跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉鴻恩
研究生(外文):Hung-en Liu
論文名稱:重金屬與灰燼對蚯蚓分解有機廢棄物之研究
論文名稱(外文):Effect of Heavy Metals and MSWI Ashes on OFMSW Biodegradation by Earthworms
指導教授:羅煌木
指導教授(外文):Huang-mu Lo
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:飛灰底灰有機廢棄物重金屬蚯蚓
外文關鍵詞:earthwormsfly ashKeywords: bottom ashorganic wasteheavy metals
相關次數:
  • 被引用被引用:1
  • 點閱點閱:609
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
蚯蚓被應用於評估重金屬對生物的毒性效應,如鎘、鋅、銅、鉻及鎳。
本研究主要目的在利用添加重金屬與灰燼(底灰及飛灰)對蚯蚓分解有機廢棄物之影響。依據本研究結果,獲得之結論如下:
1. 蚯蚓的生長繁殖與餌料的pH值有密切關係,一般以6.8-7.6中性或弱鹼性為宜。過高或過低,常出現不良反應,如脫水萎縮,感覺遲鈍,以至逃逸影響生產。添加重金屬,造成pH明顯下降,成為蚯蚓不喜歡生活的環境。
2. 重金屬添加組監測之重金屬含量趨勢上顯示,重金屬在蚯蚓體內,均有明顯累積的情形。重金屬濃度 10 mg kg-1,蚯蚓均有很高的存活率。並且隨著外在重金屬濃度而增加體內的累積濃度,存活率也有下降的趨勢,其中,蚯蚓對Zn濃度耐受度、存活率最高。
Earthworms have been used to assess the toxicity of heavy metals on the biological effects, such as cadmium, zinc, copper, chromium and nickel.
The main purpose of this study was to add in the use of heavy metals and ash (bottom ash and fly ash) on earthworms affect decomposition of organic waste. Based on the results of this study, the conclusions obtained are as follows:
1. Earthworm growth and reproduction and diet are closely related to the pH value, add the heavy metals Cd, Cr, caused by decreased pH, earthworms do not like to become a living environment.
2.In addition the body of heavy metals in earthworms, there is obviously the case of accumulation of earthworms on the accumulation of heavy metals to the highest cadmium. Heavy metal concentration of 10 mg kg-1, earthworms have a high survival rate. And with increasing external concentration of heavy metals accumulated body concentration, the survival rate is also a downward trend, in which the concentration of earthworms on Zn tolerance, the highest survival rate.
摘要 I
Abstract II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 3
2.1台灣的蚯蚓 3
2.1.1 蚯蚓養殖條件的控制和調節 5
2.2蚯蚓與土壤重金屬的關係 7
2.2.1以蚯蚓處理重金屬之研究 7
2.2.2蚯蚓對土壤中重金屬的吸收與累積 9
2.2.3 重金屬對蚯蚓的影響 10
2.3 施用農藥、殺蟲劑及堆肥對蚯蚓毒性及生質量的影響 14
2.4 蚯蚓生態毒理性與生物累積效應之評估 15
2.5 土壤重金屬污染之評估方法 16
2.5.1 土壤重金屬有效性之分析 16
2.5.2 重金屬全量分析 16
2.5.3 生物方法 17
2.6 廢棄物焚化灰燼 19
2.6.1 焚化爐灰燼的來源 19
2.6.2 底灰之物化特性 19
2.6.3 飛灰之物化特性 20
2.6.4 焚化灰燼金屬含量 24
第三章 實驗材料與方法 26
3.1 實驗流程圖 26
3.2 實驗材料 27
3.2.1 焚化爐灰燼 27
3.2.2 有機廢棄物 27
3.2.3 供試蚯蚓 29
3.3 研究方法與步驟 30
3.3.1 實驗設置 30
3.3.4 實驗方法 33
3.3.5基本參數分析 38
第四章 結果與討論 40
4.1添加灰燼、土壤與重金屬對蚯蚓影響之基本參數監測 40
4.1.1小型反應槽基本參數監測之pH值 40
4.1.2小型反應槽基本參數監測之ORP 45
4.1.3小型反應槽基本參數監測之EC 49
4.1.4小型反應槽基本參數監測之DO 53
4.1.5小型反應槽基本參數監測之TS 57
4.1.6小型反應槽基本參數監測之VS 61
4.2蚯蚓之重金屬含量與致死率分析 65
4.2.1灰燼添加組: 65
4.2.2重金屬Cd之添加組: 70
4.2.3重金屬Cr之添加組 72
4.2.4重金屬Cu之添加組 74
4.2.5重金屬Pb之添加組 76
4.2.6 重金屬Ni之添加組 78
4.2.7重金屬Zn之添加組 80
4.2.8混重金屬之添加組 83
第五章 結論與建議 85
參考文獻 87
表2-1 土壤樣品中重金屬含量......................................................................8
表2-2 環保署公告之土壤重金屬污染管制標準...........................................8
表2-3 不同粒徑底灰之化學特性................................................................ 22
表2-4 垃圾焚化飛灰與底灰之物理性質...................................................... 22
表2-5 都市垃圾焚化飛灰之化學主要組成................................................. 23
表2-6 都市固體廢棄物焚化爐灰燼金屬含量分析...................................... 25
表3-1 灰燼與土壤添加組........................................................................... 31
表3-2 重金屬添加組.................................................................................. 31
表4-1 BA 添加組之存活率....................................................................... 67
表4-2 FA 添加組之存活率....................................................................... 67
表4-3 Soil 添加組之存活率...................................................................... 67
表4-4 重金屬Cd 添加組之存活率........................................................... 71
表4-5 重金屬Cr 添加組之存活率............................................................ 73
表4-6 重金屬Cu 添加組之存活率........................................................... 75
表4-7 重金屬Pb 添加組之存活率............................................................ 77
表4-8 重金屬Ni 添加組之存活率............................................................ 79
表4-9 重金屬Zn 添加組之存活率............................................................ 81
表4-10 6種重金屬添加組之重金屬含量變化總表................................... 82
