跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詠宗
研究生(外文):Yung-Tsung Chen
論文名稱:分支型單甲氧基聚乙二醇-雙聚己內酯共聚物搭載艾黴素之奈米微胞對多重抗藥性人類乳癌細胞之細胞毒性
論文名稱(外文):In-vitro cytotoxicity of Doxorubicin-Loaded mPEG-b-(PCL)2 Micellar Nanoparticles Against Multidrug Resistant Human Breast Cancer Cell Lines
指導教授:謝明發謝明發引用關係
指導教授(外文):Ming-Fa,Hsieh
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:109
中文關鍵詞:P醣蛋白多重抗藥性單甲基聚乙二醇聚己內酯微胞
外文關鍵詞:P-glycoproteinmultidrug resistancemethoxy poly (ethylene glycol)poly (ε-caprolactone)micelle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
多重抗藥性是降低腫瘤化學治癒率的原因之一,過去研究顯示腫瘤細胞的細胞膜幫浦蛋白(P醣蛋白)過表現為最主因,其主要機制是將藥物排出至細胞外,而降低抗癌藥物在細胞內的累積,因而降低腫瘤治癒率。本研究利用分子量為5000克/莫耳的單甲基聚乙二醇和生物可降解的聚己內酯團聯共聚合AB2型親疏水二性單甲基聚乙二醇-雙聚己內酯,其合成步驟將單甲基聚乙二醇與雙氫氧甲基丁酸進行酯化反應,再以酸性陽離子樹脂去除保護基,得到雙末端氫氧基單甲基聚乙二醇,最後產物與己內酯單體進行開環反應,獲得聚己內酯分子量為4500克/莫耳的單甲基聚乙二醇-雙聚己內酯,化學結構經過核磁共振光譜和傅立葉轉換紅外線光譜鑑定,且經熱示差掃描卡量計分析圖譜發現當聚合物中含有雙氫氧甲基丁酸時,熔點因其結晶結構而降低,由62.29 oC降至60.73 oC,核磁共振光譜和凝膠滲透層析儀分析分子量分別為19312克/莫耳和15245克/莫耳。此親疏水二性共聚合物在水溶液中自體形成微胞結構,其臨界微胞濃度為43.7×10-3 毫克/毫升。本研究利用單甲基聚乙二醇-雙聚己內酯包覆抗癌藥物艾黴素,以動態散射粒徑分析儀測得粒徑為21.4奈米的含藥物微胞,而不包覆藥物的微胞粒徑為95.1奈米。微胞與巨噬細胞共培養後測量細胞分泌產生的一氧化氮吸收值為0.413-0.472 吸收值/毫克 蛋白質,而不含微胞的控制組測得的吸收值是0.420吸收值/毫克 蛋白質,此結果顯示微胞能避開巨噬細胞的辨識。以紫外線光譜儀測得微胞對艾黴素的承載量率和包覆率分別為2.01%和22.29 %。搭載艾黴素的微胞在pH 5的酸性醋酸鹽緩衝液中經過48小時後的藥物釋放量為50 %,而在pH 7.4的中性磷酸鹽緩衝液下釋放量為40%。此外,餵食人類野生種(MCF-7/WT)與抗藥性(MCF-7/ADR)乳癌細胞螢光染劑(若丹明123),並以流式細胞儀分析細胞膜上P醣蛋白作用,結果顯示與抗藥性乳癌細胞比較,野生種乳癌細胞內的若丹明123螢光強度明顯較強,而以西方墨點法測量P醣蛋白過表現,相較於MCF-7/WT,MCF-7/ADR在170千道耳吞的位置,顯示P醣蛋白的表現量。添加搭載藥物的微胞與MCF-7/WT和MCF-7/ADR培養液五天後測得的半致死劑量為0.285 微克/毫升和7.476 微克/毫升,相較於單純添加艾黴素的半致死劑量( MCF-7/WT : 0.036 微克/毫升,MCF-7/ADR : 0.937 微克/毫升),搭載藥物微胞的半致死劑量約高7.9倍,這是因為當藥物被包覆在微胞內時,藥物釋放速率較緩,所以毒殺細胞數較低,導致半致死劑量較高。以共軛焦雷射顯微鏡觀察含艾黴素微胞與單純艾黴素在MCF-7/WT和MCF-7/ADR細胞內分佈,結果顯示搭載艾黴素微胞絕大部分透過胞飲作用累積在細胞質中,而單純艾黴素可透過擴散作用進入細胞核中。以流式細胞儀定量分析在同一螢光強度下,搭載艾黴素微胞和單純艾黴素累積在抗藥性乳癌細胞中的細胞數為83.16 %和50.91 %,這間接證明搭載艾黴素微胞可避開細胞膜上的幫浦蛋白P醣蛋白而達到逆轉抗藥性的功能。因此本研究發現單甲基聚乙二醇-雙聚己內酯微胞可以抑制MCF-7/ADR細胞抗藥性的特性,使更多藥物能進入細胞內以達到毒殺的效果,預期在未來的體內實驗上,能有效抑制腫瘤的生長速度及延長生物的存活率。
Cancer multidrug resistance is associated with plasma membrane expression of P-glycoprotein which results to a reduction of the intracellular drug concentration after activation of P-glycoprotein efflux. In this study, an AB2 type amphiphilic block copolymer was synthesized from biodegradable methoxy poly (ethylene glycol) (mPEG) and poly (ε-caprolactone) (PCL) to encapsulate the antitumor drug, Doxorubicin (DOX). The initiator mPEG was first esterified with 2,2-bis (hydroxymethyl) butyric acid. Removal of the protective group by acidic resin afforded a copolymer with two hydroxyl chain terminals which was subsequently used