跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳金慶
研究生(外文):Jin-Ching Chen
論文名稱:探討微米與奈米柴胡顆粒萃出液對乙醇誘發肝星狀細胞之抗纖維化功效
論文名稱(外文):Effects of Micro- and Nano- Bupleurum Chinense DC. Particle Extract on Anti-Fibrosis activity in Enthanol-Induce Hepatic Stellate Cell
指導教授:張恆雄
指導教授(外文):Walter H. Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:肝纖維化肝星狀細胞乙醇柴胡皂苷奈米粒子
外文關鍵詞:Hepatic stellate cellethanolSaikosaponinsLiver fibrosisnanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
已知飲酒會使肝臟受到慢性刺激引起持續性的傷害與修復過程,反覆的肝損傷最後導致肝臟纖維化。肝纖維化及發展最後階段的肝硬化已成為全世界主要的健康問題之一。相當多的證據提出肝星狀細胞活化為肝纖維化形成的中心環節。肝星狀細胞是肝纖維化時生成膠原蛋白的主要來源細胞;最近研究顯示肝星狀細胞也是金屬蛋白酶的主要來源,金屬蛋白酶參與基質修復並能分解基質。
而柴胡是已被拿來治療肝臟疾病的傳統中草藥,柴胡皂苷a、柴胡皂苷c及柴胡皂苷d為柴胡主要的有效成份。已知道柴胡皂苷在不同病理機制具治療的效果,例如抗發炎、抗菌與抗癌的功效。
本研究討論微米及奈米顆粒大小的柴胡甲醇萃取液對被乙醇刺激肝星狀細胞的抗肝纖維化效用。微米及奈米柴胡是分別經由傳統研磨及氣流崩散的奈米技術製成,並利用掃瞄式電子顯微鏡觀察柴胡外觀形態與顆粒大小。在萃取有效成份方面,柴胡甲醇萃取液經索式萃取方式萃取,再利用HPLC分析其有效成份。在細胞實驗模式中,柴胡萃取液加入肝星狀細胞作用後再以乙醇處理兩小時,利用MTT試驗及RT-PCR分析得到結果。
本研究顯示柴胡經奈米化技術處理後能更快速萃取出有效成份並且所萃取的有效成份含量比微米柴胡高。
結果顯示187.5mg/mL及250mg/mL奈米化柴胡的抗纖維化功效比187.5mg/mL及250mg/mL微米柴胡佳,可觀察到第一型膠原蛋白、第三型膠原蛋白及組織金屬蛋白酵素抑制子-1的mRNA隨著柴胡劑量增加而降低其表現量;基質金屬蛋白酶-2及基質金屬蛋白酶-13的mRNA隨著柴胡劑量增加而增加其表現量,顯示柴胡對酒精性肝纖維化有預防作用。
Alcoholic beverages are known to cause persistent wound-healing process of liver responses to a chronic stimulation. The repeated liver injury leads to liver fibrosis consequently. Liver fibrosis and its end stage sequela—cirrhosis become a major worldwide health problem. Considerable evidences suggest that the activated hepatic stellate cells (HSCs) play a key role in the fibrotic process. They are the major cells to synthesize the interstitial collagens, which characterize fibrosis. Recent works suggest that HSCs are also a source of matrix degrading metalloproteinase (MMPs), which could participate in matric remodeling.
The roots of Bupleurum Chinense DC. have been used in traditional Chinses herbal medicine for curing liver diseases. Saikosaponin-a, Saikosaponin-c and Saikosaponin-d are triterpene saponin derived from the roots of Bupleurum Chinense DC. Previous findings showed that Saikosaponins exhibit a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, antiviral and anti-cancer effects.
In this study, we investigate the anti-fibrosis effects of micro- Bupleurum and nano-Bupleurum on activated hepatic stellate cells stimulated via ethanol. The micro- Bupleurum and nano-Bupleurum were prepared by traditional grinder and pulsed air-flow pulverizer, respectively. The morphology of particles was examined by particle sizer and FE-SEM. For extracting the active component, Soxhlet extraction method was applied. The extracts were diluted to the same volume for HPLC analysis and exposed to the HSCs. At the indicated time, HSCs were exposed to ethanol for 2 hours and then analysize by MTT assay and RT-PCR.
