跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建文
研究生(外文):Chien-Wen Chen
論文名稱:Hydroxyamide催化二乙基鋅加成苯甲醛反應之應用
論文名稱(外文):Hydroxyamide-catalyzed Enantioselective Addition of Diethylzinc to Benzaldehyde
指導教授:徐基東
指導教授(外文):Chi-Tung Hsu
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:二乙基鋅
外文關鍵詞:amide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:494
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
利用蒎烯為主架構的掌性配位基來製備其掌性催化劑,並應用於二乙基鋅不對稱加成至芳香醛中的反應,嘗試著利用各種不同的溫度、溶劑、掌性催化劑,發現最佳的反應條件為使用20 mol %的掌性催化劑以正己烷為溶劑於低度-15°C下反應。

利用二乙基鋅應用於不對稱加成反應所得到的光學活性醇鏡像選擇性為0 % 至 62 % ee,產率為37 %至93 %。更重要的是單取代氨基化合物所顯現出較佳的ee值,相較之下C2的對稱氨基化合物則顯現出較低的ee值,而我們也使用鈦金屬催化應用於此不對稱反應, 所獲得的鏡像選擇性為9-14 % ee。
Using a variety of chiral catalysts prepared from (+)-pinene, the asymmetric addition of diethylzinc to aromatic aldehydes was investigated. At various temperatures, different solvents and various amounts of chiral catalysts were attempted. The best reaction condition involved n-hexane as a solvent, at -15°C and 20 mol % of chiral catalyst.

Asymmetric addition of diethylzinc to aromatic aldehydes producing optical active alcohols, resulting in the enantioselectivity from 0 % to 62 % ee. The yields were from 37 % to 93 %. Most importantly, mono- amide catalysts exhibited higher enantioselectivity, while the C2- symmetric amides exhibited lower selectivity. And we found that the reaction with the addition of titanium, seemingly have lower enantioselectivity in the range of 9-14 % ee.
目 錄:
中文摘要................................................ Ⅰ
Abstract................................................. Ⅱ
謝 誌................................................ Ⅲ
目 錄................................................ Ⅳ
圖 目 錄................................................ Ⅵ
表 目 錄................................................ Ⅷ
反應流程目錄............................................ Ⅸ
Introduction............................................. 1
Literature Reviews.......... .............................. 7
Results and discussion............... ...................... 21
Conclusion............................................... 36
General experimental methods................................ 37
V
Experimental section....................................... 38
References............. ................................. 70
附錄一1H NMR光譜..................................72
附錄二13C NMR光譜................................. 88
附錄三 HPLC 分析圖譜.............................. 100
VI
圖 目 錄:
Figure 1. 鏡像異構物的絕對立體組態與生物活性的關係…………..1
Figure 2. 多巴 (dopa) (4) 的化學組態 ……………….……….……..2
Figure 3. 催化劑15可能發生形成的過度狀態結構……………………9
Figure 4. Pastor 所製備的C2-symmetric oxazolines……..……………10
Figure 5. Chiral bis- (amino alcohol) oxalamides………………………11
Figure 6. Blay推測了可能發生的機構…………………...……………16
Figure 7. Casas Engel所發表的氨基化合物……………………….…..17
Figure 8. Casas Engel所推測的過度狀態…………………………...…18
Figure 9. Casas Engel推測C2 zinc-chelate catalysts for ligand 36..…...18
Figure 10. Casas Engel推測C2 zinc-chelate catalysts ………………... 19
VII
Figure 11. Proposed C1 zinc-chelate catalyst for ligand 36 (41) and C2
zincchelate catalyst for ligand 37 (42) ………..…………….20
Figure 12. 掌性配位基與鈦原子配位可能形成的結構 ………….….34
Figure 13. 掌性配位基和鋅原子的螯合型態 ……….……………….35
VIII
表 目 錄:
Table 1. Enantioselective Catalyzed Additions of (R2)2Zn to
Aldehyde ……………………………...………….……….…….8
Table 2. Addition of diethylzinc to benzaldehyde in the presence of
ligands ……...…………………………………………….……12
Table 3. Synthesis of ligand 33 ………..…………………………….....13
Table 4. Blay進行不對稱二甲基鋅加成苯甲醛的合成路徑 …..……14
Table 5. ligand 34-37應用於二乙基鋅加成苯甲醛的選擇性結果…...17
Table 6. Preparation of hydroxyamide liginds.........................................26
Table 7. 不同反應時間測試化合物54以及57的產率結果….........…..28
Table 8. Enantioselective addition of diethylzinc to benzaldehyde ...…..30
Table 9. Addition of Et2Zn to aldehydes catalyzed by ligand and titanium
isopropoxide …………………...……………………………...31
Table 10. Addition of diethylzinc to benzaldehyde in the presence of
ligands……………...……………………………….………...32
1. (a) Evans, D. A.; Ennis, M. D.; Mathre D. J. J. Am. Chem. Soc. 1982,
104, 1737.
(b) Evans D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987,
28, 6141.

2. Evans, D. A.; Bartroli, J. Tetrahedron Lett. 1982, 23, 807.

3. Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler R. J. Am.
Chem. Soc. 1990, 112, 5290.

4. (a) Davis, F. A.; Chen, B.-C. Chem. Rev. 1992, 92, 919.
(b) Davis, F. A.; Chen, B.-C. J. Org. Chem. 1993, 58, 1751.

5. Davis, F. A.; Clark, C.; Kumar, A.; Chen, B.-C. J. Org. Chem. 1994,
59, 1184.

6. Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988, 29, 5645.

7. Pastor, I. M.; Adolfsson, H. Tetrahedron Lett. 2002, 43, 1743.

8. Blay, G.; Fernandez, I.; Marco-Aleixandre, A.; Pedro, J. R. Tetrahedron: Asymmetry 2005, 16, 1207.

9. Blay, G.; Fernandez, I.; Hernandez-Olmos, V.; Marco-Aleixandre, A.; Pedro, J. R. Tetrahedron: Asymmetry 2005, 16, 1953.

10. Blay, G.; Fernandez, I.; Hernandez-Olmos, V.; Marco-Aleixandre, A.; Pedro, J. R. Journal of Molecular Catalysis A: Chemical 2007, 276, 235.

11. Casas Engel, T.; Maroto, B. L., Marti''nez, A.G., Maya Cerero, S. Tetrahedron: Asymmetry 2008, 19, 646.

12. Moriyasu, M.; Takayuki, S. Tetrahedron. 1995, 51, 8363.

13. Karolak-Wojciechowska, J.; Kwiatkowski, W. J. Cryst. Spec. Res. 1989, 19, 535.

14. Carlson, R. G.; Pierce, J. K. J. Org. Chem. 1971, 36, 2319.

15. Roth, G. P.; Leonard, S.; Tong, L. J. Org. Chem. 1996, 61, 5710.

16. Desimoni, G.; Faita, G.; Mella, M. Tetrahedron. 1996, 52, 13649.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top