跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/23 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昌憲
研究生(外文):Chang-Hsien Tsai
論文名稱:體溫環境對葡萄糖感測器選擇性半透膜之感測影響
論文名稱(外文):Sensing performance of perm-selective membranes of glucose biosensors in a simulated body temperature environment
指導教授:婁世亮
指導教授(外文):Shyh-Liang Lou
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:聚苯胺氟烯磺酸聚合物葡萄糖生物感測器選擇性半透膜硫醇基丙基三甲氧基矽烷
外文關鍵詞:NafionPoly-anilineGlucose biosensorsPerm-selective membranes(3-mercaptopropyl)trimethoxysilane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本課題的研究目的在於探討葡萄糖感測電極之選擇性半透膜在人體體溫環境下偵測葡萄糖之特性表現。所使用的半透膜包括硫醇基丙基三甲氧基矽烷(MPTMS)溶膠-凝膠、Nafion及非導電性聚苯胺(PAn),分別塗附在三支製作方式相同的感測電極上。電極的製作是將導電性聚苯胺(PA)以循環伏安法電聚合的方式聚合於白金(Pt)工作電極表面,再以電吸附法將葡萄糖氧化酵素(GOx)吸入PA之內,最後,再將半透膜滴附或電聚合於電極之上以強化GOx之固定。所製作完成之三種葡萄糖感測電極分別稱之:MPTMS(5%)/GOx-PA/Pt、Nafion(0.15%)/GOx-PA/Pt和PAn(2-cycle)/GOx-PA/Pt。量測葡萄糖是在10 mL之0.1M,pH 7.0,37 oC磷酸鹽緩衝溶液(PBS)中,電位+0.5 V條件下操作。實驗結果顯示MPTMS(5%)/GOx-PA/Pt、Nafion(0.15%)/GOx-PA/Pt和PAn(2-cycle)/GOx-PA/Pt電極的偵測線性範圍都可到達10 mM的葡萄糖濃度,線性相關係數(R值)分別為0.9921、0.9922和0.9897,偵測極限為0.02、0.04和0.04 mM,相對標準偏差RSD則為1.75、2.860和2.72% (n=10)。就電極保存在37 oC的PBS中而言,以MPTMS塗附的電極其半生期10天為最長;Nafion塗附的電極次之,為8天;PAn塗附的電極6天為最短。此外,MPTMS,Nafion和PAn所修飾的電極,其訊號在第2~6天中分別維持在75~80,65~75和50~75%。因此,在體溫環境中,MPTMS比Nafion和PAn修飾電極有較好的感測穩定性。另一方面,從掃描式電子顯微鏡觀察三種半透膜在4、25和37 oC的表面形態,結果顯示,當溫度上升三種半透膜的孔洞都有增大的趨勢,酵素流失的機率因而增大,吾人認為這是溫度上升致使訊號下滑的可能因素之一。根據本研究探討的結果顯示,感測電極在體溫環境的保存下,其功能壽命都大為縮短,因此,如何延長感測電極的功能壽命,仍將是未來持續研究的重要課題。
The purpose of this study is to research the measurement performance assessment of glucose biosensors specifically on perm-selective membranes in the environment of 37 oC for long period of time. Membranes of (3-mercaptopropyl)trimethoxysilane (MPTMS), Nafion and non-conducting poly-aniline (PAn) were coated on three electrodes individually. Each of these electrodes was prepared with the following procedures: electro-polymerization of conducting poly-aniline (PA) on the disc surface of a platinum (Pt) working electrode by cyclic voltammetry method and then electro-chemical absorption of glucose oxidase (GOx) into the PA matrix. The electrodes, GOx-PA/Pt, prepared in this manner were then immobilized by one of the membranes either in dropping or with electro-polymerization technique. Effort was made so that three electrodes were optimized in measuring glucose. These completed electrodes are noted as MPTMS(5%)/GOx-PA/Pt, Nafion(0.15%)/GOx-PA/Pt and PAn(2-cycle)/GOx-PA/Pt. It must be noted that after the completion of the fabrication, these electrodes were stored and operated all time in a 0.1 M, pH 7.0, 37 oC phosphate buffer solution (PBS). When they were used to measure glucose, an operating