跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/28 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗益
研究生(外文):Chung-Yi Wu
論文名稱:以毛細管電泳法(CE)和變性凝膠電泳法(DGGE)分析環境中抗卡那黴素(Kanamycin)細菌分佈之可行性研究
論文名稱(外文):Using Capillary Electrophoresis(CE) and Denaturing Gradient Gel Electrophoresis (DGGE) for Determing the Distribution of Bacteria Resistant to Kanamycin
指導教授:羅致逑羅致逑引用關係許世興許世興引用關係
指導教授(外文):Chi-Chu LoCeshing Sheu
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:120
中文關鍵詞:毛細管電泳法變性凝膠電泳法
外文關鍵詞:DGGECE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於環境改變,土壤微生物多受到了干擾,故探討土壤菌相改變為重要的課題。早期相關技術如:RAPD、RFLP、DGGE、RISA…等已被運用在菌相分析上,上述技術多以16S rDNA為主,近年以16S-23S(900bp~1100bp) rDNA(ITS,0.5-1.4Kb)進行之相關研究也有增加的趨勢。本研究利用培養法(選擇性培養基LB,LB+Kan+Cyc)與化學法(CE和DGGE)進行種植基因改造木瓜隔離試驗田對土壤中一般細菌與KanR菌相分佈的分析。結果顯示利用DGGE技術配合16S rDNA中V3區域進行土壤中總DNA之一般細菌菌相分析,發現不同土壤樣本總DNA呈現不同的DGGE圖譜,經叢聚分析(Cluster analysis)顯示可得到基因改造作物對一般細菌菌相分佈的差異性。利用16S rDNA(1.4Kb)及ITS配合配合BLAST比對序列也可得到不同土壤樣本中KanR細菌分佈。
In recent years due to environmental changes, and more by the disruption of soil microbes, the soil bacteria to explore the importance of changing the subject. Early-related technologies such as: RAPD, RFLP, DGGE, RISA ... and have been used for analysis of bacteria, many of these technologies to 16S rDNA-based in recent years to 16S-23S (900bp ~ 1100bp) rDNA (ITS, 0.5~1.4 Kb ) carried out research is also increasing. In this study, culture method (selective medium LB, LB + Kan + Cyc) and chemical methods (CE and DGGE) for the cultivation of genetically modified papaya in isolated experimental field of soil bacteria with the general distribution of bacteria KanR analysis. The results showed that with the use of DGGE technology V3 region of 16S rDNA of total DNA of soil bacteria of the general analysis of bacteria and found that the total DNA of different soil samples showed different DGGE patterns, the clustering analysis (Cluster analysis) shows available on genetically modified crops general bacterial strain differences in distribution. The use of 16S rDNA (1.4Kb) and with the ITS sequence comparison with BLAST is also available in the soil samples of different bacteria KanR distribution.