The results showed that the nano-Bupleurum extracts revealed stronger anti-fibrosis bioactivities. The nano-Bupleurum extracts decreased the mRNA expression level of collagen type I, collagen type III and TIMP-1. On the contrary, they increased the level of MMP-2 and MMP-13. To conclude, the bioactive components of the 187.5mg/mL and 250mg/mL nano-Bupleurum released faster than the 187.5mg/mL and 250mg/mL micro- Bupleurum. Furthermore, the extracts of Bupleurum can alleviate HSCs injury from ethanol.
摘要 I
ABSTRACT ...................................................................................................... III
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究背景 ................................................................................................. 1
1.2 酒精性肝臟纖維化 ................................................................................. 1
1.3 肝纖維化病理機轉簡介 ......................................................................... 4
1.4 傳統中藥治療肝纖維化的研究 ............................................................. 6
1.5 奈米技術 ................................................................................................. 9
1.6 目的 ....................................................................................................... 12
第二章 材料與方法 ........................................................................................... 13
2.1 實驗設計 ............................................................................................... 13
2.2 實驗細胞 ............................................................................................... 13
2.3 柴胡甲醇萃取溶液的製備 ................................................................... 14
2.3.1. 細胞實驗的柴胡甲醇萃取溶液的製備 ........................................... 15
2.3.2. 不同萃取時間的柴胡甲醇萃取溶液的製備 ................................... 15
2.4 粒徑分佈檢測(Dynamic light scattering system, DLS) ....................... 16
2.5 掃瞄式電子顯微鏡 (Scanning electron microscopy, SEM) ............... 16
2.6 高效率液相層析(High Performance Liquid Chromatography, HPLC)
17
2.6.1 標準品之製備 .................................................................................... 17
2.6.2 HPLC 分析條件 ................................................................................ 17
2.7 MTT 呈色分析法 ................................................................................. 18
2.8 total RNA 的萃取 .................................................................................. 19
2.9 反轉錄反應(Reverse transcription; RT) .......................................... 21
2.10 半定量反轉錄聚合酵素連鎖反應 ....................................................... 21
2.11 統計方法 ............................................................................................... 22
第三章 結果 24
3.1 粒徑分析與掃瞄式電子顯微鏡的物性分析 ....................................... 24
3.2 柴胡有效成份分析 ............................................................................... 25
3.2.1. 細胞實驗的柴胡甲醇萃取溶液 ........................................................ 26
3.2.2. 不同萃取時間的柴胡甲醇萃取溶液的製備 ................................... 26
3.3 柴胡不同作用時間對HSC 活性試驗 ................................................. 30
3.4 細胞形態 ............................................................................................... 33
3.5 微米與奈米化柴胡對乙醇刺激HSC-T6 mRNA 表現之影響 ........... 33
第四章 討論 41
4.1 奈米化柴胡外觀型態 ................................................................................ 41
4.2 柴胡有效成份萃取 ................................................................................... 41
4.3 抑制肝星狀細胞纖維化 ........................................................................... 42
第五章 結論 43
經由奈米化技術處裡的柴胡,確實能夠達到快速萃取並且能夠萃取出更多
的有效成份。 ..................................................................................................... 43
第六章 參考文獻 ............................................................................................... 44


圖目錄
圖一 肝纖維化造成肝竇內細胞改變 ................................................... 5
圖二 實驗架構 ....................................................................................13
圖三 細胞實驗流程 ............................................................................14
圖四 細胞實驗流程 ............................................................................15
圖五 奈米化柴胡粒徑分布圖 ............................................................24
圖六 SEM 下奈米化柴胡SEM 下顆粒外觀形態及大小 ..................25
圖七 柴胡皂苷HPLC 層析圖 ............................................................28
圖八 不同萃取時間的柴胡皂苷a 含量 .............................................29
圖九 不同萃取時間的柴胡皂苷c 含量 .............................................29
圖十 不同萃取時間的柴胡皂苷d 含量 .............................................30
圖十一 柴胡作用1 小時 ....................................................................31
圖十二 柴胡作用3 小時 ....................................................................32
圖十三 柴胡作用6 小時 ....................................................................32
圖十四 細胞形態 ................................................................................36
圖十五 mRNA expression of collgen type I ........................................37
圖十六 mRNA expression of collgen type III .....................................37
圖十七 mRNA expression of MMP-2 .................................................38
圖十八 mRNA expression of MMP-13 ...............................................38
圖十九 mRNA expression of TGF-beta1 ............................................39
圖二十 mRNA expression of TIMP-1 .................................................39
圖二十一 mRNA expression of alpha-SMA .......................................40
表目錄
表一 柴胡移動相之梯度沖提 ............................................................18
表二 Primer sequences for PCR ..........................................................23
表三 柴胡標準品分析 ........................................................................27
表四 微米與奈米化柴胡有效成份濃度 .............................................27
1.Friedman, S. L., Mechanisms of hepatic fibrogenesis. Gastroenterology 2008, 134 (6), 1655-1669.
