跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/02 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊清任
研究生(外文):Ren-ching Yang
論文名稱:磺酸苯、偏苯三甲基、順丁稀二和琥珀酸酐進行幾丁聚糖胺基衍生化之製備
論文名稱(外文):Preparation of the amino O-Sulfobenzoic、Trimellitic、Maleic and Succinic anhydride derivatized chitosan
指導教授:陳齊聖陳齊聖引用關係
指導教授(外文):Chee-Shan chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:取代率水溶性酸酐衍生化胺基幾丁聚糖
外文關鍵詞:substitutionwater -solubilityanhydridederivativeaminechitosan
相關次數:
  • 被引用被引用:1
  • 點閱點閱:440
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究以化學修飾法改變幾丁聚糖上之胺基。實驗以不同酸酐類與幾丁聚糖,在甲醇溶劑系統中進行衍生化。製備成MC、SC、TMC等幾丁聚糖衍生物。探討不同衍生物在水及醋酸溶液中溶解度之影響。實驗結果顯示,TMC衍生物之取代率79.75 DS與水溶性提升3.75倍。
本研究利用氧化劑(2% H2O2)對幾丁聚糖進行降解(12、24、48、72 小時)得到不同分子量之產物,並控制反應時間(6、12、18、24 小時)以及當量比(1、0.7、0.5、0.3 equiv/-NH2),製備不同取代率幾丁聚糖衍生物(TMC)對水溶性及醋酸濃度溶解度之影響討論。反應時間0~12 hr 與以及當量比0~0.5equiv/-NH2,取代率與溶解度改善幅度較為顯著。反應時間12~24 hr 以及當量比0.5~1 equiv/-NH2 相對而言,取代率與溶解度之改善幅度則較不顯著。
This research studied chitosan derivatives by chemically modifying the amine groups onchitosan molecules. Anhydrides of maleic acid, succinic acid and trimellitic acid were used to react with chitosan in methanol solvent system. The position of substitution was verified by IR spectra, and the degree of substitution was determined by quantif ying the degree of deacetylation. The effects of the types of amino substitution, the degree of substitution and molecular weight on the solubility in water and acetic acid solution were investigated. Experimental results showed a 3.75 times higher water s olubility for trimellitic acid derivatized chitosan (TMC) was obtained at a degree of substitution of 79.75%. Chitosan of various molecular weights were prepared by hydrolysis with 2% hydrogen peroxide for 12, 24, 48 and 72 hours at room temperature. The d egree of substitution was manipulated by controlling the reaction time. Improvements in solubility and the degree of substitution were more profound for reaction conditions of 0 -12 hours and 0-0.5 equivalent/-NH2, than of 12-24 hours and 0.5-1 equivalent/-NH2.
封面內頁
博、碩士論文授權書
論文口試委員會審定書

摘要.....I
ABSTRACT.II
誌 謝....III
目錄.....IV
圖目錄...VIII
表目錄...XI
第一章、前言......1
第二章、文獻回顧..2
2-1、幾丁質與幾丁聚醣.......2
2-2、幾丁質與幾丁聚醣之由來與分佈....2
2-3、幾丁質與幾丁聚醣之結構........3
2-4、幾丁質/幾丁聚醣之溶解性.........4
2-4-1、幾丁質之溶解性.......4
2-4-2、幾丁聚醣之溶解性.....5
2-5、影響幾丁質/幾丁聚醣溶解度之因子.6
2-5-1、微細結晶區的生成.....6
