(3.235.191.87) 您好!臺灣時間:2021/05/13 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳梓彰
研究生(外文):Tz-Jang Chen
論文名稱:合成磁性中空球與奈米管在藥物釋放上應用
論文名稱(外文):Drug Release using Magnetic Hollow Spheres and Nanotubes
指導教授:王宏文王宏文引用關係
指導教授(外文):Hong-Wen Wang
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:奈米線奈米管磁性中空球水解縮合
外文關鍵詞:hollow spheresnanotubemagneticnanowiresol-gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究如何用化學共沉法合成Fe3O4奈米磁性粒子,和其藥物攜帶與釋放之研究。藉由各種不同界面活性劑跟模板,分別合成Fe3O4中空球、Fe3O4奈米管,以及利用 Stober process成功製備 Fe3O4/SiO2 的核/殼粒子。

以化學共沉法合成 Fe3O4 磁性奈米粒子,其磁性奈米粒子具有超順磁特性、低毒性與生物催化特性等優點,可將其應用於藥物釋放的用途上。

利用不同界面活性劑成功製備不同型態的 Fe3O4/SiO2 核/殼粒子,再經由煅燒方式緻密化粒子,同時除去殘留的有機物形成多孔結構,增大其總表面積。TEM結果顯示孔洞大小約2-4 nm。

根據循環伏安法的分析結果顯示Fe3O4奈米管的感測靈敏度優於奈米線。以紫外光-可見光光譜測量儀分析Fe3O4中空球、Fe3O4奈米管、Fe3O4/SiO2(奈米核/殼粒子)三種奈米粒子,結果顯示藥物釋放型為之特性。
This study explores how to synthesize Fe3O4 magnetic nanoparticles by the chemical coprecipitation method and their applications in drug release. Fe3O4 hollow nanoparticles and Fe3O4 nanotubes were synthesized by various surfactants and templates, while Fe3O4/SiO2 core-shell spheres were made by Stober process.

The Fe3O4 hollow spheres and nanotubes have the advantages of superparamagneticity, low loxicity and is applicable to drug release.

Fe3O4/SiO2 is successfully synthesized by using different surfactants in the sol-gel process.Their pore size on the porous particles is around 2-4nm.

In this study, Fe3O4 nanotubes sensitivity were higher than Fe3O4 nanowires by testing in cyclic voltammetry (CV). The drug release characteristics for Fe3O4 hollow spheres, Fe3O4 nanotubes and the Fe3O4/SiO2 spheres were demonstrated.
目錄
中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 奈米材料特性 2
1-3 研究目的及動機 8
第二章 文獻回顧與基礎理論 10
2-1 奈米粒子製備方法 10
2-2磁性的來源 12
2-3 Fe3O4相關資料 20
2-3-1 Fe3O4結構簡介 20
2-4 核-殼結構(Core-shell structure)之奈米粒子 27
2-5溶膠-凝膠法之發展跟反應過程 28
2-6電化學沉積跟磁力吸引法 34
2-7循環伏安法 (Cyclic voltammetry, CV) 39
2-8界面活性劑種類 40
第三章 實驗流程 43
3-1 PS/Fe3O4(核/殼)磁性中空球的製備 43
3-2 Stober process法製備Fe3O4/SiO2 微孔中空球跟實心球 45
3-3 Fe3O4 nanorod 和nanotube製備流程 47
3-4 實驗藥品 51
3-5 性質鑑定儀器 52
3-5-1 廣角X-Ray繞射儀 (Wide-angle XRD) 52
3-5-2 穿透式電子顯微鏡(Transmission Electron Microscopy) 52
3-5-3 場發射式掃瞄電子顯微鏡(Scanning electron microscopy) 53
3-5-4 氮氣等溫吸附/脫附儀(N2 adsorption/desorption isotherm) 54
3-5-5 紫外光-可見光光譜測量儀 (uv-vis spectrophotometer) 54
3-5-6 FT-IR吸收光譜分析 55
3-5-7循環伏安電位儀 55
3-5-8超導量子干涉儀(SQUID) 56
第四章 結果與討論 58
4-1 PS(Polystyrene) / Fe3O4磁性奈米中空球的製備 58
4-2 Stober process法製備Fe3O4/SiO2 微孔中空球跟實心球 68
4-3 Fe3O4磁性奈米管跟奈米線的製備 84
第五章 結論 94
5-1 PS(Polystyrene) / Fe3O4磁性奈米中空球的製備..........................94
5-2 Fe3O4/SiO2(核/殼)磁性奈米微孔中空球跟實心球的製備...........94
5-3 Fe3O4磁性奈米管跟奈米線的製備 94
第六章 未來改進方向 96
第七章 參考文件 97