2.Bataller, R.; Brenner, D. A., Liver fibrosis. J Clin Invest 2005, 115 (2), 209-218.
3.Friedman, S. L., Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000, 275 (4), 2247-2250.
4.Yang, A. L.; Vadhavkar, S.; Singh, G.; Omary, B. In Epidemiology of alcohol-related liver and pancreatic disease in the united states, Amer Medical Assoc: 2008; pp 649-656.
5.Goral, J.; Karavitis, J.; Kovacs, E. J., Exposure-dependent effects of ethanol on the innate immune system. Alcohol 2008, 42 (4), 237-247.
6.Parkes, J.; Roderick, P.; Harris, S.; Gough, C.; Wheatley, M.; Alexander, G.; Collier, J.; Day, C.; Lombard, M.; Mutimer, D.; Ramage, J.; Burt, A.; Dusheiko, G.; Sampson, E.; Cross, R.; Aithal, G.; Mayo, M.; Peters, M.; Irving, W.; Ryder, S.; Manos, M.; Rosenberg, W., European liver fibrosis panel of serum markers can predict serious fibrosis on biopsy and clinical outcome in patients with mixed aetiology chronic liver disease. J. Epidemiol. Community Health 2008, 62, 098.
7.Parkes, J.; Roderick, P.; Harris, S.; Gough, C.; Wheatley, M.; Alexander, G.; Collier, J.; Day, C.; Lombard, M.; Mutimer, D.; Ramage, J.; Dusheiko, G.; Burt, A.; Sampson, E.; Rosenberg, W. In European liver fibrosis markers can predict clinical outcome in patients with chronic liver disease, Annual General Meeting of the British-Society-of-Gastroenterology, Brimingham, ENGLAND, Mar 10-13; B M J Publishing Group: Brimingham, ENGLAND, 2008; p 099.
8.Parkes, J.; Roderick, R.; Harris, S.; Gough, C.; Wheatley, M.; Alexander, G.; Collier, J.; Day, C.; Lombard, M.; Mutimer, D.; Ramage, J.; Dusheiko, G.; Burt, A.; Sampson, E. L.; Rosenberg, W. In Enhanced liver fibrosis (ELF) score predicts clinical outcome in patients with chronic liver disease, 60th Annual Meeting of the American-Association-for-Clinical-Chemistry, Washington, DC, Jul 27-31; Amer Assoc Clinical Chemistry: Washington, DC, 2008; p A135.
9.Taieb, J.; Mathurin, P.; Poynard, H.; Gougerot-Pocidalo, M. A.; Chollet-Martin, S., Raised plasma soluble Fas and Fas-ligand in alcoholic liver disease. Lancet 1998, 351 (9120), 1930-1931.
10.Vidali, M.; Hietala, J.; Occhino, G.; Ivaldi, A.; Sutti, S.; Niemela, O.; Albano, E., Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-alpha in heavy drinkers. Free Radic. Biol. Med. 2008, 45 (3), 306-311.
11.Szabo, G.; Mandrekar, P.; Dolganiuc, A.; Catalano, D.; Kodys, K., Reduced alloreactive T-cell activation after alcohol intake is due to impaired monocyte accessory cell function and correlates with elevated IL-10, IL-13, and decreased IFN gamma levels. Alcoholism 2001, 25 (12), 1766-1772.
12.Norkina, O.; Dolganiuc, A.; Shapiro, T.; Kodys, K.; Mandrekar, P.; Szabo, G., Acute alcohol activates STAT3, AP-1, and Sp-1 transcription factors via the family of Src kinases to promote IL-10 production in human monocytes. J. Leukoc. Biol. 2007, 82 (3), 752-762.
13.Szabo, G.; Mandrekar, P.; Oak, S.; Mayerle, J., Effect of ethanol on inflammatory responses - Implications for pancreatitis. Pancreatology 2007, 7 (2-3), 115-123.
14.Perlemuter, G.; Letteron, P.; Carnot, F.; Zavala, F.; Pessayre, D.; Nalpas, B.; Brechot, C., Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model. J. Hepatol. 2003, 39 (6), 1020-1027.