2-5-2、乙醯基的含量及分布...7
2-5-3、分子量的大小.........9
2-6、幾丁質/幾丁聚醣之保水性.........10
2-7、幾丁質/幾丁聚醣各領域之應用.....11
2-7-1、食品方面....11
2-7-2、農業方面....12
2-7-3、環保方面....12
2-7-4、醫藥方面....13
2-7-5、生物技術方面..................13
2-8、水溶性幾丁質類物質之製備方法....14
2-8-1、酸水解法....14
2-8-2、鹼水解法....15
2-8-3、氧化降解法..16
2-8-4、酵素水解法..17
2-8-5、物理方法....18
2-8-6、化學修飾法..18
2-9、分子量測量法..20
2-10、紅外線光譜分析........21
第三章、實驗材料與方法......34
3-1、實驗材料......34
3-1-1、化學藥品....34
3-1-2、器材........35
3-2、實驗方法......37
3-2-1、幾丁聚醣衍生物(TMC、SC、MC、SBC)之製備.....37
3-2-2、幾丁聚醣降解製備....37
3-2-3、不同分子量的偏苯三甲基幾丁聚醣(TMC)之製備....38
3-2-4、不同取代率的偏苯三甲基幾丁聚醣(TMC)之製備....38
3-2-6、幾丁聚醣之純化......39
3-2-7、紅外線光譜分析(FT-IR)....39
3-2-8、去乙醯度之測定....39
3-2-9、幾丁聚醣衍生物溶解度檢測....40
3-2-10、幾丁聚醣衍生物分子量之測定....41
第四章、結果與討論 ....58
4-1、製備不同衍生化幾丁聚糖(TMC、MC、SC)....58
4-1-1、不同衍生化幾丁聚糖(TMC、MC、SC)之FT-IR光譜圖....58
4-1-2、不同衍生化幾丁聚糖(TMC、MC、SC)之取代率....58
4-1-3、不同衍生化幾丁聚糖(TMC、MC、SC)之分子量鑑定....58
4-2、幾丁聚醣降解/不同分子量的幾丁聚衍生化(TMC)之製備與探討....59
4-2-1、氧化劑降解幾丁聚醣之製備與探討.........60
4-2-2、不同分子量的幾丁聚衍生物(TMC)之製備與探討....60
4-2-3、不同分子量的幾丁聚衍生物(TMC)之取代率..60
4-3、製備不同取代的幾丁聚醣衍生物(TMC)........61
4-3-1、不同取代率TMC的幾丁聚醣衍生物 ....61
4-3-2、不同方式取代率/不同取代率TMC衍生物探討.62
4-3-2-1、不同取代的幾丁聚醣衍生物(TMC)之FT-IR光譜圖....62
4-3-2-2、不同取代的幾丁聚醣衍生物(TMC)之取代率之表現...62
4-3-2-4、不同取代的幾丁聚醣衍生物(TMC)之水溶性檢測.....63
4-3-2-5、不同取代的幾丁聚醣衍生物(TMC)之醋酸溶劑檢測...64
第五章、結論與展望 ..86
第六章、參考文獻....87


圖目錄
圖2-1、纖維素、幾丁質與幾丁聚醣之構造。....23
圖2-2、幾丁質與幾丁聚醣之結構轉換圖。......24
圖2-3、由蝦、蟹製造幾丁質流程圖。..........25
圖2-4、幾丁質、幾丁聚醣之製備及其食品之應用形式。....26
圖2-5、FT-IR傅立葉轉換紅外光線儀示意圖。...27
3-2、實驗設計流程..........................36
圖3-1、幾丁聚醣衍生物製備之流程圖..........43
圖3-2、(A)偏苯三甲基酸酐幾丁聚醣(TMC)之製備化學結構示意圖(B)偏苯三甲基酸酐幾丁聚醣(TMC)外觀圖。....44
圖3-3、(A)順丁烯二幾丁聚醣(MC)之製備化學結構示意圖(B)順丁烯二幾丁聚醣(MC)外觀圖。..................45
圖3-4、(A)琥珀幾丁聚醣(SC)之製備化學結構示意圖(B)琥珀幾丁聚醣(SC)外觀圖。..........................46
圖3-5、(A)磺酸苯幾丁聚醣(SBC)之製備化學結構示意圖(B)磺酸苯幾丁聚醣(SBC)外觀圖。...................47
圖3-6、減壓濃縮裝置儀器裝置圖示。...........48
圖3-7、透析樣品裝置圖示。...................49
圖3-8、冷凍乾燥機裝置圖示。.................50
圖3-9、幾丁聚醣降解(12、24、48、72)小時的樣品。........................................51
圖3-11、製備成大小分子量的偏苯三甲基幾丁聚醣衍生物(TMC)。(A)分子量20 KDA之TMC、(B)分子量88 KDA之TMC。..........52
圖3-10、不同取代率的偏苯三甲基幾丁聚醣(TMC)的圖示。.....53
合成比例:(A) 1.0 EQUIV/-NH2 (B) 0.7 EQUIV/-NH2 (C) 0.5 EQUIV/-NH2 (D) 0.3 EQUIV/-NH2。.........................53
圖3-12、幾丁聚醣純化前後差異性圖示。(A) 幾丁質、(B)幾丁聚醣、(C)幾丁聚醣純化過的。...............................54
圖3-13、FT-IR紅外光檢測儀器圖示。.......................55