圖目錄
圖 1 - 1 利用STM探針移動原子,形成文字或圖形 6

圖 2 – 1 磁交互作用力強弱關係圖 13
圖 2 - 2磁滯曲線 (magnetic hysteresis loop),飽和磁化量(Saturation Magnetization) MS,殘留磁化量(residual Magnetization) Mr,保磁力(coercive force) HC。 14
圖 2 - 3磁滯曲線:(a)在外加磁場下材料所表現出的特性M–H (實線), 在外加磁場下材料所感受的磁力B–H(虛線),(b)軟磁、半硬磁和硬磁的磁滯曲線(c)均方性、磁場垂直長軸和磁場平行長軸的磁滯線。 15
圖 2 - 4 cubic ferrite 晶體結構圖 21
圖 2 - 5 Fe3O4的結構圖 23
圖 2 – 6 spinel 分層結構圖 24
圖 2 – 7 Fe3O4的A-site和B-site離子分佈圖 24
圖 2 – 8 氧化矽聚合時之性質 30
圖 2 – 9 溶膠-凝膠反應之水解與縮合反應式之圖示 31
圖 2 – 10 電泳沉積(EPD)法示意圖 36
圖 2 – 11 固體粒子與液相介質間的相互作用,電雙層示意圖 36
圖2 - 12 A 電位與時間之LSV圖 B 電位與電流之CV圖 39

圖 3 - 1製備磁性Fe3O4中空球流程圖 43
圖 3 - 2製備磁性Fe3O4中空球示意圖 44
圖 3 - 3製備磁性Fe3O4/SiO2中空球流程 46
圖 3 - 4製備磁性Fe3O4/SiO2中空球機制圖 46
圖 3 - 5磁力所產生共沉法機製圖 47
圖 3 - 6製備磁性Fe3O4奈米線跟奈米管流程圖 48
圖 3 - 7製備磁性Fe3O4奈米線跟奈米管流程圖 49
圖 3 - 8製備磁性Fe3O4奈米線跟奈米管示意圖 50
圖 3 - 9超導量子干涉磁量儀(SQUID) 57

