacanti JP. Tissue engineering: an evolving 21st-century science to provide biologic replacement for reconstruction and transplantation. Surgery 2001 Nov;130(5):781-784. 5.Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 2004 Nov;240(5):748-754. 6.Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 1996 Jan;17(2):115-124. 7.Chen MK, Badylak SF. Small bowel tissue engineering using small intestinal submucosa as a scaffold. Journal of Surgical Research 2001 Aug;99(2):352-358. 8.Wang ZQ, Watanabe Y, Toki A. Experimental assessment of small intestinal submucosa as a small bowel graft in a rat model. Journal of Pediatric Surgery 2003 Nov;38(11):1596-1601. 9.Ansaloni L, Bonasoni P, Carnbrini P, Catena F, De Cataldis A, Gagliardi S, et al. Experimental evaluation of Surgisis as scaffold for neointestine regeneration in a rat model. 2006; 2006. p. 1844-1848. 10.Hori Y, Nakamura T, Kimura D, Kaino K, Kurokawa Y, Satomi S, et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. Journal of Surgical Research 2002 Feb;102(2):156-160. 11.卓貴美. 圖解生理學. 五南圖書出版公司 2000:339-362. 12.朱家瑜. 人體組織學. 藝軒出版公司 2000. 13.Gupta A, Dixit A, Sales KM, Winslet MC, Seifalian AM. Tissue engineering of small intestine-current status. Biomacromolecules 2006 Oct;7(10):2701-2709. 14.Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition 2001;12(1):107-124. 15.Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials Journal 2003 Jun 30;5:29-39; discussion 39-40. 16.Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials 2002 Dec;23(24):4827-4832. 17.Yao CH, Liu BS, Chang CJ, Hsu SH, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials. Materials Chemistry and Physics 2004 Feb;83(2-3):204-208. 18.Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21(24):2589-2598. 19.Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL. Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia 2006;2(3):313-320. 20.Ma PX. Scaffolds for tissue fabrication. Materials Today 2004;7(5):30-40. 21.Polnok A, Borchard G, Verhoef JC, Sarisuta N, Junginger HE. Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. European Journal of Pharmaceutics and Biopharmaceutics 2004;57(1):77-83. 22.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999 Apr 2;284(5411):143-147. 23.Ruoslahti E. RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology 1996;12:697-715. 24.Eric C, Zhong P. Ultrasound-Mediated Drug Delivery. IEEE Engineering in Medicine and Biology Magazine 2009. 25.Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. Journal of Pediatric Surgery 1988;23(1):3-9. 26.Choi RS, Riegler M, Pothoulakis C, Kim BS, Mooney D, Vacanti M, et al. Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. Journal of Pediatric Surgery 1998;33(7):991-997. 27.Kaihara S, Tanaka K, Mooney D, Kim B, Benvenuto M, Kim S, et al. End-to-end anastomosis between tissue-engineered intestine and native small bowel. Tissue Engineering 1999;5:339-346. 28.Parnigotto PP, Marzaro M, Artusi T, Perrino G, Conconi MT. Short bowel syndrome: Experimental approach to increase intestinal surface in rats by gastric homologous acellular matrix. Journal of Pediatric Surgery 2000;35(9):1304-1308. 29.Gardner-Thorpe J, Grikscheit TC, Ito H, Perez A, Ashley SW, Vacanti JP, et al. Angiogenesis in tissue-engineered small intestine. Tissue Engineering 2003 Dec;9(6):1255-1261. 30.Nakase Y, Hagiwara A, Nakamura T, Kin S, Nakashima S, Yoshikawa T, et al. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Engineering 2006 Feb;12(2):403-412. 31.Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, et al. Endocrine cell and nerve regeneration in autologous in situ tissue-engineered small intestine. Journal of Surgical Research 2007 Jan;137(1):61-68. 32.Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology 1998;16(5):224-230. 33.Jinghua C, Jingtao C, Zheng X, Qisheng G. Characteristic of hyaluronic acid derivative films cross-linked by polyethylene glycol of low water content. Journal of Medical Colleges of PLA 2008;23(1):15-19. 34.Jiankang H, Dichen L, Yaxiong L, Bo Y, Bingheng L, Qin L. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer 2007;48(15):4578-4588. 35.Chang CH, Liu HC, Lin CC, Chou CH, Lin FH. Gelatin- chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 2003;24(26):4853-4858. 36.Matsuda S, Iwata H, Se N, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. Journal of Biomedical Materials Research 1999 Apr;45(1):20-27. 37.Kuijpers AJ, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J. Cross-linking and characterisation of gelatin matrices for biomedical applications. Journal of Biomaterials Science-Polymer Edition 2000;11(3):225-243. 38.Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001;22(8):763-768. 39.American National Standard. ANSI/AAMI/ISO 1999;10993-5. 40.Lee M, Wu BM, Stelzner M, Reichardt HM, Dunn JC. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor. Tissue Engineering Part A 2008 Aug;14(8):1395-1402. 41.Yang TH, Miyoshi H, Ohshima N. Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. Journal of Biomedical Materials Research 2001 Jun;55(3):379-386. 42.Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, et al. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. Journal of Histochemistry and Cytochemistry 1989 Mar;37(3):315-321. 43.Lien SM, Li WT, Huang TJ. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2008 Jan;28(1):36-43. 44.Hsieh CY, Tsai SP, Ho MH, Wang DM, Liu CE, Hsieh CH, et al. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers 2007 Jan;67(1):124-132. 45.Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethy -laminopropyl)carbodiimide cross-linking. Biomaterials 2002 Feb;23(4): 1205-1212. 46.Opitz F, Schenke-Layland K, Richter W, Martin DP, Degenkolbe I, Wahlers T, et al. Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Annals of Biomedical Engineering 2004 Feb;32(2):212-222. 47.李偉德. 明膠做為關節軟骨組織工程支架對軟骨細胞生長的影響. 清華大學 民國九十四年. 48.Sobral PJA. Effect of the Conditioning Time on Gelatin Phase Transitions. Braz J Food Technol 2003. 49.Cortesi R, Nastruzzi C, Davis SS. Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials 1998;19(18):1641-1649. 50.Pinhas MF, Blanshard JMV, Derbyshire W, Mitchell JR. The effect of water on the physicochemical and mechanical properties of gelatin. Journal ofThermal Analysis 1996;47:1499-1511. 51.Apostolov AA, Fakirov S, vassilve E, patil RD, mark JE. DSC and TGA Studies of the Behavior of Water in Native and Crosslinked Gelatin. Journal of Applied Polymer Science 1999. 52.Yang TH, Miyoshi H, Ohshima N. Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. Journal of Biomedical Materials Research 2001 Jun 5;55(3):379-386. 53.Ding CM, Zhou Y, He YN, Tan WS. Perfusion seeding of collagen-chitosan sponges for dermal tissue engineering. Process Biochemistry 2008 Mar;43(3):287-296. 54.Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 2005;26(18):3911-3918. 55.Dubruel P, Unger R, Van Vlierberghe S, Cnudde V, Jacobs PJS, Schacht E, et al. Porous gelatin hydrogels: 2. In vitro cell interaction study. Biomacromolecules 2007 Feb;8(2):338-344.
|