potential of +0.5 V was applied. The experimental results of measuring glucose by the electrodes of MPTMS(5%)/GOx-PA/Pt, Nafion(0.15%)/GOx-PA/Pt, and PAn(2-cycle)/GOx-PA/Pt show that the linear range was all up to 10 mM; the correlation coefficient (R) was 0.9921, 0.9922 and 0.9897, respectively; the detection limit was 0.02, 0.04 and 0.04 mM, respectively; and the relative standard deviation (RSD) was 1.75, 2.86 and 2.72% (n=10), respectively. According to the results of the electrode functional stability study, the half-life times of the MPTMS-modified, Nafion-modified and PAn-modified were 10, 8 and 6 days, respectively. Importantly, the residual response of the MPTMS-modified electrode steadily maintained at 75~80% during the assessment period between the second and the sixth days. Based on these study performance results, we conclude that the MPTMS-modified electrode is superior to the electrodes of Nafion- and PAn-modified in the temperature environment of 37 oC. In addition, the morphology of the perm-selective membranes stored in PBS temperatures at 4, 25 and 37 oC was examined by scanning electron microscopy (SEM). The results show that the pore sizes of the perm-selective membranes were enlarged when the storage temperature increases. This potentially caused the GOx leakage leading to the decrease of the glucose current responses measured by the electrodes. This finding is important for the development of glucose biosensors using MPTMS, Nafion and none conducting poly-aniline as the perm-selective membrane.
目錄
摘要
Abstract
謝誌
目錄
圖索引
表索引
第一章 緒論
1-1 研究背景
1-2 葡萄糖感測器之相關文獻回顧
1-3 研究動機與目的
1-4 論文架構
第二章 理論基礎
2-1 糖尿病之生理作用機制
2-2 生物感測器
2-2-1 生物感測器的組成
2-2-2 生物感測器分類
2-3 電化學生物感測器
2-3-1 電化學簡介
2-3-2 電化學反應系統
2-3-3 電化學生物感測器
2-3-4 伏安法(voltammetry)
2-3-5 安培法(amperometry)
2-4 生物辨識元件之固定
2-4-1 酵素固定方法
2-4-2 感測電極表面之修飾
2-5 電化學測量葡萄糖之原理
2-6 葡萄糖感測器之材料簡介
2-6-1 硫醇基丙基三甲氧基矽烷
2-6-2 Nafion
2-6-3 聚苯胺
第三章 研究方法與設計
3-1 研究架構
3-1-1 葡萄糖感測器製備
3-1-2 葡萄糖感測器於室溫環境(25 oC)之功能性評估
3-1-3 葡萄糖感測器於體溫環境(37 oC)之特性偵測
3-2 研究材料與儀器設備
3-3 實驗設計與方法
3-3-1 葡萄糖感測器製備
3-3-2 葡萄糖感測器於室溫環境(25 oC)之功能性評估
3-3-3 葡萄糖感測器於體溫環境(37 oC)之特性偵測
第四章 結果與討論
4-1 選擇性半透膜濃度探討
4-1-1 MPTMS濃度最佳化探討
4-1-2 Nafion濃度最佳化探討
4-1-3 PAn聚合圈數最佳化探討
4-2 葡萄糖感測器之最佳操作電位探討
4-2-1 MPTMS/GOx-PA/Pt電極之最佳操作電位探討
4-2-2 Nafion/GOx-PA/Pt電極之最佳操作電位探討
4-2-3 PAn/GOx-PA/Pt電極之最佳操作電位探討
4-3 葡萄糖感測器之最佳PBS pH值探討
4-3-1 MPTMS/GOx-PA/Pt電極之PBS pH值探討
4-3-2 Nafion/GOx-PA/Pt電極之PBS pH值探討
4-3-3 PAn/GOx-PA/Pt電極之PBS pH值探討
4-4 葡萄糖感測器於體溫環境pH值探討
4-4-1 MPTMS/GOx-PA/Pt電極於體溫環境之pH值探討
4-4-2 Nafion/GOx-PA/Pt電極於體溫環境之pH值探討
4-4-3 PAn/GOx-PA/Pt電極於體溫環境之pH值探討
4-5 葡萄糖感測器於體溫環境之校正曲線探討
4-5-1 MPTMS/GOx-PA/Pt電極於體溫環境之校正曲線探討
4-5-2 Nafion/GOx-PA/Pt電極於體溫環境之校正曲線探討
4-5-3 PAn/GOx-PA/Pt電極於體溫環境之校正曲線探討