圖3-14、去乙醯度滴定測量圖示。..........................56
圖3-15、(A)黏度檢測分子量示意圖(B)外差法求極限黏度示意圖。....................................................57
圖4-1、不同衍生化之幾丁聚醣之傅立葉轉換紅外光(FT-IR)光譜圖。....................................................65
圖4-2、幾丁聚糖及幾丁聚糖衍生物對不同醋酸濃度之溶解性影響......................................................66
圖4-3、幾丁聚醣經2 % (V/V)氧化劑(H2O2)降解分子量之趨勢圖。....................................................67
圖4-4、幾丁聚糖經氧化劑(H2O2)降解之傅立葉轉換紅外線光譜圖。....................................................68
圖4-5、氧化劑(H2O2)降解之幾丁聚糖於不同濃度醋酸溶劑檢測。....................................................69
圖4-6、不同分子量TMC幾丁聚醣之分子量鑑定。..............70
圖4-7、不同分子量TMC幾丁聚醣之傅立葉轉換紅外線(FT-IR)光譜圖。....................................................71
圖4-8、不同分子量TMC幾丁聚醣之(TMC 2.0*105 DA與8.8*105DA)不同醋酸濃度影響。........................................72
圖4-9、不同取代率TMC之反應時間FT-IR光譜圖。.............73
圖4-10、不同取代率TMC之當量比例FT-IR光譜圖。............74
圖4-11、不同取代率TMC之(A)時間點與(B)當量比例之取代程度。....................................................75


表目錄
表2-1 幾丁質的分類 .......................................28
表2-2 幾丁質/幾丁聚醣及其衍生物在食品之應用領域..........29
表2-3 幾丁聚醣在生物技術研究上之應用 ....................30
表2-4 水溶性幾丁聚醣衍生物及其特.........................31
表2-5 紅外線範圍分級.....................................32
表2-6 一般測量分子量方法之比較表.........................33
表4-1、不同衍生化之幾丁聚醣之取代率。....................76
表4-2、不同衍生化之幾丁聚醣之分子量鑑定。................77
表4-3、幾丁聚醣及幾丁聚醣衍生物之水溶性影響。............78
表4-4、幾丁聚糖經2% (V/V)氧化劑(H2O2)降解之分子量鑑定。..79
表4-5、氧化劑(H2O2)降解幾丁聚糖分子量之水溶性影響。......80
表4-6、不同分子量TMC幾丁聚醣之取代程度。.................81
表4-7、不同分子量TMC幾丁聚醣(TMC 2.0*105 DA與8.8*105DA)之水溶性影響。...............................................82
表4-8、不同取代率TMC之時間點與當量比之分子量鑑定。.......83
表4-9、不同取代率TMC之時間點與當量數之水溶性影響。.......84
表4-10、不同取代率TMC之時間點與當量數之不同濃度醋酸溶劑影響。.....................................................85
丁嘉興。2007。不同分子量幾丁聚糖之製備與分離、私立朝陽科技大 學應用化學系碩士論文碩士論文。
王以雯 。2003。幾丁聚醣麥芽糖衍生物之製備、溶解性及保水性之探討 、國立台灣海洋大學食品科學系碩士學位論文。
王祖善。2000。磺酸苯幾丁聚醣之不同分子量及含硫率對水溶性及抗菌性之影響、私立大業大學食品工程研究所碩士論文。
王三郎。1999。海洋未利用生物資源之回收再利用—幾丁質及幾丁聚醣。生物資源生物技術,1(1):1-11。
李明遠,2000,醋酐乙醯化法製備水溶性幾丁聚醣之探討,國立台灣海洋大學食品科學研究所碩士論文。
林俊煌,1992,不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度;膜之物理特性的關係,國立台灣海洋大學食品科學研究所碩士論文。
林夏茵,2002,水溶性幾丁聚醣雙醣衍生物抗氧化性之探討,國立台灣大學食品科技研究所碩士論文。
范修榕,2000,水溶性幾丁聚醣在O/W/O多重乳化乳液之應用,國立台灣海洋大學食品科學研究所碩士論文
陳榮輝,2001,幾丁質、幾丁聚醣的生產製造、檢測與應用之研究成果報告,生物資源 生物技術,3 (4): 16-33
游士弘,1997,幾丁質與幾丁聚醣之N-乙醯化程度及純度測定方法之探討,國立台灣海洋大學食品科學研究所碩士論文。