表4-11 混重金屬添加組之存活率............................................................ 84圖3-1 實驗流程圖...................................................................................... 26
圖3-2 有機廢棄物採集地點....................................................................... 28
圖3-3 有機廢棄物採集情形....................................................................... 28
圖3-4 惡臭愛勝蚓 (Eisenia fetida)的照片............................................... 29
圖3-4 蚯蚓養殖容器.................................................................................. 32
圖3-5 微波消化法...................................................................................... 34
圖3-6 微波消化操作示意圖....................................................................... 36
圖4-1 底灰添加組之pH 變化..................................................................... 41
圖4-2 飛灰添加組之pH 變化..................................................................... 41
圖4-3 土壤添加組之pH 變化..................................................................... 41
圖4-4 Cd 添加組之pH 變化........................................................................ 42
圖4-5 Cr 添加組之pH 變化........................................................................ 43
圖4-6 Cu 添加組之pH 變化........................................................................ 43
圖4-7 Pb 添加組之pH 變化........................................................................ 43
圖4-8 Ni 添加組之pH 變化........................................................................ 44
圖4-9 Zn 添加組之pH 變化........................................................................ 44
圖4-10 混金屬添加組之pH 變化................................................................ 44
圖4-11 底灰添加組之ORP 變化.................................................................45
圖4-13 土壤添加組之ORP 變化.................................................................46
圖4-14 Cd 添加組之ORP 變化................................................................... 46
圖4-15 Cr 添加組之ORP 變化.................................................................... 46
圖4-16 Cu 添加組之ORP 變化................................................................... 47
圖4-17 Pb 添加組之ORP 變化.................................................................... 47
圖4-18 Ni 添加組之ORP 變化.................................................................... 47
圖4-19 Zn 添加組之ORP 變化................................................................... 48
圖4-20 混金屬添加組之ORP 變化............................................................. 48
圖4-21 底灰添加組之EC 變化................................................................... 49
圖4-22 飛灰添加組之EC 變化................................................................... 50
圖4-23 土壤添加組之EC 變化................................................................... 50
圖4-24 Cd 添加組之EC 變化...................................................................... 50
圖4-25 Cr 添加組之EC 變化...................................................................... 51
圖4-26 Cu 添加組之EC 變化...................................................................... 51
圖4-27 Pb 添加組之EC 變化...................................................................... 51
圖4-28 Ni 添加組之EC 變化...................................................................... 52
圖4-29 Zn 添加組之EC 變化...................................................................... 52
圖4-30 混金屬添加組之EC 變化................................................................ 52
圖4-31 底灰添加組之DO 變化................................................................... 53
圖4-32 飛灰添加組之DO 變化................................................................... 54
圖4-33 土壤添加組之DO 變化................................................................... 54
圖4-34 Cd 添加組之DO 變化..................................................................... 54
圖4-35 Cr 添加組之DO 變化...................................................................... 55
圖4-36 Cu 添加組之DO 變化..................................................................... 55
圖4-37 Pb 添加組之DO 變化..................................................................... 55
圖4-38 Ni 添加組之DO 變化...................................................................... 56
圖4-39 Zn 添加組之DO 變化..................................................................... 56
圖4-40 混金屬添加組之DO 變化............................................................... 56