in a ring-opening polymerization of ε-caprolactone. The AB2 copolymer mPEG-(PCL)2 was characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. By increasing the 2,2-bis (hydroxymethyl) butyric acid content in the copolymer, the melting point can decrease from 62.29 oC to 60.73 oC. The molecular weight of the copolymer was calculated as 15,245 g/mol by gel permeation chromatography and 19,312 g/mol by 1H nuclear magnetic resonance. The amphiphilic block copolymer self-assembled into micelles and the critical micelle concentration was 43.7×10-3 mg/mL. The particle size of the empty micelle was measured by dynamic light scattering and found to be 95.1 nm. After loading with doxorubicin, the particle size was 21.4 nm. The drug encapsulation was measured at 22.29% by UV-vis spectrophotometer. The in vitro release study indicated that 50% of the drug was released from micelles at pH 5 acetate buffer and 40 % at pH 7.4 phosphate buffer in the duration of 48 hours. Incubation of macrophage cells with the empty micelles resulted in 0.420 O.D./mg protein and 0.413-0.472 O.D./mg protein NO production for the control and micelle, respectively. This indicated that the micelles could avoid recognition by macrophage cells. Rhodamine 123 assay by flow cytometry and western blot were used to monitor the relative P-glycoprotein expression in human breast cancer cell lines MCF-7/WT and MCF-7/ADR. The results showed that the fluorescence of rhodamine 123 was stronger in MCF-7/WT than MCF-7/ADR. Western blot analysis detected a single band for P-glycoprotein at 170 kDa. The IC50 value of drug-loaded micelle for MCF-7/WT and MCF-7/ADR were 0.285 μg/mL and 7.476 μg/mL, respectively. These values are 7.9-fold higher than the IC50 of free drug for MCF-7/WT and MCF-7/ADR at 0.036 μg/mL and 0.937 μg/mL, respectively. This can be due to the slow release rate of DOX from the micelles. The cell uptake study by confocal laser scanning microscopy (CLSM) showed that drug-loaded micelles accumulated mostly in the cytoplasm instead of the nuclei through endocytosis. In contrast, free drug diffused throughout the cell. In addition the number of cell uptake under the same fluorescence intensity was measured to be 83.16 % and 50.91 % for drug-loaded micelles and free drug in MCF-7/ADR cells. In conclusion, the AB2 copolymer was able to overcome multidrug resistance of breast cancer cells as it can accumulate more in MCF-7/ADR cells compared to free drug. Future in vivo studies could focus on how the drug delivery system can inhibit the tumor growth and prolong the survival rate.
