跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏曉明
研究生(外文):Shiao-Ming Wei
論文名稱:在整合式WiMAX/WLAN網路中具QoS感知無縫換手之RSVP延展方法
論文名稱(外文):RSVP Extensions for Seamless Handoff with QoS Aware in Integrated WiMAX/WLAN Networks
指導教授:謝政勳謝政勳引用關係王能中王能中引用關係
指導教授(外文):Cheng-Hsiung HsiehNeng-Chung Wang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:38
中文關鍵詞:WiMAX服務品質WLAN異質無線網路換手
外文關鍵詞:Handoffheterogeneous wireless networksWiMAXquality of serviceWLAN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在不久的未來,未來的網路將會是異質性。像是全球互通微波存取(WiMAX)和無線區域網路(WLAN)可以各自結合彼此優點,覆蓋範圍及資料傳輸速率在混合式網路系統的基礎上。因此,提供服務品質(QoS)連接無縫式(Seamless)換手(Handoff)在WLAN與WiMAX環境是很重要的議題。然而,在目前的無線網路環境中,許多無線行動裝置使用者在具移動性(Mobility)的狀態下使用即時性服務(如聲音、視訊會議及影像等)時,會面臨跨越網路的服務邊界而進入另外一個網路的服務區域(這機制我們稱之為換手Handoff 或Handover)之時,因此引發新資源之需求,但也往往因無法取得所需之網路資源而造成嚴重的延遲或甚至造成連結的中斷。在本論文中,我們提出一個在異質無線網路環境中,以服務品質(QoS)感知RSVP方法達到使用即時性服務之服務品質(QoS)保證之方法。提出方法基於整合在WiMAX與WLAN網路中,具服務品質(QoS)感知移動架構以保證一定的服務品質(QoS)。在本論文中,藉由行動節點的移動和訊號強度執行預先換手(Pre-handoff)而選擇網路。在另一方面,假如換手(Handoff)觸發了網路擁塞,行動節點依據擁塞控制服務品質(QoS)參數而將會執行換手(Handoff)。我們提出的方法可以有效降低封包傳輸因換手(Handoff)時需重新繞路連線所造成的的延遲(Delay)時間和換手阻塞率在異質無線網路。
In the near future, future network environments will be heterogeneous. The hybrid networks based on systems such as WiMAX (Worldwide Interoperability for Microwave Access) and WLAN (Wireless Local Access Networks) can combine their respective advantages on coverage and data rates. Therefore, it is a significant issue of how to provide seamless handoff for QoS connections in WLAN and WiMAX environments. However, in the wireless networks we use today, many mobile users still cannot obtain the network resources they need when employing the real-time services like voice, video conferences, video IP phone, and so forth while handoff occurs, and it causes a serious delay or even the break of the link. Thus, our approach is proposed to guarantee the QoS with QoS aware RSVP in heterogeneous wireless networks. The proposed scheme is based on QoS aware mobility architecture to guarantee a certain QoS in integrated WiMAX and WLAN networks. In this paper, the network selection is ignited by mobility of MS and pre-handoff is performed based on signal strength. On ther other hand, if the selection is triggered by the congestion, we will perform the handoff based on congestion controlling delay according to the QoS parameters. Our proposed scheme of resource pre-reservation can reduce the delay time of re-routing while handoff occurs and handoff blocking rate in the heterogeneous wireless networks efficiently.