曾蘭嵐,2000,不同機械能量對幾丁聚糖極限分子量與分子量分布之影響,國立台灣海洋大學食品科學研究所碩士論文。
彭仁信,2002,醋酸酐乙醯化反之幾丁聚醣特性及幾丁聚醣酵素水解產物對微生物生長之影響之探討,國立台灣海洋大學食品科學研究所碩士論文。
楊萃渚,2002,水溶性幾丁聚醣單雙醣衍生物之合成與其一些理化與功能特性之探討,國立台灣大學食品科技研究所博士論文。
李勳宜。1988。草蝦幾丁聚醣又製備及其應用研究。國立臺灣大學食品科技研究所碩士論文。
袁國芳。1999。幾丁與幾丁聚醣在食品業上之應用。食品工業,31(10)︰19-25。
曾如玲、林孫基、吳豐智。1995。幾丁聚醣吸附反應性染料之研究。第二十屆廢水處理技術研討會論文集,7︰23-30。
廖萬裕。1997。幾丁聚醣及其衍生物之抑菌研究、私立大葉工學院食品工程研究所碩士論文
蘇文慧。1998。幾丁聚醣之抑菌作用及其在食品存上的應用。國立臺灣海洋大學水產食品科學系碩士論文。
Agulló, E., Rodríguez, M. S., Ramos, V. and Albertengo, L. 2003. Present and future role of chitin and chitosan in food. Macromolecular Bioscience. 3: 521-530.
Aiba, S. 1991. Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. International Journal of Biological Macromolecules. 13: 40-44.
Aiba, S. I. 1994. Preparation of N-acetylchitooligosaccharides from lysozymic hydrolysates of partially N-acetylated chitosans.
Carbohydrate Research. 261: 297-306.
Amiji, M. M. 1998. Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups. Colloids and Surfaces
B: Biointerfaces. 10: 263-271.
Angelo, S., J, A., Vercellott and R, J. 1989. Inhibition of warmed-over flavor and preserving of uncured meat containing materials. Patent
No. US 4871556.
Austin, P. R., Brine, C. J., Castle, J. E. and Zikakis, J. P. 1981. Chitin:
New facets of research. Science. 212: 749-753.
Borch, R., Bernstein, M. D. and Durst, H. D. 1970. The cyanohydridoborate anion as a selective reducing agent. Journal of American Chemistry. Society. 12: 2897-2904.
Chen, C. S., Liau, W. Y. and Tsai, G. J. 1998. Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster
preservation. Journal of Food Protection. 61: 1124-1128.
Chen, L., Du, Y., Wu, H. and Xiao, L. 2001. Relationship between molecular structure and moisture-retention ability of carboxymethyl chitin and chitosan. Journal of Applied Polymer Science. 83: 1233–1241.
Chen, L., Du, Y. and Zeng, X. 2003. Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of carboxymethyl chitosan II. Effect of degree of deacetylation and carboxymethylation. Carbohydrate Research. 338: 333–340.
Cho, Y. W., Cho, Y. N., Chung, S. H., Yoo, G. and Ko, S.W. 1999. Water-soluble chitin as a wound healing accelerator.Biomaterials. 20: 2139-2145.
Cho, Y. W., Jang, J. and Park, C. R. and Ko, S. W. 2000. Preparation and solubility in acid and water of partially deacetylated chitins.