圖 4 - 1氯化亞鐵和氯化鐵為啟始劑,以共沉法形成,煅燒後生成 Fe3O4磁性奈米中空球XRD圖 58
圖 4 – 2SEM 圖(a) (b) Fe3O4 中空球(600nm) (c) (d) Fe3O4 中空球(50nm) 61
圖 4 - 3TEM圖(a)600nm Fe3O4中空球(b)50nm Fe3O4中空球EDS圖(c)磁性中空球有Fe,O 63
圖 4 - 4超導量子干涉磁量儀(SQUID) 64
圖 4 - 5 50nm Fe3O4中空球藥物釋放藉由UV-Vis 光譜 65
圖 4 - 6 600nm Fe3O4中空球藥物釋放藉由UV-Vis 光譜 66
圖 4 - 7 50nm 和 600nm 磁性中空球藥物釋放百分比(%) 67
圖 4 - 8 Fe3O4/SiO2中空球和實心球XRD圖 69
圖 4 - 9中空微孔球和實心微孔球 IR圖 70
圖 4 - 10 Fe3O4/SiO2 (a)中空球跟(b)實心球SEM圖 71
圖 4 - 11Fe3O4 奈米粒子TEM圖 72
圖 4 - 12Fe3O4/SiO2中空奈米球TEM圖 73
圖 4 - 13(a)(b)(c)(d) Fe3O4/SiO2微孔中空球TEM圖 (e) Fe3O4/SiO2微孔中空球EDS圖 76
圖 4 - 14(a)(b)(c) SiO2-Fe3O4 mesoporous實心球TEM圖 78
圖 4 - 15氮氣等溫吸附/脫附儀(N2 adsorption/desorption isotherm) (a)中空mesoporous(b)實心mesoporous(c) 實心mesoporous平均孔洞大小 中空mesoporous平均孔洞大小 80
圖 4 – 16 UV-Vis 光譜(a)(b)觀察B12藥物濃度隨時間變化量 (c)藥物釋放百分比對時間分析圖 82
圖 4 - 17 (a) Fe3O4/SiO2中空球跟(b) Fe3O4/SiO2實心球超導量子干涉磁量儀(SQUID) 83
圖 4 - 18 Fe3O4 (a)奈米管(b)奈米線XRD圖 85
圖 4 - 19 (a)(b)(c)(d) Fe3O4奈米管藉由界面活性劑的SEM圖 88
圖 4 - 20(a)(b)(c)(d) Fe3O4奈米線藉由界面活性劑的SEM圖 90
圖 4 - 21 Fe3O4 奈米線跟奈米管超導量子干涉磁量儀(SQUID)圖 91
圖 4 - 22Fe3O4奈米線跟奈米管CV圖 92
圖 4 - 23UV-Vis 光譜觀察B12藥物濃度隨時間變化量 93


















表目錄

表 2 - 1奈米粒子的製備方法 11
表 2 - 2 normal spinel與inverse spinel 陽離子的分佈 22

表 3 - 1所需藥品 51
第七章 參考文件
1. 葉瑞銘,奈米科技導論,高立圖書館有限公司
2. 奈米材料研究發展(牟中原 台大化學系教授 / 陳家俊 台灣師範大學化學系)
3.蘇品書,“超微粒子材料技術”,復漢出版社(1989)
4. R. D. Rieke, “Magnetic Properties of Nanostructured MaterialsChem”. Matter 8 ( 1996) 1770.
5.R.Skomski, “Nanomagnetics”, J. Phys. Condens. Matter 15 (2003) 841
6.T.Yamada,K.Suzuki and S.Chikazumi, “Electron microscopy of orthorhombic phase in magnetite” , Appl.Phys.Lett.13, (1968) ,172
7.M.Mizoguchi,“Spin Wave Spectra in A-Co2 compounds
”J.Phys.Soc.Jpn.44, (1978) , 1512
8. M.Matsui,S.Todo and S.Chikazumi, “Specific Heat and Electrical Conductivity of Low temperature Phase of Magnetite”, J.Phys.Soc.Jpn.42, (1977),1517
9. K.H.J.Buschow, “Handbook of Magntic materials”,vol.8, (1955),chapter3
10. Frank Caruso, “Nanoengineering of Particle Surfaces”, Adv. Mater. (2001),13,NO.1 p.11-21
11. C. J. Brinker, and G. W. Scherer, “Sol Gel Science”, Academic press, Boston, (1990).
12.J. J. Ebelmen, Ann., 57, (1846) ,331
13. H. Schroeder, “Thin Films”, Phys.5,(1969),87
14. C. J. T. Landry, B. K. Coltrain, J.A. Wesson, N. Zumbulyadis and J. L. Lippert, “ In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions”, Polymer, 33, (1992), 1496.
15. C. J. T. Landry, B. K. Coltrain and B. K. Brady, “ In situ polymerization of tetraethoxysilane in poly(methyl methacrylate): morphology and dynamic mechanical properties”, Polymer, 33, (1992),1486.
16. R. K. Iler, “The Chemistry of Silica” , Wiley (1979).
17. R. Winter, J. B. Chan, R. Frattini, and J. Jonas, “The effect of fluoride on the sol-gel process” ,J. Non-Crystalline Solids, 105, (1988),214-222.
18. C. J. Brinker, K. D. Keefer, D. W. Schaefer, and C. S. Ashley, “ Sol-gel transition in simple silicates”,J. Non-Crystalline Solids, 48, (1982),47.
19. C. J. Brinker, K. D. Keefer, D. W. Schaefer, and C. S. Assink, “Sol-gel transition in simple silicates II ”,J. Non-Crystalline Solids, 63, (1984), 45.
20. M. R. Landry, B. K. Coltrain, C. J. T. Landry, and J. M. O`Reilly, “Structural models for homogeneous organic-inorganic hybrid materials: Simulations of small-angle X-ray scattering profiles”,J. Polym. Sci. B. Polym. Phys., 33, (1995), 637.
21. B. M. Novak, and C. davies, “"Inverse" organic-inorganic composite materials. 2. Free-radical routes into nonshrinking sol-gel composites”, Macromolecules, 24, (1991), 5481
22. B. wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak, and J. E. McGrath, “New high-refractive-index organic/inorganic hybrid materials from sol-gel processing” ,Macromolecules, 24, (1991), 3449.
23. H. Schmidt, “ Organic modification of glass structure new glasses or new polymers? ”,J. Non-Crystalline Solids, 112, (1989), 419.
24. J. E. Mark, C. Y. Jiang, and M. Y. Tang, “Simultaneous curing and filling of elastomers”, Macromolecules, 17, (1984), 2613.
25. J. E. Mark, and C. C. Sun,“Comparisons among the reinforcing effects provided by various silica-based fillers in a siloxane elastomer”,Polymer, 30,(1989),104.
26. H. Schmidt, “New type of non-crystalline solids between inorganic and organic materials”, J. Non-Crystalline Solids,73,(1985),681.
27. H. H. Huang, and S. Orler, “Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane) ”,Macromol., 20, (1987), 1326.
28.A. Despic, V. P. Parkhutik, “Modern Aspects of Electrochemistry; Plenum Press: ” New York, 1989

