跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒昌倰
研究生(外文):Chang-Ling Zou
論文名稱:不沾黏生物分子對間葉幹細胞分化為軟骨細胞的影響
論文名稱(外文):Effects of surface adhesivity on the maturation of chondrocytes from mesenchymal stem cells
指導教授:謝瑞香
指導教授(外文):Jui-Hsiang Hsieh
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:表面沾粘性間葉幹細胞軟骨
外文關鍵詞:Surface adhesivityMesencymal stem cellChondrocytes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
軟骨的復元是極為緩慢的,對關節軟骨受傷的病患,目前多以軟骨移植的手段幫助關節恢復功能,但人體自身可取用的軟骨極為有限,這成為修復關節軟骨的一大障礙。間葉幹細胞具有分化為表皮、肌肉、脂肪、軟骨及骨母等細胞的能力,已經成功的用於關節軟骨的修補,但對於生長環境對間葉幹細胞分化路徑的影響,目前的了解還是有限。
關節軟骨的組成以水分最多,其次是第二型膠原蛋白(Collagen II)和胺多醣 (Glycosaminoglycans,GAG)。軟骨細胞可份泌膠原蛋白與胺多醣,軟骨便是由於collagen II和胺多醣結合,規則而緊密的排列而形成,文獻中顯示以第一型膠原蛋白(collagen I)為基質會誘導間葉幹細胞朝骨細胞分化,而在第一型膠原蛋白加入胺多醣,則會使間葉幹細胞朝軟骨細胞分化。另外有研究顯示,以瓊脂(agarose)包覆細胞進行培養,則間葉幹細胞也會朝軟骨細胞分化。
由此,我們懷疑培養間葉幹細胞基質的表面性質,將影響其分化方向,特別是表面的黏著性與細胞的貼附性。本研究擬以貼附性極佳的第一型膠原蛋白為基質,控制組是接上chondroitin sulfate做為適合軟骨細胞生長的控制組,實驗組是以 iodopropionic acid 進行collagen I的表面改質,形成降低蛋白貼附性的zwitterionic結構,用以降低細胞在基質表面的貼附性,試圖以改變間葉幹細胞的貼附性來探討貼附性對其分化的影響。我們以細胞內aggrecan,collagen II,及SOX9 mRNA的表現來偵測間葉幹細胞也會朝軟骨細胞分化的程度,結果發現增加chondrotin sulfate在collagen I的接枝量,的確會增加aggrecan,collagen II,及SOX9的表現量,而隨著增加1 wt%、3wt%、5 wt%、7 wt% Iodopropionic acid的接枝量,同樣會使aggrecan,collagen II,及SOX9的表現量增加,直到改質9wt% Iodopropionic acid,其aggrecan,collagen II,及SOX9的表現量呈現減少的狀態。
關鍵詞: 表面沾粘性、軟骨、間葉幹細胞
Cartilages are poorly vascularized tissues with weak capacity for self-repair. Therre are many causes of cartilage degeneration. The degenerated cartilages will never heal. Autologous transplants has been developed to repair articular cartilage and shown some success. Brittberg et al. has seeded autologous chondrocytes in wounded sites by extracting chondrocytes from a low weight-bearing region of the body and expanded in vitro. But we usually lacks the source of autologous chondrocytes. Mesenchymal stem cells (MSCs) have the capacity to differentiate toward epithelials, adiposes, myoblasts, osteoblasts, or chondrocytes, and have been successfully adopted in cartilage repair. However, the process of chondrogenesis of MSC has not been fully understood.
The major component of cartilage is water, and the rest are type II collagen and glycosaminoglycans. The type II collagen and glycosaminoglycans are actually secreted by chondrocytes. Studies has shown that type I collagen induced MSCs to differentiate toward osteoblasts. But the addition of GAGs shifted the differentiation toward chondrocytes. Other studies showed that MSCs cultivated on agarose differentiated toward chondrocytes.
This study aims at finding out the effect of surface adhesivity on mesenchymal stem cell differentiation. We tried to cultivate MSCs on the surface of collagen I. The surface adhesivity of collagen I was altered by grafting various amount of non-adhesive polymer, Iodopropionic acid. The expression of aggrecan, collagen II, and SOX9 were measured as the indication of chondrogenesis. It was found that the expression of aggrecan, collagen II,and SOX9 increased as the grafting density of chondroitin sulfate increased. Similarly, the chondrogenesis indication also increased with the increase in Iodopropionic acid content.
Key words: Surface adhesivity,Chondrocyes,Mesencymal stem cell
目錄
中文摘要………………………………………………………I
Abstract……………………………………………………………III
致謝………………………………………………………………..IV
目錄……………………………………………………………...…V
圖目錄…………………………………………………………...VII
表目錄……………………………………………………………...X
第一章 緒論…………………………………………………1
第一節 軟骨傷害及治療方法……………..………………..1
第二節 軟骨結構………………………………….………….3
第三節 細胞外間質分子對間葉幹細胞分化為軟骨細胞之影響……5
第四節 以果膠培養間葉幹細胞分化為軟骨細胞……..….7
第五節 研究目的..........................................................12
第二章 實驗材料及方法……………………………………13
第一節 實驗設備…………………………………………13
第二節 實驗藥品…………………………………………15
第三節 藥品製備…………………………………………17
第四節 細胞培養…………………………………………20
第五節 實驗設計…………………………………………21
第六節 實驗操作…………………………………………23
第三章 結果與討論…………………………………………31
第一節 Chondroitin sulfate (CS)改質Collagen I薄膜的目的與性質測定....................................................................31
第二節 Iodopropinoic acid(IPA) 改質Collagen I薄膜的目的與性質的測定.................................................................35
第三節 表面改質過後對大鼠骨髓間葉幹細胞貼附之影響
.....................................................................................40
第四節 表面改質過後對大鼠骨髓間葉幹細胞成長之影響
…………………………………………………………………43
第五節 表面改質過後對大鼠骨髓間葉幹細胞分化之影響
………………………………………………………………....47
第四章 結論......................................................................56
第五章 未來規劃………………………………………………..57
參考文獻..........................................................................58
附錄(電泳全圖)………………………………………………62