4-6 葡萄糖感測器於體溫環境之偵測極限探討
4-6-1 MPTMS/GOx-PA/Pt電極於體溫環境之偵測極限探討
4-6-2 Nafion/GOx-PA/Pt電極於體溫環境之偵測極限探討
4-6-3 PAn/GOx-PA/Pt電極於體溫環境之偵測極限探討
4-7 葡萄糖感測器於體溫環境之再現性探討
4-7-1 MPTMS/GOx-PA/Pt電極於體溫環境之再現性探討
4-7-2 Nafion/GOx-PA/Pt電極於體溫環境之再現性探討
4-7-3 PAn/GOx-PA/Pt電極於體溫環境之再現性探討
4-8 長時間穩定度
4-9 選擇性半透膜之SEM觀察
4-9-1 溫度對MPTMS表面形態影響
4-9-2 溫度對Nafion表面形態影響
4-9-3 溫度對PAn表面形態影響
第五章 結論與未來展望
5-1 結論
5-2 未來展望
參考文獻
附錄A 實驗藥品表
附錄B 實驗儀器表

圖索引
圖2-1 生物感測器構造之示意圖
圖2-2 電化學反應系統
圖2-3 循環伏安法中, (a) 電位-時間關係圖; (b) 電流-電位關係圖
圖2-4 安培法之電流對應時間關係圖
圖2-5 MPTMS結構, (a) 化學結構式; (b) 三維網狀結構
圖2-6 Nafion結構圖
圖2-7 聚苯胺之結構通式圖
圖2-8 不同氧化狀態下聚苯胺結構示意圖
圖3-1 研究架構流程圖
圖3-2 電化學裝置實照圖, (a) 三電極系統; (b) 電化學分析儀
圖3-3 室溫實驗實照圖
圖3-4 體溫實驗實照圖
圖3-5 場發射環境掃描電子顯微鏡
圖3-6 葡萄糖感測器製備設計圖
圖3-7 葡萄糖感測電極製作流程圖
圖3-8 MPTMS/GOx-PA/Pt電極製備示意圖
圖3-9 Nafion/GOx-PA/Pt電極製備示意圖
圖3-10 PAn/GOx-PA/Pt電極製備示意圖
圖3-11 葡萄糖感測電極之感測最佳化流程圖
圖3-12 GOx-PA/Pt電極之訊號比較圖
圖3-13 葡萄糖感測器於室溫環境之功能性評估實驗設計圖
圖3-14 葡萄糖感測器於體溫環境之特性偵測實驗設計圖
圖4-1 MPTMS濃度對反應訊號之關係圖
圖4-2 Nafion濃度對反應訊號之關係圖
圖4-3 PAn聚合圈數對反應訊號之關係圖
圖4-4 操作電位對MPTMS(5%)/GOx-PA/Pt電極之反應訊號關係圖
圖4-5 操作電位對Nafion(0.15%)/GOx-PA/Pt電極之反應訊號關係圖
圖4-6 操作電位對PAn(2-cycle)/GOx-PA/Pt電極之反應訊號關係圖
圖4-7 室溫pH值對MPTMS(5%)/GOx-PA/Pt電極之訊號關係圖
圖4-8 室溫pH值對Nafion(0.15%)/GOx-PA/Pt電極之訊號關係圖
圖4-9 室溫pH值對PAn(2-cycle)/GOx-PA/Pt電極之訊號關係圖
圖4-10 體溫pH值對MPTMS(5%)/GOx-PA/Pt電極之訊號關係圖
圖4-11 體溫pH值對Nafion(0.15%)/GOx-PA/Pt電極之訊號關係圖
圖4-12 體溫pH值對PAn(2-cycle)/GOx-PA/Pt電極之訊號關係圖
圖4-13 MPTMS(5%)/GOx-PA/Pt電極之電流訊號對時間關係圖
圖4-14 MPTMS(5%)/GOx-PA/Pt電極之校正曲線
圖4-15 Nafion(0.15%)/GOx-PA/Pt電極之電流訊號對時間關係圖
圖4-16 Nafion(0.15%)/GOx-PA/Pt電極之校正曲線
圖4-17 PAn(2-cycle)/GOx-PA/Pt電極之電流訊號對時間關係圖
圖4-18 PAn(2-cycle)/GOx-PA/Pt電極之校正曲線
圖4-19 MPTMS(5%)/GOx-PA/Pt電極之偵測極限量測圖
圖4-20 Nafion(0.15%)/GOx-PA/Pt電極之偵測極限量測圖
圖4-21 PAn(2-cycle)/GOx-PA/Pt電極之偵測極限量測圖
圖4-22 MPTMS(5%)/GOx-PA/Pt電極之重複量測圖
圖4-23 Nafion(0.15%)/GOx-PA/Pt電極之重複量測圖
圖4-24 PAn(2-cycle)/GOx-PA/Pt電極之重複量測圖
圖4-25 不同選擇性半透膜電極之長時間穩定度探討
圖4-26 濃度5% MPTMS表面形態之FEG-ESEM圖
圖4-27 濃度0.15% Nafion表面形態之FEG-ESEM圖
圖4-28 聚合2圈之PAn表面形態之FEG-ESEM圖

表索引
表4-1 MPTMS濃度對反應訊號之關係表
表4-2 Nafion濃度對反應訊號之關係表
表4-3 PAn聚合圈數對反應訊號之關係表
表4-4 操作電位對MPTMS(5%)/GOx-PA/Pt電極之反應訊號比較表
表4-5 操作電位對Nafion(0.15%)/GOx-PA/Pt電極之反應訊號比較表
表4-6 操作電位對PAn(2-cycle)/GOx-PA/Pt電極之反應訊號比較表
參考文獻
[1] 中華民國行政院衛生署-歷年死亡原因與死亡人數統計http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=10327&class_no=440&level_no=4
[2] L. C. Clark, and Jr., C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of Sciences, Vol. 102, pp. 29-45, 1962
[3] S. J. Updike, and G. P. Hicks, “The enzyme electrode,” Nature, Vol. 214, pp. 986-988, 1967
[4] 詹博淵,“新的辨識元固定法-以葡萄糖之偵測為模型”,淡江大學化學研究所碩士論文,1995
[5] Z. Zhang, H. Liu, J. Deng, “A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode,” Analytical Chemistry, Vol. 68, pp. 1632-1638, 1996