29. C. A. Foss, G. L. Hornyak, J. A. Stockart, “Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape”, J. Phys. Chem., 98 (1994) 2963
30. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,Science 268 (1995) 1446
31.C. J. Brumlik, V. P. Menon and C. R. Martin, “Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques” , J. Mater. Res. 9 (1994) 1174
32.S. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, T. Hyeon, “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres”, J. Am. Chem. Soc., 122 (2000) 8581
33.L. Xu, J. Du, P. Li, Y. Qian, In Situ Synthesis, “Magnetic Property, and Formation Mechanism of Fe3O4 Particles Encapsulated in 1D Bamboo-Shaped Carbon Microtubes”, J. Phys. Chem. B 110 (2006) 3871
34.S. P. Ko, J. Soh, Y. K. Kim , “Control of Magnetic Behavior in Fe3O4 Nanostructures”, IEEE transactions on Magnetics, Vol. 41,( October 2005) No. 10,
35. F. Mafune´, J. Kohno, Y. Takeda, T. Kondow, “ Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation”, J. Phys. Chem. B 104 ( 2000) 8333
36. S. Chen, D. L. Carroll, “ Silver Nanoplates: Size Control in Two 165
Dimensions and Formation Mechanisms”, J. Phys. Chem., B 108 ( 2004) 5500
37.W. Wang, S. Efrima, O. Regev, “ Directing Silver Nanoparticles into Colloid-Surfactant Lyotropic Lamellar Systems”, J. Phys. Chem. B 103 ( 1999) 5613
38.Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, “ Synthesis, characterization and self-assembly of silver nanowires”, Chem. Phys. Lett., 380 (2003) 146
39.B. Gates, Y. Yin, Y. Xia, “A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm”, J. Am. Chem. Soc., 122 (2000) 12582
40. J. Suna, R. Xub, Y. Zhanga, M. Maa, N. Gua, “Magnetic nanoparticles separation based on nanostructures”, J. Magn. Magn. Mater., 312 (2007) 354
41. J.-P. Fortin, C. Wilhelm, J. Servais, C. Me´nager, J.-C. Bacri, F. Gazeau, “Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia”, J. Am. Chem. Soc., 129 (2007) 2628
42.K.-H. Choi, S.-H. Lee, Y.-R. Kim, L. Malkinski, A. Vovk, Y.Barnakov, J. H. Park, Y. K. Jung, J. S. Jung, “Magnetic behavior of Fe3O4 nanostructure fabricated by template method”, J. Magn. Magn . Mater., 310 (2007) 861
43.Y. C. Sui, R. Skomski, K. D. Sorge, D. J. Sellmyer, “Nanotube magnetism”, Appl. Phys. Lett., 84 (2004) 125
. Sheparovych, Y. Sahoo, M. Motornov, S. Wang, H. Luo, P. N. Prasad, I. Sokolov, S. Minko, “Polyelectrolyte Stabilized Nanowires from Fe3O4 Nanoparticles via Magnetic Field Induced Self-Assembly”, Chem. Mater., 18 (2006) 591
45.H. W. Wang, H. C. Lin, Y.C. Yeh, C. H. Kuo, “Synthesis of Fe3O4 nanoparticles and formation of nanowire by electrophoretic deposition”, J. Magn. Magn. Mater., 310 (2007) 2425
46.M. F. Chioncel, H. S. Nagaraja, F. Rossignol, P. W. Haycock, “Domain structures of MOCVD cobalt thin films”, J. Magn. Magn. Mater., 313 (2007) 135
47.X. Zhang, X. Zhang, K. Zou, C. S. Lee, S. T. Lee, “Single-Crystal Nanoribbons, Nanotubes, and Nanowires from Intramolecular Charge Transfer Organic Molecules”, J. Am. Chem. Soc., 129 (2007) 3527
48.S. J. Limmer, “Sol electrophoretic growth of oxide nanostructures: Synthesis, properties and modeling”, Doctor of Philosophy University of Washington 2004