摘要.............................I
ABSTACT.........................III
英文縮寫對照表....................V
誌謝.............................VI
目錄.............................VII
圖目錄...........................X
表目錄...........................XIII
第一章 緒論......................1
1.1研究背景........................1
1.2文獻回顧與探討...................2
1.2.1腫瘤抗藥性的化學治療概念........2
1.2.2以高分子材料為基礎的化學治療.....4
1.3研究動機與目的...................13
第二章 材料與實驗方法.................15
2.1實驗架構..........................15
2.2實驗用儀器.......................16
2.3實驗用藥品........................18
2.4藥物載體高分子的合成步驟.............22
2.4.1本實驗的化學反應式.................22
2.4.2 α-methoxy-ω-N,N-bis(hydroxyehtyl) poly(ethylene glycol) 合成...................23
2.4.3 Acetonide-2,2-bis(hydroxymethyl)butyric acid合成與鑑定............................23
2.4.4 Acetonide mPEG-BHB合成與鑑定........24
2.4.5移除acetonide protective group......24
2.4.6 mPEG-(PCL)2 合成與鑑定..............25
2.4.7 測量高分子形成微胞的濃度..............25
2.4.8 計算臨界微胞濃度.....................26
2.5 製備包覆艾黴素的微胞....................26
2.5.1 製備不含艾黴素微胞....................26
2.5.2 製備搭載艾黴素的微胞..................26
2.5.3 搭載艾黴素微胞的藥物釋放曲線...........27
2.6 搭載艾黴素微胞對乳癌細胞的體外實驗........28
2.6.1實驗藥品配置...........................28
2.6.2乳癌細胞株之培養........................29
2.6.3檢測乳癌細胞的doubling time.............31
2.6.4生物相容性檢測巨噬細胞NO assay...........32
2.6.5 Rhodamine 123分析野生種和抗藥性乳癌細胞的P-glycoprotein幫浦效應........................32
2.6.6 西方墨點法分析野生種和抗藥性乳癌細胞P-glycoprotein的表現..........................33
2.6.7 搭載艾黴素微胞對乳癌細胞的毒殺作用........37
2.6.8 觀察乳癌細胞攝入搭載艾黴素微胞與單純艾黴素的差異..........................................38
2.6.9統計分析方法 ............................38
第三章 結果與討論.............................39
3.1 藥物載體高分子的合成......................39
3.2 MPEG-(PCL)2微胞與搭載艾黴素微胞的特性與藥物釋放分析..........................................42
3.3搭載艾黴素微胞對乳癌細胞的體外實驗............44
3.3.1乳癌細胞的doubling time..................44
3.3.2生物相容性檢測巨噬細胞NO assay.............46
3.3.3西方墨點法分析抗藥性乳癌細胞表現的P-glycoprotein.................................47
3.3.4 Rhodamine123分析抗藥性乳癌細胞的P-glycoprotein幫浦的效應....................................48
3.3.5搭載艾黴素微胞與單純艾黴素對乳癌細胞的毒殺作用...........................................49
3.3.6觀察乳癌細胞攝入搭載艾黴素微胞與單純艾黴素的差異...........................................50
第四章 結論...................................52
圖...........................................54
表...........................................86
參考文獻......................................87


圖目錄
圖1-1細胞膜上P-glycoprotein幫浦作用機制……………3
圖1-2高分子聚合微胞……………………………………5
圖1-3樹枝狀聚合物..............................6
圖1-4微脂體……………………………………………………8
圖1-5 Enhance permeability and retention 效應………………………………………………………………10
圖1-6單純DAF和含DAF的TMRCA-PCL-b-PEO微胞在細胞內之途徑…………………………………………………………………12
圖2-1藥物載體高分子的合成步驟……………………………22
圖3-1 BHB的1H-NMR圖譜…………………………………54
圖3-2 Acetonide-BHB的1H-NMR圖譜……………55
圖3-3 Acetonide mPEG-BHB的1H-NMR圖譜……………56
圖3-4 mPEG-BHB的1H-NMR圖譜……………………………57
圖3-5 mPEG-(PCL)2的1H-NMR圖譜………………………58
圖3-6 mPEG-BHB的FT-IR圖譜……………………………59
圖3-7 mPEG-BHB與mPEG-OH的FT-IR圖譜比較..............................................60
圖3-8 mPEG-(PCL)2的FT-IR圖譜…………61
圖3-9 mPEG-BHB與mPEG-OH的DSC第一次升溫曲線比較圖………………………………………………………………62
圖3-10 mPEG-OH、mPEG-BHB與mPEG-(PCL)2的GPC圖譜...............................63
圖3-11 mPEG-(PCL)2的臨界微胞濃度曲線圖......................................64
圖3-12 mPEG-(PCL)2 微胞的粒徑大小分佈圖.............................................65
圖3-13 DOX藥物濃度的標準曲線………………………………………………66
圖3-14 mPEG-(PCL)2 搭載DOX微胞的粒徑大小分佈圖………………………67
