參考文獻
1.吳智鴻(2004)。結合基因演算法最佳化「支持向量機」參數於財務危機上之應用。國立台北大學企業管理研究所博士論文。2.林有志與廖宜鋒(2006)。提前採用資產減損公報之公司特性及盈餘管理動機。文大商管學報。11(1),11-28。
3.林政謙(2005)。應用平滑支撐向量機與類神經網路預測台灣上市電子指數漲跌之研究。東吳大學經濟學系博士論文。4.財團法人中華民國會計研究發展基金會(2004),財務會計準則公報第35號公報:「資產減損之會計處理準則」。台北,財務會計準則委員會。
5.張嘉豪(2006)。應用平滑支撐向量分類於台灣股票市場選股之研究。國立臺灣科技大學資訊管理系碩士論文。6.陳慶隆(2007)。選擇性新會計準則實施時點對策略性會計報導與資訊攸關性的影響。臺灣管理學刊。7(1),131-159。7.黃振豊、陳敏齡(2006)。公司提前適用第三五號公報「資產減損」動因之探討。淡江人文社會學刊。25,51-70。8.葉怡芳(2004)。構建財務危機預警模式—支向機與羅吉斯之應用。元智大學會計碩士論文。9.劉易昌(2004)。支援向量機於財務預測上之應用。靜宜大學資訊管理研究所碩士論文。10.薛兆亨與李羿儒(2004) 財務危機預警模式之再探討-應用支撐向量機及邏輯斯迴歸。科技整合管理國際研討會。49 – 72。
11.Cao, L. J. and Tay, F. E. H. (2001). Financial forecasting using support vector machines, Neural Computing & Applications, 10(2), 184 – 192.
12.Cao, L. J. and Tay, F. E. H. (2003). Support vector machine with adaptive parameters in financial time series forecasting, Neural Networks, 14(6), 1506 – 1518.
13.Carn, N., Rabianski, J., Racster, R. & Seldin, M. (1998). Real estate market analysis-techniques and applications. Prentice-Hall.
14.Chao, C. L. (2006). An examination of SFAS No. 35: Adoption timing motives, write-off characteristics, and market reaction, International Journal of Accounting Studies, 45_s, 77-120.
15.Cherkassky, V. and Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks Archive, 17(1), 113-126.
16.Chia, F. (1995). An investigation Into the causes and effects of asset write-offs in Australia. PhD dissertation, University of Western Australia.
17.Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
18.Cotter, J., Stokes, D. and Wyatt, A. (1998). An analysis of factors influencing asset write-down, Accounting and Finance, 38 (2), 157-179.
19.Dietterich, T. G. (2000). Ensemble methods in machine learning. In J. Kittler and F. Roli (Ed.) First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science (pp. 1-15). New York: Springer Verlag.
20.Dimitriadou, Evgenia, Hornik, K., Leisch, F., Meyer, D. and Weingessel, A. (2009). e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.5-19.
21.Elliott, J. and Shaw, W. (1988). Write-offs as accounting procedures to manage perceptions, Journal of Accounting Research, 26, 91-119.
22.Francis, J., Hanna, J. and Vincent, L. (1996). Causes and effects of discretionary asset write-offs, Journal of Accounting Research, 34(3), 117-134.
23.Healy, P. (1996). Discussion of a market-based evaluation of discretionary accrual models, Journal of Accounting Research, 34, 107-115.
24.Heflin, F., and Warfield, T. (1997). Managerial discretion in accounting for asset write-offs, Working Paper, University of Wisconsin-Madison.
25.Hsieh W. T. and Wu, T. Z. C. (2006). Determinants and market reaction of assets impairment in Taiwan, Taiwan Accounting Review, 6(1), 59-95。
26.Hsu, C. W., Chang, C. C. and Lin, C. J. (2008). A practical guide to support vector classification. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
27.Hua, Zhongsheng, Yu, W., Xua, X., Bin, Z. and Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression, Expert Systems with Applications, 33, 434-440.
28.Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software 11(9), 1-20. URL http://www.jstatsoft.org/v11/i09/
29.Loh, A. L. and Tan, T. H. (2002). Asset write-offs – managerial incentives and macroeconomic factors. ABACUS, 38(1), 134-151.
30.Min, J. H. and Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Systems with Applications, 28, 603–614.
31.R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
32.Reber, B., Berry, B. and Toms, S. (2005). Predicting mispricing of initial public offerings. Intelligent Systems in Accounting, Finance and Management, 13, 41-59.
33.Rees, L., Gill, S. and Gore, R. (1996). An investigation of asset write-downs and concurrent abnormal accruals. Journal of Accounting Research, 34, 157-169.
34.Riedl, E. J. (2004). An examination of long-lived asset impairment, The Accounting Review, 79(3), 823-852.
35.Scholkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press, Cambridge, MA.
36.Shin, K. S., Lee, T. S. and Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model, Expert Systems with Applications, 28, 127–135.
37.Strong, J. and Meyer, J. (1987). Asset write-downs: Managerial incentives and security returns, Journal of Finance, 42, 643-661.
38.Turner, L. (2001). The state of financial reporting today: An unfinished chapter II. Speech delivered at the third Annual SEC Disclosure and Accounting Conference in New York, NY. June 7.
39.Van Gestel, T., Baesens, B., Suykens, J., Espinoza, M., Baestaens, D. E. Vanthienen, J. and De Moor, B. (2003). Bankruptcy prediction with least squares support vector machine classifiers, 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 20-23 March 2003, 1-8
40.Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York, N.Y.
41.Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
42.Zucca, L. and Campbell, D. (1992). A closer look at discretionary writedowns of impaired assets, Accounting Horizons, 6(3), 30-41.