[6] S. D. Kumar, A. V. Kulkarni, R. Kalyanraman, et al. “Whole blood glucose determination using glucose oxidase immobilized on cotton cheese cloth,” Analytica Chimica Acta, Vol. 338, pp. 135-140, 1997
[7] H. Liu, T. Ying, K. Sun, et al. “Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode,” Analytica Chimica Acta, Vol. 344, pp.187-199, 1997
[8] M. Yasuzawa, and A. Kunugi, “Properties of glucose sensors prepared by the electropolymerization of a positively charged pyrrole derivative,” Electrochemistry Communications, Vol. 1, pp. 459-462, 1999
[9] X. Zhong, R. Yuan, Y. Chai, et al. “Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate,” Seneors and Actuators B, Vol. 104, pp. 191-198, 2005
[10] Y. Zou, L.-X. Sun, F. Xu, “Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites,” Biosensors and Bioelectronics, Vol. 22, pp. 2669-2674, 2007
[11] Y.-L. Yang, T.-F. Tseng, J.-M. Yeh, et al. “Performance characteristic studies of glucose biosensors modified by (3-mercaptopropyl)trimethoxysilane sol-gel and non-conducting polyaniline,” Seneors and Actuators B, Vol. 131, pp. 533-540, 2008
[12] R. Vaidya, and E. Wilkins, “Effect of interference on amperometric glucose biosensors with cellulose acetate membranes,” Electroanalysis, Vol. 6, pp. 677-682, 1994
[13] J. Liu, M. Agarwal, K. Varahramyan, “Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer,” Seneors and Actuators B, Vol. 135, pp. 195-199, 2008
[14] D. J. Harrison, R. F. B. Turner, H. P. Baltes, “Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood,” Analytical Chemistry, Vol. 60, pp. 2002-2007, 1988
[15] R. Vaidya, P. Atanasov, E. Wilkins, “Effect of interference on the performance of glucose enzyme electrodes using Nafion® coatings,” Med. Eng. Phys, Vol. 17, pp. 416-424, 1995
[16] F. Moussy, S. Jakeway, D. J. Harrlson, et al. “In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing,” Analytical Chemistry, Vol. 66, pp. 3882-3888, 1994
[17] S. Poyard, N. Jaffrezic-Renault, C. Martelet, et al. “Optimization of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes,” Analytica Chimica Acta, Vol. 364, pp. 165-172, 1998
[18] T. Matsumoto, A. Ohashi, N. Ito, et al. “A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating,” Biosensors and Bioelectronics, Vol. 16, pp. 271-276, 2001
[19] H. Tang, J. Chen, S. Yao, et al. “Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode,” Analytical Biochemistry, Vol. 331, pp. 89-97, 2004
[20] C. Deng, M. Li, Q. Xie, et al. “Construction as well as EQCM and SECM characterizations of a novel Nafion/glucose oxidase-glutaraldehyde/poly(thionine)/Au enzyme electrode for glucose sensing,” Seneors and Actuators B, Vol. 122, pp. 148-157, 2007