圖3-15 mPEG-(PCL)2 搭載DOX微胞在pH 7.4和pH 5環境下的藥物釋放曲線圖…………………………….68
圖3-16 MCF-7/WT和MCF-7/ADR細胞的生長曲線圖……69
圖3-17不同濃度的mPEG-(PCL)2 微胞與LPS對巨噬細胞產生的細胞型態變化..............................70
圖3-18 不同濃度的mPEG-(PCL)2 微胞對巨噬細胞產生NO分析......................71
圖3-19西方墨點法分析MCF-7/WT 與MCF-7/ADR細胞膜上P-glycoprotein的表現………………………………………………………72
圖3-20螢光顯微鏡觀察rhodamine123於MCF-7/WT和MCF-7/ADR乳癌細胞內的分布…………………………………………………………………73
圖3-21流式細胞儀分析MCF-7/ WT與MCF-7/ADR將rhodamine123攝入細胞內的螢光強度比較………………………………………………………………….74
圖3-22 mPEG-(PCL)2搭載DOX微胞和單純DOX對乳癌細胞的IC50分析…………………………………………………………75
圖3-23 MCF-7/ WT將單純DOX攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡圖譜…………………………………………………………………76
圖3-24 MCF-7/ WT將mPEG-(PCL)2 搭載DOX微胞攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡圖譜……………………………………………………….77
圖3-25 MCF-7/ ADR將單純藥物攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡圖譜……………………………………………………………………78
圖3-26 MCF-7/ ADR將mPEG-(PCL)2 搭載DOX微胞攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡圖譜……………………………………………………….79
圖3-27流式細胞儀分析MCF-7/ WT將mPEG-(PCL)2 搭載DOX微胞與單純DOX攝入細胞內的螢光強度差異……………………80
圖3-28 流式細胞儀分析MCF-7/ ADR將mPEG-(PCL)2 搭載DOX微胞與單純DOX攝入細胞內的螢光強度差……………………………………………………81
圖3-29 MCF-7/ WT將單純DOX攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡xy軸系列圖譜………………………………………………………………82
圖3-30 MCF-7/ WT將mPEG-(PCL)2 搭載DOX微胞攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡xy軸系列圖譜……………………………………………83
圖3-31 MCF-7/ ADR將單純DOX攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡xy軸系列圖譜………………………………………………………………....84
圖3-32 MCF-7/ ADR將mPEG-(PCL)2搭載DOX微胞攝入細胞內24小時後的螢光分佈之共軛焦顯微鏡xy軸系列圖譜……………………………………………85


表目錄
表2-1儀器設備目錄…….…….……………………16
表2-2藥品目錄……………..………………18
表3-1 mPEG5000-(PCL4500)2 共聚合物特性……………………………………..… .86
1.Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. British Journal of Cancer 2004;90(11):2085-2091.
2.Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer 2004;91(10):1775–1781.
3.Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Phase I and pharmacokinetic study of genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research 2004;10(11):3708-3716.
4.Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, J.Stec, et al. Targeted therapies for cancer 2004. American Journal of Clinical Pathology 2004;122(4):598-609.
5.Morgillo F, Lee HY. Resistance to epidermal growth factor receptor-targeted therapy. Drug Resistance Updates 2005;8(5):298-310.
6.Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacology & Therapeutics 2000;85(3):217-229.
7.Litman T, Druley TE, Stein WD, Bates SE. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cellular and Molecular Life Sciences 2001;58:931-959.
8.Biedler JL, Riehm H. Cellular resistance to actinomycin D in chinese hamster cells in vitro: cross-resistance, radioautographic, and rytogenetic studies. Cancer Research 1970;30(4):1174-1184.
9.Beck WT, Mueller TJ, Tanzer LR. Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Research 1979;39(6):2070-2076.
10.Julianoa RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta 1976;455(1):152-162.
11.Gros P, Croop J, Housman D. Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 1986;47(3):371-380.
12.Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. European Journal of Pharmaceutical Sciences 2000;11(4):265-283.
13.Tsuruo T, Iida H, Nojiri M, Tsukagoshi S, Sakurai Y. Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Research 1983;43(6):2905-2910.