49.Y. C. Sui, R. Skomski, K. D. Sorge, D. J. Sellmyer, “Nanotube magnetism”, Appl. Phys. Lett., 84 (2004) 1526
50.A. C. Dillon , A. H. Mahan , R. Deshpande, J. L. Alleman, J. L. Blackburn, P. A. Parillia, “Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications”, Thin Solid Films 501 (2006) 216
51.R. Skomski, “Nanomagnetics”, J. Phys.: Condens. Matter 15 (2003) 841
52.H.-D. Kurl, J. Grabow, G. Staupendahl, W. Andra, S. Dutz, M. E. Bellemann, “Magnetic iron oxide nanopowders produced by CO2 laser evaporation”, J. Magn. Magn. Mater, 311 (2007) 73
53.L. Lu, K. Hui-Zhong, M.Wenling, LHuajie, and W.Yuqiu, “Surfactant-Assisted Synthesis of α-Fe2O3 Nanotubes and Nanorods with Shape-Dependent Magnetic Properties”, J. Phys. Chem. B 110, (2006) 15218-15223
54. Y.Dabin, S.Xiaoquan, Z.Jiwei, W.Zirong , W .Feng, and T.Kun , “Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres”, J. Phys. Chem. B, 110, (2006),21667-21671
55. X.Z.Shun, D.Zi.Wei, H.Xiao.Xi, L.Lei, Y.Chang.Feng, “Monodisperse Polystyrene Microspheres Prepared byDispersion Polymerization with Microwave Irradiation”, Journal of Polymer Science: Part A: Vol. 43, (2005),2368–2376
56. Igor I. Slowing, Juan L. Vivero-Escoto, Chia-Wen Wu, Victor S.-Y. Lin., “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriersAdvanced Drug Delivery” ,Reviews 60 (2008) 1278–1288
57. J.Wan. Y.Yao.G.Tang, “Controlled-synthesis, characterization, andmagnetic properties of Fe3O4 nanostructures” ,Appl. Phys. A 89, (2007),529–532
58. A. Wijaya. and K.Hamad-Schifferl,“High-Density Encapsulation of Fe3O4 Nanoparticles in Lipid Vesicles” Langmuir 2007, 23, 9546-9550
59. H. Zhongbing, T.Fangqiong , “Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres”, Journal of Colloid and Interface Science 281 (2005) 432–436