摘要 I
Abstract II
Contents IV
List of Figures VI
List of Tables VII

Chapter 1 Introduction 1
1.1 Quality of Service (QoS) 1
1.2 Design Motivation and Concept 3
1.3 Thesis Organization 6
Chapter 2 Related Work 7
2.1 Heterogeneous Wireless Networks 7
2.2 IEEE 802.11 WLAN 10
2.3 IEEE WiMax/802.16 Network 13
2.4 Resource ReSerVation Protocol (RSVP) 15
2.5 Issues of Supporting RSVP in Heterogeneous Wireless Network Environments 17
2.6 Related Researches 18
Chapter 3 Heterogeneous Wireless Networks 20
3.1 Overview of Hybrid Wireless Network Architecture 20
3.2 The Model for QoS Aware RSVP 21
3.3 Proposed QoS aware RSVP Scheme 22
3.4 Reserving Management 22
3.5 Handoff Decision and Network Selection 24
Chapter 4 Performance Evaluation 28
4.1 Simulation Environment 28
4.2 Simulation Results 29
Chapter 5 Conclusions and Future Work 34
5.1 Conclusions 34
5.2 Future Work 35
References 36
List of Figures
Fig 1 1 Simplified models of factors that form perception of QoS 2
Fig 2 1 Heterogeneous Wireless Network 8
Fig 2 2 Network heterogeneity 9
Fig 2 3 Relation between service, protocols and data bearer 10
Fig 2 4 An example of an IEEE 80216 mesh network 13
Fig 2 5 Scenario of RSVP 16
Fig 3 1 Heterogeneous scene in hybrid network 20
Fig 3 2 The changing of network state with the different RSS threshold 23
Fig 3 3 The MSi moves from WLAN to WiMAX and WLAN signal overlap areas 26
Fig 3 4 The process for handoff decision 27
Fig 4 1 The lost packet probability vs number of nodes 29
Fig 4 2 The handoff blocking probability in different mobility of MS 30
Fig 4 3 The handoff call dropping probability vs duration of time 31
Fig 4 4 Cancel probability vs number of WLANs 32
Fig 4 5 The delay comparison of network selecting vs speeds of MS 33
List of Tables
Table 1 1 The example of objective metrics 3
Table 1 2 The example of subjective metrics (MOS: Mean Opinion Score) 3
Table 2 1 IEEE 80211 standards and worldwide frequency bands 11
[1] Wi-Fi Alliance, http://www.wi-fi.org/
[2] WiMAX Forum, http://www.wimaxforum.org/
[3] ATM Forum, Traffic Management Specification version 4.0, March 1996.
[4] ETSI. “Network Aspects (NA); General Aspects of Quality of Service (QoS) and Network Performance (NP),” ETSI Technical Report, ETR 003, 2nd ed., October 1994.
[5] ETSI. “Satellite Earth Stations and Systems (SES). Broadband Satellite Multimedia IP. IP Interworking over Satellite; Performance, Availability and Quality of Service,” ETSI TR-102-157, March 2003.
[6] ITU-T Rec. E.800 “Terms and Definitions Related to Quality of Service and Network Performance Including Dependability,” August 1994.
[7] IEEE 802.11g, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher Data Rate Extension in the 2.4 GHz Band, Supplement to IEEE 802.11 Standard, June 2003.
[8] IEEE 802.16e, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, December 2005.
[9] IEEE P802.16e/D8, Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, May 2005.
[10] IEEE Std 802.11f. IEEE Recommended Practice for Multi-Vendor Access Point Interoperability via an Inter-Access Point Protocol Across Distribution Systems Supporting IEEE 802.11 Operation, January 2003.
[11] IEEE Std 802.16-2004. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, October 2004.
[12] J. N. Al-Karaki and A. E. Kamal, “End-to-End Support for Statistical Quality of Service in Heterogeneous Mobile Ad Hoc Networks,” Computer Communications, pp. 2119-2132, November 2005.
[13] R. Braden and L. Zhang, “Resource ReSerVation Protocol (RSVP) - version 1 Functional Specification,” RFC 2205, September 1997.
[14] Y.-W. Chen, I.-H. Peng, and S.-T. Guan, “Dynamic Bandwidth Management for Handoffs with RSVP in 802.16/WLAN Environment,” Advanced Information Networking and Applications Workshops, Vol. 2, pp. 243-248, May 2007.