圖4-41 底灰添加組之TS 變化.................................................................... 57
圖4-42 飛灰添加組之TS 變化.................................................................... 58
圖4-43 土壤添加組之TS 變化.................................................................... 58
圖4-44 Cd 添加組之TS 變化...................................................................... 58
圖4-45 Cr 添加組之TS 變化....................................................................... 59
圖4-46 Cu 添加組之TS 變化...................................................................... 59
圖4-47 Pb 添加組之TS 變化...................................................................... 59
圖4-48 Ni 添加組之TS 變化....................................................................... 60
圖4-49 Zn 添加組之TS 變化...................................................................... 60
圖4-50 混金屬添加組之TS 變化................................................................ 60
圖4-51 底灰添加組之VS 變化................................................................... 61
圖4-52 飛灰添加組之VS 變化................................................................... 62
圖4-53 土壤添加組之VS 變化................................................................... 62
圖4-54 Cd 添加組之VS 變化...................................................................... 62
圖4-55 Cr 添加組之VS 變化...................................................................... 63
圖4-56 Cu 添加組之VS 變化...................................................................... 63
圖4-57 Pb 添加組之VS 變化...................................................................... 63
圖4-58 Ni 添加組之VS 變化...................................................................... 64
圖4-59 Zn 添加組之VS 變化...................................................................... 64
圖4-60 混金屬添加組之VS 變化................................................................ 64
圖4-61 底灰添加組之重金屬含量變化..................................................... 65
圖4-62 飛灰添加組之重金屬含量變化..................................................... 66
圖4-63 土壤添加組之重金屬含量變化..................................................... 66
圖4-64 灰燼與土壤添加對蚯蚓之存活率................................................... 68
圖4-65 底灰添加對蚯蚓之致死率.............................................................. 68
圖4-66 飛灰添加對蚯蚓之致死率.............................................................. 69
圖4-67 土壤添加對蚯蚓之致死率.............................................................. 69
圖4-68 Cd 添加組之重金屬含量變化....................................................... 71
圖4-69 Cd 添加組對蚯蚓之致死率........................................................... 71
圖4-70 Cr 添加組之重金屬含量變化....................................................... 73
圖4-71 Cr 添加組對蚯蚓之致死率........................................................... 73
圖4-72 Cu 添加組之重金屬含量變化....................................................... 75
圖4-73 Cu 添加組對蚯蚓之致死率........................................................... 75
圖4-74 Pb 添加組之重金屬含量變化....................................................... 77
圖4-75 Pb 添加組對蚯蚓之致死率........................................................... 77
圖4-76 Ni 添加組之重金屬含量變化....................................................... 79
圖4-77 Ni 添加組對蚯蚓之致死率........................................................... 79
圖4-78 Zn 添加組之重金屬含量變化....................................................... 81
圖4-79 Zn 添加組對蚯蚓之致死率........................................................... 81
圖4-81 混金屬添加組之重金屬含量變化................................................. 84
圖4-82 混重金屬添加組對蚯蚓之致死率................................................. 84
1.Aruoja, V., L. Kurvet, H.C. Dubourguier, and A. Kahru. ,Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricorntum: a soil suspension assay. Environ. Toxicol. 19:396-402,(2004).
2.Cairns, J. , Scenarios on alternative futures for biological monitoring, 1978-1985. p. 11-21. In D. L. Worf (ed.) Biological monitoring for environmental effects. Lexington, Lexington Books,(1980).
3.Carter, A., E.A. Kenney, T.F. Guthrie, and H. Timmenga. ,Heavy metals in earthworms in non-contaminated agriculture soil from near Vancouver, Canada. p.267-274. In J.E. Satchell (ed.) Earthworm ecology : from Darwin to vermiculture. Chapman & Hall, London,(1983).
4.Cheng, J.M., and M.H. Wong. , Effect of earthworms on Zn fractionation in soils. Biol. Fertil. Soils. 36:72-78,(2002).