60. J. Hong, C. Kook Hong, S. Eun Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media”, Colloids and Surfaces A: 302 (2007) 225–233
61. F. Fei Fei, K. Ji Hye, C. Hyoung Jin, “Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology” Polymer 50 (2009) 2290–2293
62. Q. Guihua, W. Qi , W.Chao, L. Willie, G. Yili , “Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization, ” Ultrasonics Sonochemistry, 14 (2007) 55–61
63. Q. Guihua, W. Qi , W.Chao, L. Willie, G. Yili, “Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles”, Polym Int 55 (2006) 265–272
64.H.Shang-Hsiu,H.Chi-Sheng,L.Dean-Mo,andC.San-Yuan, “Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism”, AdV. Mater. Volume 20, (2008), Pages: 2690-2695
65. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system”, J. Magn. Magn. Mater.293, (2005), 483.
66.M. Arruebo, M. Gala´ n, N. Navascue´ s, C. Te´ llez, C. Marquina, M. R. Ibarra, J. Santamarı´a, “Development of Magnetic Nanostructured Silica-Based Materials asPotential Vectors for Drug-Delivery Applications”, Chem. Mater., 18, (2006), 1911.
67. N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F.
Chin, A. D. Sherry, D. A. Boothman, J. Gao, “Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems”, Nano Lett., 6, (2006),2427.
68. N. Kohler, C. Sun, J. Wang, M. Zhang, “Methotrexate-Modified Superparamagnetic Nanoparticles and Their Intracellular Uptake into Human Cancer Cells”,Langmuir, 21, (2005), 8858.
69. P. S. Doyle, J. Bibette, A. Bancaud, J. L. Viovy, “Self-Assembled Magnetic Matrices for DNA Separation Chips”. Science, 295, (2002), 2237.
70.F. Wugang, G.Lian , “Synthesis of silica hollow spheres assisted by ultrasound”,Journal of Colloid and Interface Science 297 (2006) 157–160
71. A.B. Bourlinos, M.A. Karakassides, D. Petridis,“Enzyme encapsulation in nanoporous silica spheres”,Chem. Commun. (2004)1528.
72. Z. Dai, F. Meiser, H. Möhwald, “Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process” J. Colloid Interface Sci. 288 (2005) 298.
73. S. Diden, G. Maret, “Preparation and Characterization of Hollow Spheres of Rutile”, J. Colloid Interface Sci. 250 (2002) 281.
74. J.J.M. Cornelissen, E.F. Connur, H.C. Kim, V.Y. Lee, E. Magibitang, P.M. Rice, W. Volksen, L.K. Sundberg, R.D. Miller, “Versatile synthesis of nanometer sized hollow silica spheres”, Chem. Commun. (2003) 1010.
75. D.Yonghui,Q. Dawei, D.Chunhui,Z. Xiangmin, andZ. Dongyuan, “Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins”, J. Am. Chem. Soc., 130 (1),2008, 28-29
76. Y .Chan, J. P .Zimmer, M.Stroh, J. S.Steckel, R. K. Jain, M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core-Shell Silica Microspheres”, AdV. Mater., 16, (2004), 2092-2097.
77. M. L.Breen, A. D.Dinsmore, R. H.Pink ,S. B.Qadri, B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals” ,Langmuir, 17, (2001),903-907.
78. Y. H.Deng, W. L.Yang, C. C.Wang, S. K.Fu, AdV. Mater., 15,
1729-1732.
79. T.von Werne, T. E.Patten, “ Preparation of Structurally Well-Defined Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations”, J. Am. Chem. Soc., 121, (1999),7409-7410.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