Biomacromolecules. 1: 609-614.
Chung, T. W., Yang, J., Akaike, T., Cho, K. Y., Nah, J. W., Kim, S. I. and Cho, C. S. 2002. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials. 23: 2827–2834.
Clayer, A., Vachoud, L., Viton, C. and Domard, A. 2003. Atypical polysaccharide physical gels: structure/property relationships. Macromolecular Symposia. 200: 1-8.
Dong, Y., Wu, Y., Wang, J. and Wang, M. 2001. Influence of degree of molar etherification on critical liquid crystal behavior of hydroxypropyl chitosan. European Polymer Journal. 37: 1713-1720.
Ding, W., Lian, Q., Samuels, R. J. and Polk, M. B. 2003.Synthesis and characterization of a novel derivative of chitosan. Polymer. 44: 547-556.
Duarte, M. L., Ferreira, M. C., Marvão, M. R. And Rocha, J. 2002. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules. 31: 1-8.
Gorochovceva, N. and Makuška, R. 2004. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. European Polymer Journal. 40: 685–691.
Gotoh, T., Matsushima, K. and Kikuchi, K. I. 2004. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere. 55: 135-140.
Guo, X. F. and Kikuchi, K., and Matahira, Y., Sakai, K. and Ogawa, K. 2002. Water-soluble chitin of low degree of deacetylation. Journal of Carbohydrate Chemistry. 21: 149-161.
Hai, L., Diep, T. B., Nagasawa, N., Yoshii, F. and Kume, T. 2003. Radiation depolymerization of chitosan to prepare oligomers. Nuclear Instruments and Methods in Physics Research B. 208: 466-470.
Harish Prashanth, K. V., Kittur, F. S. and Tharanathan, R. N. 2002. Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydrate Polymers. 50: 27-33.
Hayes and R, E. 1986. N,O-carboxymethyl chitosan and preparative
method therefore. Patent No. US 4619995.
Herasa, A., Rodrïguez, N. M., Ramos, V. M. and Agulló, E. 2001. N-methylene phosphonic chitosan: a novel soluble derivative.
Carbohydrate Polymers. 44: 1-8.
Holme, K. R. and Hall1, L. D. 1991. Chitosan derivatives bearing C10-alkyl glycoside branches: A temperature-induced gelling polysaccharide. Macromolecules. 24: 3828-3833.
Holme, K. R. and Perlin, A. S. 1997. Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydrate Research. 302: 7-12.
Jia, Z., Shen, D. and Xu, W. 2001. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research. 333: 1-6.
Jia, Z. and She, D. 2002. Effect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydrate Polymers. 49: 393-396.
Kabal´nova, N. N., Murinov, K. Y., Mullagaliev, I. R., Krasnogorskaya, N. N., Shereshovets, V. V., Monakov, Y. B. and Zaikov, G. E. 2001. Oxidative destruction of chitosan under the effect of ozone and hydrogen peroxide. Journal of Applied Polymer Science. 81: 875-881.
Kim, M. and Han, J. 2002. Evaluation of physico-chemical characteristics and microstructure of tofu containing hight viscosity chitosan. International Journal of Food Science and Technology. 37: 277-283.
Kim, M. S., Sung, M. J., Seo, S. B., Yoo, S. J., Lim, W. K. and Kim, H. M. 2002. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid ß peptide and interleukin-1ß. Neuroscience Letters.
321: 105-109.
Kubota, N., Tatsumato, N., Sano, T. and Toya, K. 2000. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydrate Research. 324: 268-274.
Kurita, K., Kojima, T., Nishiyama, Y. and Shimojoh, M. 2000. Synthesis
and some properties of nonnatural amino polysaccharides: Branched chitin and chitosan. Macromolecules. 33: 4711-4716.
Kurita, K. 2001. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science. 26: 1921-1971.
Kurita, K., Akao, H., Yang, J. and Shimojoh, M. 2003. Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having disaccharide maltose branches. Biomacromolecules. 4: 1264-1268.
Lu, S., Song, X., Cao, D., Chen, Y. and Yao, K. 2003. Preparation of water-soluble chitosan. Journal of Applied Polymer Science. 91: 3497-3503.