[21] J.-J. Xu, Z.-H. Yu, H.-Y. Chen, “Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion,” Analytica Chimica Acta, Vol. 463, pp. 239-247, 2002
[22] Y. Miao, J. Chen, Y. Hu, “Electrodeposited nonconducting polytyramine for the development of glucose biosensors,” Analytical Biochemistry, Vol. 339, pp. 41-45, 2005
[23] H. N. Choi, M. A. Kim, W.-Y. Lee, “Amperometric glucose biosensor based on sol-gel-derived metal oxide/Nafion composite films,” Analytica Chimica Acta, Vol. 537, pp. 179-187, 2005
[24] W.-J. Ho, C.-J. Yuan, O. Reiko, “Application of SiO2-poly(dimethylsiloxane) hybrid material in the fabrication of amperometric biosensor,” Analytica Chimica Acta, Vol. 572, pp. 248-252, 2006
[25] 何敏夫,“臨床化學”,合記書局,2006
[26] S. I. Fox, “人體生理學”,美商麥格羅.希爾國際股份有限公司 台灣分公司,2004
[27] S. K. Sharma, N. Sehgal, A. Kumar, “Biomolecules for development of biosensors and their applications,” Current Applied Physics, Vol. 3, pp. 307-316, 2003
[28] J. Tkac, I. Vostiar, L. Gorton, et al. “Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation,” Biosensors and Bioelectronics, Vol. 18, pp. 1125-1134, 2003
[29] E. Akyilmaz, and E. Dinckaya, “An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol,” Biosensors and Bioelectronics, Vol. 20, pp. 1263-1269, 2005
[30] C. A. Sanders, M. Rodriguez Jr., E. Greenbaum, “Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction,” Biosensors and Bioelectronics, Vol. 16, pp. 439-446, 2001
[31] L. Zhu, Y. Li, G. Zhu, “A novel renewable plant tissue-based electrochemiluminescent biosensor for glycolic acid,” Seneors and Actuators B, Vol. 98, pp. 115-121, 2004
[32] B. Corry, J. Uilk, C. Crawley, “Probing direct binding affinity in electrochemical antibody-based sensors,” Analytica Chimica Acta, Vol. 496, pp. 103-116, 2003
[33] H. Wei, Y. Zhao, Y. Bi, et al. “Direct detection of Yersinia pestis from the infected animal specimens by a fiber optic biosensor,” Seneors and Actuators B, Vol. 123, pp. 204-210, 2007
[34] R. Guntupalli, J. Hu, R. S. Lakshmanan, et al. “A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium,” Biosensors and Bioelectronics, Vol. 22, pp. 1474-1479, 2007
[35] E. Mateo-Marti, C. Briones, C. M. Pradier, et al. “A DNA biosensor based on peptide nucleic acids on gold surfaces,” Biosensors and Bioelectronics, Vol. 22, pp. 1926-1932, 2007
[36] N. Prabhakar, K. Arora, S. P. Singh, et al. “Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor,” Analytica Chimica Acta, Vol. 589, pp. 6-13, 2007
[37] 蔡君賢,“含鉻黃血鹽修飾碳糊電極之製備及其應用於電流式生醫感測器”,南台科技大學化學工程研究所碩士學位論文,2005
[38] L. Zhu, Y. Li, G. Zhu, “A novel flow through optical fiber biosensor for glucose based on luminol electrochemiluminescence,” Seneors and Actuators B, Vol. 86, pp. 209-214, 2002