5.Christina Zabinski , Paul M. Bertsch , Tracy Punshon & Gregg O’Quinn , “In vitro bioavailability monitoring of heavy metals using Lumbricus terrestris and Eisenia foetida “, Water , Air &, Soil Pollution .Vol.163,No.1,pp.293-302,(2005).
6.Conder, J.M., L.D. Seals, and R.P. Lanno.,Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida. Chemosphere. 49:1-7,(2002).
7.Cortet, J., A.G.D. Vauflery, N.P. Balaguer, L. Gomot, Ch. Texier, and D. Cluzeau. , The use of invertebrate soil fauna in monitoring pollutant effects. Euro. J. Soil Biol. 35:115-134,(1999).
8.Dai, J., T. Becquer, J.H. Rouiller, G. Reversat, F.B. Reversat, J. Nahmani, and P. Lavelle. , Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol. Biochem. 36: 91-98,(2004).
9.Davies, N.A., M.E. Hodson, and S. Black. ,Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environ. Pollut. 121:49-54,(2003).
10.Davies, N.A., M.E. Hodson, and S. Black. ,The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test. Environ. Pollut. 121:55-61,(2003).
11.Edwards, W.M., and M.J. Shipitalo. , Consequences of earthworms in agriculture soils: aggregation and porosity. In C. A. Edwards (ed.) Earthworm ecology. p. 147-161. Soil and Water Conservation Society, St Lucie Press, Iowa,(1998).
12.Edwards, C.A., and P.J. Bohlen, The effect of toxic chemicals on earthworm. Contam. Toxical. 125:23-99,(1992).
13.Edwards, C.A., and J.E. Bater. 1992. The use of earthworms in environment management. Soil Biol. Biochem. 24:1683-1689,(1992).
14.Hankard, P.K., J.G. Bundy, D.J. Spurgeon, J.M. Weeks, J. Wright, C. Weinberg, and C. Svendsen. , Establishing principal soil quality parameters influencing earthworms in urban soils using bioassays. Environ. Pollut. 133:199-211,(2005).
15.Hobbelen, P.H.F., J.E. Koolhaas, and C.A.M. van Gestel. , Risk assessment of heavy metal pollution for detritivores in flooplain soils in the Biesbosch, the Netherlands, taking bioavailability into account. Environ. Pollut. 129:409-419,(2004).
16.Homa, J., E. Olchawa, S.R. Stürzenbaum, A.J. Morgan, and B. Plytycz. ,Environ. Pollut. In Press,(2005).
17.Hopkin, S.P., In situ biological monitoring of pollution in terrestrial and aquatic ecosystem. p. 397-427. In P. Calow (ed.) Handbook of ecotoxicology. Blackwell scientific publications,(1993).
18.Kukkonen, S., A. Palojärvi, M. Räkköläinen, and M. Vestberg. , Peat amendment and production of different crop plants affect earthworm populations in field soil. Soil Biol. Biochem. 36:415-423,(2004).
19.Lanno, R., J. Wells, J. Conder, K. Bradham, and N. Basta. , The bioavailability of chemicals in soil for earthworms. Ecotoxicol. Environ. Saf. 57:39-47,(2004).
20.Lee, K.E. ,Earthworm. In There ecology and relationships with soil and land use. Academic Press, Australia,(1985).
21.Lo, Huang-Mu., “Metals behaviors of MSWI bottom ash co-digested Anaerobically with MSW,” Resources, Conservation & Recycling Volume: 43, Issue: 3, pp.263-280 ,(2005).
22.Lock, K., and C.R. Janssen. , Ecotoxicity of chromium(Ⅲ) to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Ecotoxicol. Environ. Saf. 51:203-205,(2002).
23.Lock, K., and C.R. Janssen. ,Ecotoxicity of nickel to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Chemosphere. 46:197-200 ,(2002).
24.Lock, K., and C.R. Janssen. , Modeling zinc toxicity for terrestrial invertebrates. Environ. Toxicol. Chem. 20:1901-1908,(2001).
25.Lukkari, T., M. Aatsinki, A. Väisänen, and J. Haimi. , Toxicity of copper and zinc assessed with three different earthworm tests. Appli. Soil Ecol. In Press ,(2005).
26.Ma, W.C. ,Critical body residues (CBRs) for ecotoxicology soil quality assessment: copper in earthworms. Soil Biol. Biochem. 37:561-568 ,(2005).