Madihally, S. V. and Matthew, H. W. T. 1999. Porous chitosan scaffolds for tissue engineering. Biomaterials. 20:1133-1142.
Maeda, Y. and Kimura, Y. 2004. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. American Society for Nutritional Sciences. 945-950.
Methacanon, P., Prasitsilp, M., Pothsree, T. and Pattaraarchachai, J. 2003. Heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydrate Polymers. 52: 119-123.
Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers. 5: 461-472.
Muzzarelli, R. A. A., Ramos, V., Stanic, V., Dubini, B., Belmonte, M. M., Tosi, G. and Giardino, R. 1998. Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydrate Polymers.
36: 267-276.
Ngimhuang, J., Furukawa, J., Satoh, T., Furuike, T. and Sakairi, N. 2004. Synthesis of a novel polymeric surfactant by reductive N-alkylation of chitosan with 3-O-dodecyl-D-glucose. Polymer. 45: 837–841.
Niola, F., Basora, N., Chornet, E. and Vidal, P. F. 1993. A rapid method for the determination of the degree N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC. Carbohydrate Research.
238: 1-9.
No, H. K., Cho, Y. I., Kim, H. R. and Meyers, S. P. 2000. Effective deacetylation of chitin under conditions of 15 psi/121℃. Journal of
Agricultural and food chemistry. 48: 2625-2627.
Okuyama, K., Noguchi, K. and Miyazawa, T. 1997. Molecular and crystal structure of hydrated chitosan. Macromolecules. 30: 5849-5855.
Okuyama, K., Noguchi, K., Kanenari, M., Egawa, T., Osawa, K. and Ogawa, K. 2000. Structural diversity of chitosan and its complexes. Carbohydrate Polymers. 41: 237-247.
Ono, K., Saito, Y., Yura, H., Ishikawa, K., Kurita, A., Akaike, T. and Ishihara, M. 1999. Photocrosslinkable chitosan as a biological adhesive. Journal of Biomedical Materials Research Part A. 49: 289-295.
Ottøy, M. H.,Vårum, K. M. and Smidsrød, O. 1996. Compositional heterogeneity of heterogeneously deacetylated chitosans.
Carbohydrate Polymers. 29: 17-24.
Park, J. H., Cho, Y. W., Chung, H., Kwon, I. C. and Jeong, S. Y. 2003. Synthesis and characterization of sugar-bearing chitosan derivatives: Aqueous solubility and biodegradability. Biomacromolecules.
4: 1087-1091.
Pawlak, A. and Mucha, M. 2003. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta. 396: 153-166.
Qin, C. Q., Du, Y. M. and Xiao, L. 2002. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan.
Polymer Degradation and Stability. 76: 211-218.
Qin, C., Du, Y., Xiao, L., Liu, Y. and Yu, H. 2002. Moisture retention and antibacterial activity of modified chitosan by hydrogen peroxide. Journal of Applied Polymer Science. 86: 1724–1730.
Qin, C., Zhou, B., Zeng, L., Zhang, Z., Liu, Y., Du, Y. and Xiao, L. 2004. The physicochemical properties and antitumor activity of cellulose-treated chitosan. Food Chemistry. 84: 107-115.
Rinaudo, M., Desbrières, J., Dung, P. L., Binh, P. T. and Dong, N. T. 2001. NMR investigation of chitosan derivatives formed by the reaction of chitosan with levulinic acid. Carbohydrate Polymers. 46: 339-348.
Roberts, G.. A. F. 1992. In: Chitin chemistry. ed. by Roberts, G.. A. F.
Romanazzi, G., Nigro, F. and Ippolito, A. 2003. Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biology and Technology. 29: 73-80.
Sandford, P. A. 2002. Commercial sources of chitin&chitosan and their utilization. In: Advances in Chitin Science (Ⅵ). ed. by Vårum, K. M., Domard, A. and Smidsrød, O. p: 35-42.
Sashiwa, H. and Shigemasa, Y. 1999. Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydrate Polymers. 39: 127–138.
Sashiwa, H., Shigemasa, Y. and Roy, R. 2002. Chemical modification of chitosan . Part 9: Reaction of N-carboxyethylchitosan methyl ester with diamines of acetal ending PAMAM dendrimers. Carbohydrate Polymers. 47: 201-208.