14.Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation 2001;41(1):189-207.
15.Allen T. Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer 2002;2(10):750-763.
16.Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Molecular Pharmacology 1994;45(4):649-656.
17.Huang SK, Mayhew E, Gilani S, Lasic DD, Martin FJ, Papahadjopoulos D. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Research 1992;52(24):6774-6781.
18.Mayhew EG, Lasic D, Babbar S, Martin FJ. Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. International Journal of Cancer 1992;52(2):302-309.
19.Rawat M, Singh D, Saraf S. Nanocarriers: Promising Vehicle for Bioactive Drugs. Biological & Pharmaceutical Bulletin 2006;29(9):1790-1798.
20.Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. Journal of Controlled Release 1998;53(1-3):119-130.
21.Soga O, van Nostrum CF, Fens M, Rijcken CJF, Schiffelers RM, Storm G, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Journal of Controlled Release 2005;103(2):341-353.
22.Benahmed A, Ranger M, Leroux JC. Novel polymeric micelles based on the amphiphilic diblock copolymer poly (N-vinyl-2-pyrrolidone) -block-poly (D,L- lactide). Pharmaceutical Research 2001;18(3):323-328.
23.Wang Y, Yu L, Han L, Sha X, Fang X. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. International Journal of Pharmaceutics 2007;337(1-2):63-73.
24.Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical Research 2007;24(6):1029-1046.
25.Aulenta F, Hayes W, Rannard S. Dendrimers: a new class of nanoscopic containers and delivery devices. European Polymer Journal 2003;39(9):1741-1771.
26.Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chemistry 2008;19(11):2239-2252.
27.Klajnert B, Sadowska M, Bryszewska M. The effect of polyamidoamine dendrimers on human erythrocyte membrane acetylcholinesterase activity. Bioelectrochemistry 2004;65(1):23-26.
28.Ogawara KI, Un K, Tanaka KI, Higaki K, Kimura T. In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearing mice: Involvement of cytotoxic effect on vascular endothelial cells. Journal of Controlled Release 2009;133(1):4-10.
29.Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP, et al. Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging? Journal of Controlled Release 2008;130(2):107-114.
30.Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urologic Oncology: Seminars and Original Investigations 2008;26(1):57-64.
31.Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews 2001;53(2):283-318
32.Wisse E, Braet F, Luo D, Zanger RD, D.Jans, Crabbe E, et al. Structure and function of sinusoidal lining cells in the liver. Toxicologic Pathology 1996;24(1):100 - 111.
33.Harris JM, Martin NE, Modi M. Pegylation: A novel process for modifying pharmacokinetics. Clinical Pharmacokinetics 2001;40(7):539-551.
34.Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407(6801):249-257.
35.Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006;25(34):4633-4646.
36.Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research 2008;14(5):1310-1316.
37.Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003;300(5619):615-618.
38.Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. Journal of Controlled Release 2005;109(1-3):158-168.
39.Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV. Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: Selective energy depletion. British Journal of Cancer 2001;85(12):1987-1997.
40.Chandna P, Saad M, Wang Y, Ber E, Khandare J, Vetcher AA, et al. Targeted proapoptotic anticancer drug delivery system. Molecular Pharmaceutics 2007;4(5):668-678.
41.Malkoch M, Malmstrom E, Hult A. Rapid and efficient synthesis of aliphatic ester dendrons and dendrimers. Macromolecules 2002;35(22):8307-8314.
42.Ihre H, Hult A, Frechet JMJ, Gitsov I. Double-stage convergent approach for the synthesis of functionalized dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromolecules 1998;31(13):4061-4068.
43.Ihre H, Padilla De Jesus OL, Frechet JMJ. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. Journal of the American Chemical Society 2001;123(25):5908-5917.
44.Ostmark E, Macakova L, Auletta T, Malkoch M, Malmstrom E, Blomberg E. Dendritic structures based on bis(hydroxymethyl)propionic acid as platforms for surface reactions. Langmuir 2005;21(10):4512-4519.
45.Bogdanov B, Vidts A, Van Den Buicke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymers. Polymer 1998;39(8-9):1631-1636.
46.Thomas EW, Cudahy MM, Spilman CH, Dinh DM, Watkins TL, Vidmar TJ. Cholesterol-lowering bile acid-binding agents: novel lipophilic polyamines. Journal of Medicinal Chemistry 1998;35(7):1233-1245.