圖目錄
圖1-1 軟骨組織結構圖…………………………………………4
圖3-1 Collagen I 薄膜 X射線光電子全波段光譜...............33
圖3-2 Collagen I+10 wt% CS X射線光電子全波段光譜
.........................................................................................33
圖3-3 Collagen I+50wt% CS X射線光電子全波段光譜
..........................................................................................34
圖3-4 Collagen I 薄膜 X射線光電子分峰.........................36
圖3-5 Collagen I+1 wt% IPA X射線光電子分峰............36
圖3-6 Collagen I+3 wt% IPA X射線光電子分峰............37
圖3-7 Collagen I+5 wt% IPA X射線光電子分峰.............37
圖3-8 Collagen I+7 wt% IPA X射線光電子分峰.............38
圖3-9 Collagen I+9 wt% IPA X射線光電子分峰.............38

圖3-10表面改質六小時後大鼠骨髓間葉幹細胞改質後的貼附
.........................................................................................41
圖3-11表面改質六小時後,大鼠骨髓間葉幹細胞改質後的貼附率..................................................................................42
圖3-12表面改質後大鼠骨髓間葉幹細胞一個月生長情形
..........................................................................................44
圖3-13表面改質後大鼠骨髓間葉幹細胞第一天生長情況
..........................................................................................44
圖3-14表面改質後大鼠骨髓間葉幹細胞第七天生長情況
..........................................................................................45
圖3-15表面改質後大鼠骨髓間葉幹細胞第十四天生長情況
.........................................................................................45
圖3-16表面改質後大鼠骨髓間葉幹細胞第二十一天生長情況
..........................................................................................46

圖3-17表面改質後大鼠骨髓間葉幹細胞第二十八天生長情況
..........................................................................................46
圖3-18 collagen II、aggrecan、sox9 mRNA改質第一天的表現
..........................................................................................48
圖3-19 collagen II、aggrecan、sox9 mRNA在表面改質過後第七天的表現量
..........................................................................................49
圖3-20 collagen II、aggrecan、sox9 mRNA在表面改質過後第十四天的表現量
..........................................................................................50
圖3-21 collagen II、aggrecan、sox9 mRNA在表面改質過後第二十一天的表現量
.........................................................................................51
圖3-22 collagen II、aggrecan、sox9 mRNA在表面改質過後第二十八天的表現量
.........................................................................................52
圖3-23 collagen II mRNA表面改質過後第一天到第二十八天的表現量
..........................................................................................54
圖3-24 aggrecan mRNA表面改質過後第一天到第二十八天的表現量
.........................................................................................55
圖3-25 sox9 mRNA表面改質過後第一天到第二十八天的表現量
.........................................................................................55