Shigemasa, Y., Usui, H., Morimoto, M., Saimoto, H., Okamoto, Y., Minami, S. and Sashiwa, H. 1999. Chemical modification of chitin and chitosan
1: preparation of partially deacetylated chitin derivatives via a ring-opening reaction with cyclic acid anhydrides in lithium chloride/N,N-dimethylacetamide. Carbohydrate Polymers.
39: 237-243.
Sieval, A. B., Thanou, M., Kotzé, A. F., Verhoef, J. C., Brussee, J. and Junginger, H. E. 1998. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydrate
Polymers. 36: 157-165.
Strand, S. P., SmidsrØd, O. and Vårum, K. M. 2002. Structure-function relationship in chitosans. In: Advances in Chitin Science (Ⅵ). ed. by Vårum, K. M., Domard, A. and Smidsrød, O. p: 27-34.
Sugimoto, M., Morimoto, M., Sashiwa, H., Saimoto, H. and Shigemasa, Y. 1998. Preparation and characterization of water-soluble chitin and
chitosan derivatives. Carbohydrate Polymers. 36: 49-59.
Tamura, H., Yamamoto, K. and Kuniyasu, H. 2002. N-acetylation dependent chitin solubility in calcium chloride dehydrate saturated methanol. In: Advances in Chitin Science (Ⅵ). ed. by Vårum, K. M., Domard, A. and Smidsrød, O. p: 293-294.
Thanou, M., Verhoef, J. C. and Junginger, H. E. 2001. Oral drug absorption enhancement by chitosan and its derivatives. Advanced
Drug Delivery Reviews. 52: 117-126.
Tian, F., Liu, Y., Hu, K. and Zhao, B. 2003. The depolymerization mechanism of chitosan by hydrogen peroxide. Journal of Materials Science. 38: 4709-4712.
Tôei, K. and Kohora, Y. 1976. A conductometric method for colloid titrations. Analytica Chimica Acte. 83: 59-65.
Tsigos, I., Martinou, A., Kafetzopoulos, D. and Bouriotis, V. 2000. Chitin
eacetylases: new, versatile tools in biotechnology. Trends In Biotechnology. 18: 305-312.
Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., Kadosawa, T. and Fujinaga, T. 1999. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 20: 1407-1414.
Vårum, K. M., Ottøy, M. H. and Smidsrød, O. 1994. Water-solubility of partially N-acetylated chitosan as a function of pH: effect of chemical composition and depolymerisation. Carbohydrate
Polymers. 25: 65-70.
Vårum, K. M., Ottøy, M. H. and Smidsrød, O. 2001. Acid hydrolysis of chitosans. Carbohydrate Polymers. 46: 89-98.
Viladot, J. L. and Moragas, M. 2002. New cosmetic delivery systems based on chitosan. In: Advances in Chitin Science (Ⅵ). ed. by Vårum, K. M., Domard, A. and Smidsrød, O. p: 181-184.
Wan Ngah, W. S. and Liang, K. H. 1999. Adsorption of gold (Ⅲ) ions onto chitosan and N-carboxymethyl chitosan: Equilibrium studies. Industrial & Engineering Chemistry Research. 38: 1411-1414.
Wang, X., Ma, J., Wang, Y. and He, B. 2001. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials. 22: 2247-2255.
Xie, W., Xu, P., Wang, W. and Liu, Q. 2002. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydrate
Polymers. 50: 35-40.
Yalpani, M. and Hall. L. D. 1984. Some chemical and analytical aspects of polysaccharide modifications. 3. Formation of branched-chain, soluble chitosan derivatives. Macromolecules. 17: 272-281.
Yang, T. C., Chou, C. C. and Li, C. F. 2002. Preparation, water solubility and rheological property of the N-alkylated mono or disaccharide chitosan derivatives. Food Research International. 35: 707–713.
Zhang, C., Ping, Q., Zhang, H. and Shen, J. 2003. Synthesis and characterization of water-soluble O-succinyl-chitosan. European Polymer Journal. 39: 1629-1634.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top