47.Schultz RA, White BD, Dishong DM, Arnold KA, Gokel GW. 12-, 15-, and 18-Membered-ring nitrogen-pivot lariat ethers: syntheses, properties, and sodium and ammonium cation binding properties. Journal of the American Chemical Society 1985;107(23):6659-6668.
48.Jeong B, Kibbey MR, Birnbaum JC, Won YY, Gutowska A. Thermogelling biodegradable polymers with hydrophilic backbones PEG-g-PLGA. Macromolecules 2000;33(22):8317-8322.
49.Kim D, Lee ES, Park K, Kwon IC, Bae YH. Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharmaceutical Research 2008;25(9):2074-2082.
50.Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release 2004;98(3):415-426.
51.Ozono S, Miyao N, Igarashi T, Marumo K, Nakazawa H, Fukuda M, et al. Tumor doubling time of renal cell carcinoma measured by CT: collaboration of japanese society of renal cancer. Japanese journal of clinical oncology 2004;34(2):82-85.
52.Matsuno R, Aramaki Y, Tsuchiya S. Involvement of TGF-β in inhibitory effects of negatively charged liposomes on nitric oxide production by macrophages stimulated with LPS. Biochemical and Biophysical Research Communications 2001;281(3):614-620.
53.Stein U, Walther W, Lemm M, Naundorf H, Fichtner I. Development and characterisation of novel human multidrug resistant mammary carcinoma lines in vitro and in vivo. International Journal of Cancer 1997;72(5):885-891.
54.Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clinical Cancer Research 1998;4(2):389-398.
55.Robey RW, Zhan Z, Piekarz RL, Kayastha GL, Fojo T, Bates SE. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clinical Cancer Research 2006;12(5):1547-1555.
56.Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. Journal of Pharmacology And Experimental Therapeutics 2006;317(3):1372-1381.
57.Hsieh MF, Nguyen VC, Chen CH, Chen YT, Yeh JM. Nano-sized micelles of block copolymers of methoxy poly(ethylene glycol )- poly(ε-caprolactone) -graft -2-hydroxyethyl cellulose for doxorubicin delivery. Journal of Nanoscience and Nanotechnology 2008;8:2362-2368.
58.Yi Y, Kim JH, Kang HW, Oh HS, Kim SW, Seo MH. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier : Improvements in cellular uptake and biodistribution. Pharmaceutical Research 2005;22(2):200-208.
59.Zhao H, Yung LYL. Selectivity of folate conjugated polymer micelles against different tumor cells. International Journal of Pharmaceutics 2008;349(1-2):256-268.
60.Kulshrestha AS, Sahoo B, Gao W, Fu H, Gross RA. Lipase Catalysis. A direct route to linear aliphatic copolyesters of bis(hydroxymethyl)butyric acid with pendant carboxylic acid groups. Macromolecules 2005;38(8):3205-3213.
61.Kim C, Lee SC, Kang SW, Kwon IC, Kim Y-H, Jeong SY. Synthesis and the micellar characteristics of poly(ethylene oxide)-deoxycholic acid conjugates. Langmuir 2000;16(11):4792-4797.
62.Zhang HH, Huang ZQ, Sun BW, Guo JX, Wang JL, Chen YQ. Y-shaped poly(ethylene glycol) and poly(trimethylene carbonate) amphiphilic copolymer: synthesis and for drug delivery. Journal of Polymer Science Part A: Polymer Chemistry 2008;46(24):8131-8140.
63.Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl--aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. Journal of Controlled Release 2000;64(1-3):143-153.
64.Zwietering MH, Jongenburger I, Rombouts FM, Van 'T Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology 1990;56(6):1875-1881.
65.Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J .1992;6(12):3051-3064.
66.Altenberg GA, Vanoye CG, Horton JK, Reuss L. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 1994; 91:4654-4657
67.Lo YL. Phospholipids as multidrug resistance modulators of the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Biochemical Pharmacology 2000;60(9):1381-1390.
68.Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics 2000;50(1):161-177.
69.Tang A, Kopečková P, Kopeček J. Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharmaceutical Research 2003;20(3):360-367.
70.Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews 2002;54(2):203-222.
71.Panyan J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217-1226.
72.Wong H, Rauth A, Bendayan R, Manias J, Ramaswamy M, Liu Z, et al. A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharmaceutical Research 2006;23(7):1574-1585.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