27.Ma, L.Q., and G.N. Rao. , Heavy metals in the environment, chemical fraction of cadmium, copper, nickel, and zinc in contaminated soils. J. Environ. Qual. 26:259-264 ,(1997).
28.Ma, W.C. , Sublethal toxic effects of copper on growth, reproduction and litter breakdown activity in the earthworm Lumbricus rubellus, with observations on the influence of temperature and soil pH. Environ. Pollut. 33:207-219,(1984).
29.Ma, W.C. , Biomonitoring soil pollution: Ecotoxicology studies of the effect of soil borne heavy metals on Lumbricidae earthworms. Res. Instit. Natur. Manag. Ann. Rep. p. 83-97,(1983).
30.Ma, W., T. Edelman, I. Van Beersum, and T. Jans. ,Uptake of cadmium, zinc, lead and copper by earthworms near zinc-smelting complex: influence of soil pH and organic matter content. Bulletin of Environ. Contam. Toxicol. 54:424-427,(1983).
31.Ma, W.C. ,The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologia 24:109-119,(1982).
32.Maboeta, M.S., S.A. Reinecke, and A.J. Reinecke. , The relation between lysosomal biomarker and population responses in a field population of Microchaetus sp. (Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicol. Environ. Saf. 52:280-287,(2002).
33.Malecki, M.R., E.F. Neuhauser, and R.C. Loehr. ,The effect of heavy metal on the growth and reproduction of E. fetida. Pedobiologia 24:129-137,(1982).
34.Mariño, F., S.R. Stürzenbaum, P. Kille, and A.J. Morgan. , Cu-Cd interaction in earthworms maintained in laboratory microcosms: the examination of a putative copper paradox. CBP. 120:217-223,(1998).
35.Martin, M.H. and P.J. Coughtrey. , Biological monitoring of heavy metal pollution: Land and Air. London, Applied Science Publishers,(1982).
36.Miyazaki, A., T. Amano, H. Saito, and Y. Nakano. , Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere. 47:65-69,(2002).
37.Morgan, J.E., and A.J. Morgan. ,The accumulation of metal (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rebellus and Aporrectoea caliginosa):implication for ecotoxicological testing. Appl. Soil Ecol. 13: 9 – 20,(1999).
38.Morgan, J.E., and A.J. Morgan. , The distribution and intercellular compartmentation of metals in the endogic earthworm Aporrectodea caliginosa sampled from an unpolluted and metal-contaminated site. Environ. Pollut. 99:167-175,(1998).
39.Morgan, A.J., J.E. Morgan, M. Turner, C. Winters, and A. Yarwood. ,Metal relationships of earthworms. p. 333-358. In R. Dallinger, P.S. Rainbow. (eds.) Ecotoxicology of metals in invertebrates. CRC Press Inc., Boca Raton, FL, USA,(1993).
40.Morgan J.E., and A.J. Morgan. , Heavy metal concentration in the tissues, ingesta and faeces of ecophysiologically different earthworm species. Soil Biol. Biochem. 24(12):691-697,(1992).
41.Morgan J.E., and A.J. Morgan. , The distribution of cadmium, copper, lead, zinc and calcium in the tissues of earthworm Lumbricus rebellus sampled from one uncontaminated and from polluted soils. Oecologia. 84 : 559 – 566,(1990).
42.Morgan J.E., and A.J. Morgan. , Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environ. Pollut. 54:123-138,(1988).
43.Morris, B. and A.J. Morgan. , Calcium-lead interactions in earthworm: observations on Lumbricus terrestris L. sampled from a calcareous abandoned leadmine site. Bull. Environ. Conta. Toxicol. 37:226-233,(1986).
44.Mosleh, Y.Y., S. Paris-Palacios, M. Couderchet, and G. Vernet. ,Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions. Environ. Toxicol. 18:1-8,(2003).
45.Mostert, M.A., At.S. Schoeman, and Mac van der Merwe. ,The relative toxicities of insecticides to earthworms of the Pheretima group (Oligochaeta). Pest. Manag. Sci. 58:446-450,(2002).
46.Mostert, M. A., At.S. Schoeman, and Mac van der Merwe. ,The toxicity of five insecticides to earthworms of the Pheretima group, using an artificial soil test. Pest. Manag. Sci. 56:1093-1097,(2000).