15.Schmid, R. M.; Adler, G., NF-kappa B/Rel/I kappa B: Implications in gastrointestinal diseases. Gastroenterology 2000, 118 (6), 1208-1228.
16.Tai, D. I.; Tsai, S. L.; Chen, Y. M.; Chuang, Y. L.; Peng, C. Y.; Sheen, I. S.; Yeh, C. T.; Chang, K. S. S.; Huang, S. N.; Kuo, G. C.; Liaw, Y. F. In Activation of nuclear factor kappa B in hepatitis C virus infection: Implications for pathogenesis and hepatocarcinogenesis, W B Saunders Co: 2000; pp 656-664.
17.Rigamonti, C.; Mottaran, E.; Reale, E.; Rolla, R.; Cipriani, V.; Capelli, F.; Boldorini, R.; Vidali, M.; Sartori, M.; Albano, E. In Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis C, W B Saunders Co: 2003; pp 42-49.
18.Rigamonti, C.; Donato, M. F.; Vidali, M.; Agnelli, F.; Serino, R.; Occhino, G.; Ivaldi, A.; Arosio, E.; Monti, V.; Rossi, G.; Colombo, M.; Albano, E. In Serum autoantibodies against cytochrome P450 2EI (CYP2EI) predict severity of liver graft hepatitis C recurrence, John Wiley & Sons Inc: 2007; p 163.
19.Vidali, M.; Occhino, G.; Ivaldi, A.; Rigamonti, C.; Sartori, M.; Albano, E., Combination of oxidative stress and steatosis is a risk factor for fibrosis in alcohol-drinking patients with chronic hepatitis C. Am. J. Gastroenterol. 2008, 103 (1), 147-153.
20.Friedman, S. L., Liver fibrosis -- from bench to bedside. J Hepatol 2003, 38 Suppl 1, S38-53.
21.Hemmann, S.; Graf, J.; Roderfeld, M.; Roeb, E., Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 2007, 46 (5), 955-975.
22.Moreira, R. K., Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med 2007, 131 (11), 1728-1734.
23.Tsukada, S.; Parsons, C. J.; Rippe, R. A., Mechanisms of liver fibrosis. Clin Chim Acta 2006, 364 (1-2), 33-60.
24.Tahashi, Y.; Matsuzaki, K.; Date, M.; Yoshida, K.; Furukawa, F.; Sugano, Y.; Matsushita, M.; Himeno, Y.; Inagaki, Y.; Inoue, K., Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 2002, 35 (1), 49-61.
25.Luk, J. M.; Wang, X. L.; Liu, P.; Wong, K. F.; Chan, K. L.; Tong, Y.; Hui, C. K.; Lau, G.; Fan, S. T., Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer: from laboratory discovery to clinical evaluation. Liver Int. 2007, 27 (7), 879-890.
26.Shyu, M. H.; Kao, T. C.; Yen, G. C., Hsian-tsao (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl(4) via inhibition of hepatic stellate cells activation. Food Chem Toxicol 2008, 46 (12), 3707-3713.
27.Fan, S.; Chen, H. N.; Wang, C. J.; Tseng, W. C.; Hsu, H. K.; Weng, C. F., Toona sinensis Roem (Meliaceae) leaf extract alleviates liver fibrosis via reducing TGFbeta1 and collagen. Food Chem Toxicol 2007, 45 (11), 2228-2236.
28.Jung, D. W.; Shibuya, M.; Ebizuka, Y.; Yoshimatsu, K.; Shimomura, K.; Sung, C. K., ELISA for the determination of saikosaponin a, an active component of Bupleuri Radix. Chem Pharm Bull (Tokyo) 1998, 46 (7), 1140-1143.
29.Yen, M. H.; Weng, T. C.; Liu, S. Y.; Chai, C. Y.; Lin, C. C., The hepatoprotective effect of Bupleurum kaoi, an endemic plant to Taiwan, against dimethylnitrosamine-induced hepatic fibrosis in rats. Biol Pharm Bull 2005, 28 (3), 442-448.
30.Oka, H.; Ohno, N.; Iwanaga, S.; Izumi, S.; Kawakita, T.; Nomoto, K.; Yadomae, T., Characterization of mitogenic substances in the hot water extracts of bupleuri radix. Biol Pharm Bull 1995, 18 (5), 757-765.
31.Lin, C. C.; Yen, M. H.; Chen, J. Y.; Chuang, C. H.; Namba, T., Anatomical and histological studies of Bupleuri radix. Am J Chin Med 1991, 19 (3-4), 265-274.