目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
附錄 XI
中英文對照表 XII
第一章 前言 1
第二章 文獻回顧 3
2-1分子生物技術的介紹 3
2-2變性梯度凝膠電泳 4
2-3毛細管電泳分析 6
2-3-1電滲流原理 7
2-3-2 DNA於CE中之分離機制 8
2-3-3毛細管凝膠電泳分析之應用 11
2-4 16S rDNA和16S-23S rDNA介紹 12
2-4-1 16S rDNA 12
2-4-2 16S-23S rDNA(ITS) 13
2-5分子演化系統樹介紹 14
2-5-1演化關係推導的方法 15
2-5-2 Bootstrap分析方法 21
第三章 材料和方法 23
3-1 試驗流程 23
3-2 試驗材料 24
3-2-1 土壤採樣來源和方法 24
3-2-2 土壤KanR細菌之篩選 25
3-3 試驗方法 26
3-3-1 DNA萃取和純化 26
3-3-2 聚合酶連鎖反應(PCR)條件 29
3-3-3 變性凝膠梯度電泳法 30
3-3-4 毛細管分析法 32
3-3-5 基因選殖(Gene Cloning) 33
3-3-6 統計分析 34
第四章 結果與討論 38
4-1 16S rDNA和ITS gene分析 38
4-1-1 16S rDNA 38
4-1-2 ITS gene分析 43
4-2 毛細管電泳法(CE)分析 46
4-3 變性梯度凝膠電泳(DGGE) 49
第五章 結論 56
第六章 參考文獻 95
6-1中文 95
6-2英文 96

表目錄
表1. 24株KanR菌株比對16S rDNA序列之結果 57
表2. 24株KanR菌株比對V3 gene序列之結果 58
表3. 14株KanR菌株比對16S-23S rDNA序列之結果 59
表4. 毛細管電泳儀器計算準確度之結果 60
表5. CE分析儀對土壤樣品產生之波峰訊號值 61
表6. 相同土壤不同時間菌相之相似係數矩陣 62
表7. 相同時間不同土壤菌相相似係數矩陣 63

圖目錄
圖1. 24株抗KanR菌菌株16S rDNA之電泳圖, 64
圖2. KanR菌之16S rDNA分析的親緣樹狀圖 65
圖3. KanR菌之16S rDNA分析的親緣樹狀圖 66
圖4. 24株抗KanR菌菌株V3基因之電泳圖 67
圖5. KanR菌依據V3基因分析的親緣樹狀圖 68
圖6. KanR菌依據V3基因分析的親緣樹狀圖 69
圖7. 24株抗KanR菌菌株ITS基因之電泳圖 70
圖8. KanR菌依據ITS基因分析的親緣樹狀圖 71
圖9. KanR菌依據ITS基因分析的親緣樹狀圖 72
圖10. 24株KanR菌之毛細管電泳分析結果 73
圖11. 24株抗KanR菌之毛細管電泳分析層析圖 79
圖12. Kan0481之電泳層析圖譜 80
圖13. Kan0506之電泳層析圖譜 80
圖14. 毛細管分析儀器之檢量線圖 80
圖15. Kan0468和Kan0501之電泳層析圖譜 81
圖16. Kan0457和Kan0513之電泳層析圖譜 81
圖17. Kan0483和Kan0502之電泳層析圖譜 81
圖18. Kan0501和Kan0502的之電泳層析圖譜 82
圖19. Kan0455和Kan0502的之電泳層析圖譜 82
圖20. Kan0455和Kan0468之電泳層析圖譜 82
圖21. Kan0457和Kan0501之電泳層析圖譜 83
圖22. Kan0455、Kan0457、Kan0501之電泳層析圖譜 83
圖23. Kan0457、Kan0501、Kan0502之電泳層析圖譜 83
圖24. Kan0455、Kan0457、Kan0501、Kan0502之電泳層析圖譜 84
圖25. Kan0455、Kan0456、Kan0457、Kan0501、Kan0502之電泳層析圖譜 84
圖26. 毛細管電泳分析相同土壤品系不同時間之電泳圖譜 85
圖27. 毛細管電泳分析相同時間不同土壤品系之電泳圖譜 85
圖28. 毛細管電泳分析土壤樣品10-4之層析圖 86
圖29. 毛細管電泳分析土壤樣品12-4之層析圖 86
圖30. 毛細管電泳分析土壤樣品14-3之層析圖 87
圖31. 毛細管電泳分析土壤樣品TCK之層析圖 87
圖32. 毛細管電泳分析土壤樣品空白組之層析圖 88
圖33. DGGE分析不同bp長度和GC%排列之電泳圖譜 89
圖34. DGGE分析菌株Kan0515和Kan0516之電泳圖譜 90
圖35. 以PCR-DGGE分析KanR菌菌株的PCR產物混合之圖譜 91
圖36. 不同時間和品系土壤之電泳圖 92
圖37. DGGE分析不同時間和品系土壤之電泳圖 93
圖38. 以AlphaEaseFC分析不同時間和品系土壤之電泳圖 93
圖39. 不同土壤品系和時間菌相分佈之相似度樹狀圖 94