47.M R Shahmansouri , H Pourmoghadas , AR Parvaresh , H Alidadi , ”Heavy metals bioaccumulation by Iranian and Australian earthworms (Eisenia fetida) in the sewage sludge vermicomposting “,Iranian J Env Health Sci Eng ,Vol. 2,No.1,pp.28-32,(2005).
48.Neuhauser, E.F., Z.V. Cukic, M.R. Malecki, R.C. Loehr, and P.R. Durkin. , Bioconcentration and biokinetics of heavy metals in the earthworm. Environ. Pollut. 89(3): 293-301,(1995).
49.Neuhauser, E.F., R.C. Loehr, D.L. Milligan, and M.R. Malecki. , Toxicity of metals to the earthworm Eisenia foetida. Biol. Fertil. Soils 1: 149-152,(1985).
50.Neuhauser, E.F., M.R. Malecki, and R.C. Loehr. ,Growth and reproduction of earthworm Eisenia fetida after exposure to sublethal concentration of metals. Pedobiologia. 27:89-97,(1984).
51.Nursita, A.I., B. Singh, and E. Lees. ,The effect of cadmium, copper, lead and zinc on the growth and reproduction of Proisotoma minuta Tullberg (Collembola). Ecotoxicol. Environ. Saf. 60:306-314,(2005).
52.Peijnenburg, W., A. de Groot, T. Jager, and L. Posthuma. , Short-term ecological risks of depositing contaminated sediment on arable soil. Ecotoxicol. Environ. Saf. 60:1-14,(2005).
53.Piearce, T.G., G.J. Langdon, A.A. Meharg, and K.T. Semple. ,Yellow earthworms: distinctive pigmentation with arsenic- and copper- tolerance in Lumbricus rubellus. Soil Biol. Biochem. 34: 1833-1838,(2002).
54.Raessler, M., J. Rothe, and I. Hilke. , Accurate determination of Cd, Cr, Cu and Ni in woodlice and their skin is moulting a means of detoxification ? Sci. Total Environ. 337:83-90,(2005).
55.Reinecke, A.J., S.A. Reinecke, and M. Maboeta. ,Cocoon production and viability as endpoints in toxicity testing of heavy metals with three earthworm species. Pedobiologia. 45:61-68,(2001).
56.Reinecke, A.J., S.A. Reinecke, and H. Lamrechts. , Uptake and toxicity of copper and zinc for the African earthworm , Eudrilus eugeniae(Oligochaeta). Biol. Fertil. Soils 24:27-31,(1997).
57.Reinecke, A.J., and S.A. Reinecke. , The influence of heavy metals on the growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Pedobiologia,(1996).
58.Reinecke, A.J. , A review of ecotoxicological test methods using earthworms. p. 7-19. In P. W. Greigh-Smith, H. Becker, P.J. Edwards, and F. Heimbach (ed.) Ecotoxicology of earthworms. Intercept, Andover,(1992).
59.Robidoux, P.Y., J. Hawari, S. Thiboutot, G. Ampleman, and G.I. Sunahara. , Chronic toxicity of octahydro-1,3,5,7-tetrazocine(HMX) in soil determined using the earthworm (Eisenia anderi) reproduction test. Environ. Pollut. 111:283-292,(2001).
60.Schaefer, M. , Assessing 2,4,6-trinitrotoluene (TNT) – contaminated soil using three different earthworm test methods. Ecotoxicol. Environ. Saf. 57:74-80,(2004).
61.Siekierska, E. , Cadmium effect on the structure of supra- and subpharyngeal ganglia and the neurosecretory processes in earthworm Dendrobaena venta (Rosa). Enviorn. Pollut. 126:21-28,(2003).
62.Siekierska, E., and D.U. Jasik. , Cadmium effect on the ovarian structure in earthworm Dendrobaena venta (Rosa). Enviorn. Pollut. 120:289-297,(2002).
63.Snyman R.G., A.J. Reinecke, and S.A. Reinecke. , Quantitative changes in the digestive gland cells of the snail Helix aspersa exposure to the fungicide copper oxychloride. Ecotoxicol. Environ. Saf. 60:47-52,(2005).
64.Spurgeon, D.J., S.R. Stürzenbaum, C. Svendsen, P.K. Hankard, A.J. Morgan, J.M. Weeks, and P. Kille. , Toxicologial, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comp. Biochem. Physiol. 138: 11-21,(2004).
65.Spurgeon, D.J., C. Svendsen, P. Kille., A.J. Morgan, and J.M. Weeks. , Response of earthworms (Lumbricus rubellus) to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system. Ecotoxicol. Environ. Saf. 57: 54-64,(2004).