表目錄
表3-1 表面改質後的硫碳比
…………………………………………………………………….34
表3-2表面改質後-COO/-CH含量
…………………………………………………………………….39
附錄(電泳全圖)………………………………………………62
Aigner T, Stove J. Collagens—major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 2003;55:1569–93.
Ayoto M,Masataka D,Takuma Y,Atsuo N,Rikuo S,Nobuo A,Mistuo O.The role of the synovium in repairing cartilage defects.Knee Surg Sports Traumatol Arthrosc 2007;15:2083-1093.
Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 2006;93:1152–63.
Benya,D;Shaffer,J.Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when culture in agarose gels.Cell 30:215-224;1982.
Chen XG, Liu CS, Liu CG, Meng XH, Lee CM, Park HJ. Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J 2006;27:269–74.
Chu,C;Coutts,D;Yoshioka,M;Harwood,L;Monsov,A;Amiel,D. Articular cartilage repair using allogenic perichondrocyte-seeded biodegradable poly-lactic acid(PLA):a tissue engineering study. J.Biomed.Mater.Res.29:1147-1154;1995.
Coutts,R;Yoshioka,M;Harwood,L;Monsov,A;Amiel,D;Hacker,S. A cartilage repair using allogenic perichondrial cells. 40th ORS Mtg, New Orleans,1994:240-241
Chun KW, Yoo HS, Yoon JJ, Park TG. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function. Biotechnol Progr 2004; 20(6):1797–801

Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 2006;27: 4573–80.
Gåserod O, Sannes A, Skjåk-Brak G. Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability. Biomaterials 1999;20:773–83.
Green,W. Articular cartilage repair. Behavior of rabbit chondrocytes during tissue culture and subsequent allografting.Clin.Orthop.Rel.Res.124:327-250;1977.
Ichinose S, Tagami M, Muneta T, Sekiya I. Morphological examination during in vitro cartilage formation by human mesenchymal stem cells. Cell Tissue Res 2005;322:217–26.
Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate–extracellular matrix gels. Biomaterials 2006;27:714–23.
Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocyte cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 2004; 25:4163–73.
Li WJ, Tuli R, Okafora C, Derfoula A, Danielson KG, Halla DJ, Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2006; 26: 599–609.
Lisignoli G, Cristino S, Piacentini A, Toneguzzi S, Grassi F, Cavallo C, et al. Facchini A. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 2005;26:5677–86..
Magne D, Vinatier C, Julien M, Weiss P and Guicheux J. Mesenchymal stem cell therapy to rebuild cartilage, Trends in Molecular Medicine 2005;11:519-526

Nether,S;Ramappa,A. Chondrocyte-seeded type I and type II collagen implants investigated in vitro.Proc.of the fifth world biomaterials congress,Toronto,Canda;1996:290.
Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997; 38:288.
Rich,D;Johnson,E;Zhou,L;Grande,D. The use of periosteal cell/polymer tissue constructs for the repair of articular cartilage defects. Proc.of the 40 ORS Mtg.,New Orleans,1994:241.
Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res 2000;49:534–41.
Veilleux NH, Yannas IV, Spector M. Effect of passage number and collagen type on the proliferative, biosynthetic, and contractile activity of adult canine articular chondrocytes in type I and II collagen glycosaminoglycan matrices in vitro. Tissue Eng 2004;10: 119–27
Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation. Tissue Eng 2006;12: 1345–55.
Vacanti,C,Kim,W;Upton,J;Schllo,G;Vacanti,J. Tissue engineered composites of bone and cartilage using synthetic polymers seeded with two cell types.Proc.of the 39 ORS Mtg.,San francisco;1993:276
Yannas,I;Lee,E;Ogrill,D;Skrabut,E;Murphy,G.Synthesis and characterization of a model extracellular matrix that induce partial regeneration of adult mammalian skin.Proc.Natl.Acad.Sci.86:933-937,1989.

Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 2006;24:928–35.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top