32.Chen, M. H.; Chen, J. C.; Tsai, C. C.; Wang, W. C.; Chang, D. C.; Tu, D. G.; Hsieh, H. Y., The role of TGF-beta 1 and cytokines in the modulation of liver fibrosis by Sho-saiko-to in rat's bile duct ligated model. J Ethnopharmacol 2005, 97 (1), 7-13.
33.Liang, Y.; Cui, R., [Advances in the study of anti-inflammatory and immunoregulatory effects of saikosaponins and their similar substances]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1998, 18 (7), 446-448.
34.Bermejo Benito, P.; Abad Martinez, M. J.; Silvan Sen, A. M.; Sanz Gomez, A.; Fernandez Matellano, L.; Sanchez Contreras, S.; Diaz Lanza, A. M., In vivo and in vitro antiinflammatory activity of saikosaponins. Life Sci 1998, 63 (13), 1147-1156.
35.Dobashi, I.; Tozawa, F.; Horiba, N.; Sakai, Y.; Sakai, K.; Suda, T., Central administration of saikosaponin-d increases corticotropin-releasing factor mRNA levels in the rat hypothalamus. Neurosci Lett 1995, 197 (3), 235-238.
36.Chiang, L. C.; Ng, L. T.; Liu, L. T.; Shieh, D. E.; Lin, C. C., Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med 2003, 69 (8), 705-709.
37.Leung, C. Y.; Liu, L.; Wong, R. N.; Zeng, Y. Y.; Li, M.; Zhou, H., Saikosaponin-d inhibits T cell activation through the modulation of PKCtheta, JNK, and NF-kappaB transcription factor. Biochem Biophys Res Commun 2005, 338 (4), 1920-1927.
38.Hsu, Y. L.; Kuo, P. L.; Chiang, L. C.; Lin, C. C., Involvement of p53, nuclear factor kappaB and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines. Cancer Lett 2004, 213 (2), 213-221.
39.Sun, Y.; Cai, T. T.; Zhou, X. B.; Xu, Q., Saikosaponin a inhibits the proliferation and activation of T cells through cell cycle arrest and induction of apoptosis. Int Immunopharmacol 2009, 9 (7-8), 978-983.
40.Wong, V. K.; Zhou, H.; Cheung, S. S.; Li, T.; Liu, L., Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. J Cell Biochem 2009, 107 (2), 303-315.
41.Fan, J.; Li, X.; Li, P.; Li, N.; Wang, T.; Shen, H.; Siow, Y.; Choy, P.; Gong, Y., Saikosaponin-d attenuates the development of liver fibrosis by preventing hepatocyte injury. Biochem Cell Biol 2007, 85 (2), 189-195.
42.Dang, S. S.; Wang, B. F.; Cheng, Y. A.; Song, P.; Liu, Z. G.; Li, Z. F., Inhibitory effects of saikosaponin-d on CCl4-induced hepatic fibrogenesis in rats. World J Gastroenterol 2007, 13 (4), 557-563.
43.Freitas, R. A., Jr., What is nanomedicine? Nanomedicine 2005, 1 (1), 2-9.
44.Davis, S. S., Biomedical applications of nanotechnology--implications for drug targeting and gene therapy. Trends Biotechnol 1997, 15 (6), 217-224.
45.Briley-Saebo, K.; Hustvedt, S. A.; Haldorsen, A.; Bjornerud, A., Long-term imaging effects in rat liver after a single injection of an iron oxide nanoparticle based MR contrast agent. J. Magn. Reson. Imaging 2004, 20 (4), 622-631.
46.Vogel, S.; Piantedosi, R.; Frank, J.; Lalazar, A.; Rockey, D. C.; Friedman, S. L.; Blaner, W. S., An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. Journal of Lipid Research 2000, 41 (6), 882-893.
47.Hsu, Y. C.; Lin, Y. L.; Chiu, Y. T.; Shiao, M. S.; Lee, C. Y.; Huang, Y. T., Antifibrotic effects of Salvia miltiorrhiza on dimethylnitrosamine-intoxicated rats. J Biomed Sci 2005, 12 (1), 185-195.
48.Zheng, W. D.; Zhang, L. J.; Shi, M. N.; Chen, Z. X.; Chen, Y. X.; Huang, Y. H.; Wang, X. Z., Expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 in hepatic stellate cells during rat hepatic fibrosis and its intervention by IL-10. World J Gastroenterol 2005, 11 (12), 1753-1758.
49.Arthur, M. J., Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000, 279 (2), G245-249.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