附錄
附錄1.毛細管電泳分離模式及其分類 106
附錄2.電滲流示意 107
附錄3. 有根樹及無根樹表示法 108
附錄4. UPGMA公式推導、距離矩陣、演化樹 109
附錄5. NJ公式推導、距離矩陣、演化樹 110
附錄6. MP公式推導、距離矩陣、演化樹 111
附錄7. ML公式推導、距離矩陣、演化樹 112
附錄8. Bootstrap分析方法 113
附錄9. 實驗室編碼和採樣樣品說明 114
附錄10. 研究中使用引子對說明 115
附錄11. 培養基和變性膠配置 116
附錄12. DGGE製膠藥品配製 117
附錄13. 主控程式之狀態列 118
附錄14. 樣本分析實例和選殖藥品配置 119
附錄15. 基因選殖藥品配置 120
6-1中文
1.呂秀英,「直線迴歸穩定性分析之綜論-統計方法、圖示表達、解釋及效能的比較」,科學農業,第52卷,第260-268頁(2004)。
2.呂秀英,「多變數分析在農業科技之應用」,作物、環境與生物資訊,第3卷,第199-216頁 (2006)。
3.洪義國,孫謐,張雲波。「16S rRNA在海洋微生物系統分子分類鑒定及分子檢測中的應用」,海洋水產研究,第23卷,第58-63頁(2002)。
4.黃莉媖,「以核糖體核酸基因內轉錄區之序列鑑定臨床黴菌」,碩士論文,國立成功大學(2002)。
5.劉志培、楊惠芳,「微生物分子生態學進展.應用與環境生物學報」,第23卷.第43-48頁(1995)。
6.魏夢麗、呂秀英,「決定係數(R2)在迴歸分析中的解釋及正確使用」,科學農業,第47卷,第341-345頁(1999)。
7.羅致逑,「基改植物抗藥性基因移轉與安全評估」。藥業藥物毒物試驗所,第78期專題報導(2005)。
8.羅致逑、簡宣裕、郭孟欣、 陳淑娟,「基因轉殖植物對田間土壤微生物相之影響及毒性釋出之分析」。第86-103頁(2005)。
6-2英文
1.Armstrong, D. W., Schulte, G., Schneiderheinze, J. M., and Westenberg, D. J., “Separating Microbes in the Manner of Molecules Capillary Electrokinetic Approaches”, Anal Chem, Vol. 71, pp. 5465-5469 (1999).
2.Armstrong, D. W., and Schneiderheinze, J. M., “Rapid Identification of the Bacterial Pathogens Responsible for Urinary Tract Infections Using Direct Injection CE”, Anal Chem, Vol. 72, pp. 4474-4476 (2000).
3.Armstrong, D. W., Schneiderheinze, J. M., Kullman, J. P., and He, L., “Rapid CE Microbial Assays for Consumer Products That Contain Active Bacteria”, FEMS Microbiol Lett, Vol. 194, pp. 33-37 (2001).
4.Barron, A. E., Sunada, W. M., and Blanch, H. W., “The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions”, Electrophoresis, Vol. 16, pp. 64-74 (1995).
5.Barron, A. E., Sunada, W. M., and Blanch, H. W., “Effects of polymer properties on the separation of DNA fragments by capillary electrophoresis in uncrosslinked polymer solutions”, Electrophoresis, Vol. 17, pp. 744-757 (1996).
6.Barron, A. E., Soane, D. S., and Blanch, H. W., “Capillary electrophoresis of DNA in uncrosslinked polymer solutions”, J. Chromatogr, Vol. 652, pp. 3-16 (1993).
7.Bier, M., Kan, Y., Jinsheng, D. W., ang Kangzong, Y. L., “Electrophoresis”, Science Press, pp. 296-317 (1966).