66.Spurgeon, D.J., and S.P. Hopkin. , Effects of metal- contaminated soils on the growth, sexual development, and early cocoon production of the earthworm Eisenia fetida, with particular reference to zinc. Ecotoxicol. Environ. Saf. 35:86-95,(1996).
67.Spurgeon, D.J., and S.P. Hopkin. ,Effects of variations in the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia. 40:80-96,(1996).
68.Spurgeon, D.J., and S.P. Hopkin. , Risk assessment of the threat of secondary poisoning by metals to predators in the vicinity of a primary smelting works. Sci. Total Environ. 187:167-183,(1996).
69.Spurgeon, D.J., and S.P. Hopkin. , The effects of metals on earthworm populations around a smelting works: quantifying species effects. Appl. Soil Ecol. 4:147-160,(1996).
70.Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. , Effect of cadmium, lead and zinc on growth and survival of the earthworm Eisenia fetida (Savigny): Assessing the environmental impact of point-source metal contamination in terrestrial ecosystem. Enviorn. Pollut. 84:123-130,(1994).
71.Van Hook, R.I. , Cadmium, lead and zinc distributions between earthworms and soils: Potentials for biological accumulation. Bull. Environ. Contam, Toxicol., 12:509-612,(1974).
72.Van Rhee, J.A. , Effects of soil pollution on earthworms. Pedobiologia. 17:208-210,(1977).
73.Venter, J.M., and A.J. Reinecke. , Sublethal ecotoxicological studies with the earthworm Eisenia fetida (Lumbricidae). In C. A. Edwards and Neuhauser E. F. (ed.) Earthworms in waste and environment management”. p. 337-354. SPB Academic Publication, The Hague, Netherlands,(1988).
74.張進福、陳信賓、曹君範、劉明哲,「以蚯蚓處理重金屬污泥之研究」,黃埔學報第56期,(2009)。
75.申為寶、楊洪強,「蚯蚓和微生物對土壤養分和重金屬的影響」,中國農業科學,41(3):pp.760-765,(2008)。
76.陳慕璇,鎘污染對土壤及蚯蚓腸道菌相之影響,碩士論文,國立高雄師範大學生物科技系, (2007)。
77.劉玉真、朱宇恩、成傑民,赤子愛勝蚓(Eisenia foetida)對三種土壤Zn、Pb 有效態含量的影響,生態環境,15(4): 739-742,(2006)。
78.梁容鐘,以蚯蚓生長及生殖評估土壤重金屬污染之可行性研究,碩士論文,國立中興大學,(2004)。
79.土壤重金屬檢測方法-王水消化法 NIEA S321.63B,環境檢驗所,(2003)。
80.土壤水分含量測定方法-重量法NIEA S280.61C,環境檢驗所,(2002)。
81.羅煌木,「焚化爐底灰物化特性及掩埋場植生復育研究」,博士論文,國立中興大學水土保持研究所,臺中,(2002)。
82.楊博清,2002。「添加灰渣於掩埋場覆土中甲烷氧化作用之研究」,碩士論文,國立中興大學環境工程學系,台中,(2002)。
83.黃俊仁,土壤中鋅和鎘對蚯蚓毒性和生質量的影響,碩士論文,國立中興大學土壤環境科學系,台中,(2002)。
84.「台灣的蚯蚓」- 科學月刊 364: 332-339 ,(2000)。
85.吳慶龍,「焚化底灰粗粒徑替代道路基層材料之可行性探討」,碩士論文,淡江大學水資源及環境工程學系,台北,(2000)。
86.陳怡君,施用殺蟲劑及堆肥對蚯蚓毒性及生質量的影響,碩士論文,國立中興大學土壤環境科學系,台中,(1999)。
87.李釗、江少鋒、郭文田,「都市垃圾焚化灰渣做為混凝土細骨材之可行性研究」,一般廢棄物焚化灰渣資源化技術與實務研討會,第91-112頁,(1996)。
88.楊居榮、葛家璊,「蚯蚓對土壤重金屬的吸收與富集」,北京師範大學地理系,(1994)。
89.郭登志,「台灣紅蚯蚓(Pheretima asiatica)之繁殖,成分分析及其對土壤之肥效」,生物科學30:7-15,(1987)。
90.行政院環境保護署網站 http://www.epa.gov.tw/main/index.asp
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top