[15] Z. Dai, R. Fracchia, J. Gosteau, P. Pellati, and G. Vivier, “Vertical Handover Criteria and Algorithm in IEEE 80211 80216 Hybrid Networks,” Proceedings of the IEEE Communication Magazine, Vol. 19, pp. 2480-2484, May 2008.
[16] W. C. Hardy, “QoS Measurement and Evaluation of Telecommunications Quality of Service,” Proceedings of the IEEE Communication Magazine, Vol. 40, pp. 30-32, February 2002.
[17] A. Hasib and A. O. Fapojuwo, “Analysis of Common Radio Resource Management Scheme for End-to-End QoS Support in Multiservice Heterogeneous Wireless Networks,” IEEE Transactions on Vehicular Technology, Vol. 57, No. 4, pp. 2264-2277, July 2008.
[18] N.-F. Huang and W.-E. Chen, “RSVP Extensions for Real-Time Services in Hierarchical Mobile IPv6,” ACM/Baltzer Mobile Networks and Applications, pp. 625-634, December 2003.
[19] G. S. Kuo and P. C. Ko, “Dynamic RSVP Protocol,” Proceedings of the IEEE Communication Magazine, Vol. 41, pp. 130-135, May 2003.
[20] G. S. Kuo and P. C. Ko, "Dynamic RSVP Extension for Wireless Mobile IP Networks," Proceedings of 2004 IEEE Vehicular Technology Conference, Vol. 4, pp. 2683-2687, Sept 2004.
[21] G. S. Kuo and Ming Wang, “A QoS-Adaptive Resource Reservation Scheme for MPEG4-based Services in Wireless Networks,” Proceedings of the IEEE Communication Magazine, Vol. 5, pp. 3261-3265, May 2005.
[22] M. Marchese, QoS OVER HETEROGENEOUS NETWORKS, John Wiley & Sons Ltd, 2007.
[23] H. J. Chao and X. Guo, Quality of Service Control in High-Speed Networks, John Wiley & Sons Ltd, 2002.
[24] Y. Matsui, S. Kihara, A. Mitsuzawa, S. Mariai, and H. Tokuda, “An extensible object model for QoS specification in adaptive QoS systems,” Proceedings of the 2nd IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, pp. 129-132, May 1999.
[25] N. Shenoy and R. Montalvo, “A Framework for Seamless Roaming across Cellular and Wireless Local Area Networks,” Proceedings of the IEEE Communications Magazine, pp. 50-57, June 2005.
[26] Q. Song and A. Jamalipour, “Network Selection in an Integrated Wireless LAN and UMTS Environment Using Mathematical Modeling and Computing Techniques,” Proceedings of the IEEE Wireless Communications Magazine, June 2005.
[27] S. H. Shah, K. Chen and K. Nahrstedt, “Dynamic bandwidth management for single-hop ad hoc wireless networks,” Proceedings of Pervasive Computing and Communications, pp. 199 - 217, Feb 2003.
[28] N.-C. Wang, J.-W. Jiang, and Y.-F. Huang, “RSVP Extensions for Real-Time Services in Heterogeneous Wireless Networks,” Computer Communications, pp. 2248-2257, July 2007.
[29] J. Wroclawski, “The Use of the Resource Reservation Protocol with the Integrated Service,” IETF RFC 2210, September 1997.
[30] F. Wangt et al., “IEEE 802.16e System Performance: Analysis and Simulations,” 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, pp.900-904, September 2005.
[31] H. J. Yao and G. S. Kuo, “An Integrated QoS-Aware Mobility Architecture for Seamless Handover in IEEE 802.16e Mobile BWA Networks,” Proceedings of the 2006 Military Communications Conference, pp. 1-7, October 2006.
[32] H. Zhu, M. Li, I. Chlamtac and B. Prabhakaran, “A Survey of Quality of Service in IEEE 802.11 Networks,” Proceedings of the IEEE Wireless Communications, Vol. 11, No. 4, pp. 6-14, August 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