8.Barron, A. E., Blanch, H. W., Soane, D. S., “A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultra-dilute polymer solutions”, Electrophoresis, Vol. 15, pp. 597-615 (1994).
9.Boon, N., Windt, W. D., Verstraete, W.,Top, E. M., “Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specic 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants”, FEMS Microbiology Ecology Vol. 39, pp. 101-112(2002).
10.Brakstad, O. G., and Bonaunet, K., “Biodegradation of Petroleum Hydrocarbons in Seawater at Low Temperatures (0-5 degrees C) and Bacterial Communities Associated with Degradation”, Biodegradation, Vol. 17, pp. 71-82 (2006).
11.Chin, A. A., and Colburn, J. C., “Counter-migration capillary electrophoresis (CMCE) in DNA restriction fragment analysis”, Am Biotech Lab, Vol. 7, pp. 16 (1989).
12.Chen Ping, L i Renkuan, Xu Xiaohua , Rao Pingfan. “Rapid Separation and Determination of Enterotoxigenic E. coli by Capillary Zone electrophoresis”, Chinese Journal of Chromatography , Vol. 20, pp. 439-441(2002)
13.Crump, B. C., Bahr, G. W., Michele, B., Hobbie, J. E., “Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source”, Appl. Environ. Microbiol. Vol. 69, pp. 2253-2268(2003).
14.Cohen, S., Paulus, A., and Karger, B. L.,“High-performance capillary electrophoresis using open tubes and gels”, Chromatographia, Vol. 24, pp.15-19 (1987)
15.Dayhoff, M., Schwartz, R., and Orcutt, B., “A model of evolutionary change in proteins. In Atlas of protein sequence and structure”, National Biomedical Research Foundation, Silver Spring, MD, pp. 345-352 (1978).
16.Duineveld, B. M., Rosado, A. S., van Elsas, J. D., van Veen, J. A., “Analysis of the Dynamics of Bacterial Communities in the Rhizosphere of the Chrysanthemum via Denaturing Gradient Gel Electrophoresis and Substrate Utilization Patterns”, Appl. Environ. Microbio, Vol.64, pp. 4950-4957(1998).
17.de Souza, F. A., Kowalchuk, G. A., Leeflang, P., van Veen, J. A., Smit, E., “PCR-Denaturing Gradient Gel Electrophoresis Profiling of Inter- and Intraspecies 18S rRNA Gene Sequence Heterogeneity Is an Accurate and Sensitive Method To Assess Species Diversity of Arbuscular Mycorrhizal Fungi of the Genus Gigaspora”, Appl. Environ. Microbiol, Vol. 70, pp 1413-1424. (2004)
18.Ebersole, R. C., and McCormick, R. M., “Separation and isolation of viable bacteria by capillary zone electrophoresis”, Biotechnology (N Y), Vol. 11, pp. 1278-1282 (1993).
19.Ferris, M. J., and Ward, D. M., “Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis”, Appl Environ Microbiol, Vol. 63, pp.1375-1381 (1997).
20.Felsenstein, J., “Evolutionary trees from DNA sequences: A maximum likelihood approach”, J Mol Evol, Vol. 17, pp. 368-376 (1981).
21.Fang, H. H., Zhang, T., and Liu, H., Microbial diversity of a mesophilic hydrogen-producing sludge”, Appl Environ Microbiol, Vol. 58, pp. 112-118 (2002).
22.Fischer, S. G., and Lerman, L. S., “DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory”, Proc Natl Acad Sci U S A, Vol. 80, pp. 1579-1583 (1983).
23.Felsenstein, J., “Numerical methods for inferring evolutionary trees”, Quart Rev Biol, Vol. 57, pp. 379-404 (1982).
24.Griffiths, B. S., Kuan, H. L., Ritz, K., Glover, L. A., McCaig, A. E., Fenwick, C., “The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil”, Microb Ecol, Vol. 47, pp. 104-113 (2004).