[39] C. Tran-Minh, D.Vallin, “Enzyme-bound thermistor as an enthalpimetric sensor,” Analytical Chemistry, Vol. 50, pp. 1874-1878, 1978
[40] C.-W. Chuang, and J.-S. Shih, “Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor,” Seneors and Actuators B, Vol. 81, pp. 1-8, 2001
[41] T. Wessa, M. Rapp, H. Sigrist, “Immunosensing of photoimmobilized proteins on surface acoustic wave sensors,” Colloids and Surfaces B, Vol. 15, pp. 139-146, 1999
[42] T. Wessa, M. Rapp, H. J. Ache, “New immobilization method for SAW-biosensors: covalent attachment of antibodies via CNBr,” Biosensors and Bioelectronics, Vol. 14, pp. 93-98, 1999
[43] X. Qu, L. Bao, X. Su, et al. “A new method based on gelation of tachypleus amebocyte lysate for detection of Escherichia coliform using a series piezoelectric quartz crystal sensor,” Analytica Chimica Acta, Vol. 374, pp. 47-52, 1998
[44] 胡啟章,“電化學原理與方法”,五南圖書出版股份有限公司,2002
[45] 黃健峰,“微型電化學感測系統之雙向無線傳輸應用與探討”,中原大學生物醫學工程學系碩士學位論文,2007
[46] 中華民國生物醫學工程學會,“生物醫學工程導論”,滄海書局,2008
[47] C.-W. Liao, J.-C. Chou, T.-P. Sun, et al. “Preliminary investigations on a glucose biosensor based on the potentiometric principle,” Seneors and Actuators B, Vol. 123, pp. 720-726, 2007
[48] F. Patolsky, M. Zayats, E. Katz, et al. “Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses,” Analytical Chemistry, Vol. 71, pp. 3171-3180, 1999
[49] R. Pei, Z. Cheng, E. Wang, et al. “Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy,” Biosensors and Bioelectronics, Vol. 16, pp. 355-361, 2001
[50] Y. Shen, T. Wu, Y. Zhang, et al. “Comparison of two-typed (3-mercaptopropyl)trimethoxysilane-based networks on Au substrates,” Talanta, Vol. 65, pp. 481-488, 2005
[51] M. N. Szentirmay, and C. R. Martin, “Ion-exchange selectivity of Nafion films on electrode surfaces,” Analytical Chemistry, Vol. 56, pp. 1898-1902, 1984
[52] S. Bhadra, D. Khastgir, N. K. Singha, et al. “Progress in preparation, processing and applications of polyaniline,” Progress in polymer science, Vol. 34, pp. 783-810, 2009
[53] 郭鎮銨,“聚苯胺及三氧化鎢互補式電變色元件電變色性質研究”,國立中央大學化學工程研究所碩士論文,2000
[54] N. W. Tiezt, “Fundamentals of Clinical Chemistry,” University Book Publication Company, 1976
[55] S. Nakamura, S. Hayashi, K. Koga, “Effect of periodate oxidation on the structure and properties of glucose oxidase,” Biochimica et Biophysica Acta, Vol.445 , pp. 294-308, 1976
[56] Y. Himuro, M. Takai, K. Ishihara, “Poly(vinylferrocene-co-2-hydroxyethyl methacrylate) mediator as immobilized enzyme membrane for the fabrication of amperometric glucose sensor,” Seneors and Actuators B, Vol. 136, pp. 122-127, 2009
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top