25.G. W. Tannock,A.Tilsala-Timisjarvi, S. Rodtong, J. Ng, K. Munro,and T. Alatossava.“Identification of Lactobacillus Isolates from the Gastrointestinal Tract, Silage, and Yoghurt by 16S-23S rRNA Gene Intergenic Spacer Region Sequence Comparisons”, Appl Enviro Microbiol , Vol. 65, pp 426424267(1999).
26.Gerdes, B., Brinkmeyer, R., Dieckmann, G., Helmke, E., “Influence of crude oil on changes of bacterial communities in Arctic sea-ice”, FEMS Microbiol Ecol, Vol. 53, pp. 129-139 (2005).
27.Gao, Q. and Yeung, E. S. “A Matrix for DNA Separation: Genotyping and Sequencing Using Poly(vinylpyrrolidone) Solution in Uncoated Capillaries”, Anal. Chem, Vol. 70, pp. 1382–1388(1998)
28.Gao, Q. and Yeung, E. S. “High-Throughput Detection of Unknown Mutations by Using Multiplexed Capillary Electrophoresis with Poly(vinylpyrrolidone) Solution”, Anal. Chem., Vol. 72 , pp 2499–2506(2000)
29.Gray, M. W., Sankoff, D., and Cedergren, R. J., ”On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA”, Nucleic Acids Res, Vol. 12, pp. 5837-5852 (1984).
30.Garcia-Martinez, J., Acinas, S. G., Anton, A. I., Rodriguez-Valera, F., “Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity”, J Microbiol Meth, Vol. 36, pp. 55-64 (1999).
31.Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E. M., “Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients”, Appl Environ Microbiol, Vol. 63, pp. 3233-3241 (1997).
32.Hansen, K. H., Ahring, B. K., and Raskin, L., “Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization”, Appl Environ Microbiol, Vol. 65, pp. 4767-4774 (1999).
33.Hjerten, S., “High-performance electrophoresis:Elimination of electroendosmosis and solute adsorption”, J Chromatogr, Vol. 347, pp. 191-198 (1985).
34.Hjerten, S., and Zhu, M. D., “Hjerten S,Zhu M.“Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing”, J Chromatogr, Vol. 346, pp. 265-270 (1985).
35.Hunter, R. J., “Zeta Potential in Colloid Science: Principles and Applications”, Academic Press, New York, (1981).
36.Han S, L i X, Guo G, Sun Y, Yuan Z. Anal. Chim. Acta, 2000, 405 (122) : 115-121
37.Hjerten, S., Elenbring, K., Kilar, F., Liao, J. L., Chen, A. J., Siebert, C. J., Zhu, and M. D., “Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus”, J Chromatogr, Vol. 403, pp. 47-61 (1987).
38.In Atlas of protein sequence and structure”, National Biomedical Research Foundation, Silver Spring, MD, pp. 345-352, 1978.
39.Iwen, P. C., Hinrichs, S. H., Rupp, M. E., “Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens”, Med Mycol, Vol. 40, pp. 87-109 (2002).
40.Janda, J. M., Abbott, S. L., “16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls”, J Clin Microbiol, Vol. 45, pp. 2761-2764 (2007).
41.Jackson, C. R., Roden, E. E., and Churchill, P. F., ”Denaturing gradient gel eletrophoresis can fail to seperate 16S rDNA fragments with multiple base differences”, Mol Biol Today, Vol. 1, pp. 49-51 (2000).
42.Juretschko, S., Loy, A., Lehner, A., Wagner, M., “The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach” Syst Appl Microbiol, Vol. 25 pp. 84-99 (2002).
43.Korczak, B. M., Stieber, R., Emler, S., Burnens, A. P., Frey, J., Kuhnert, P., “Genetic relatedness within the genus Campylobacter inferred from rpoB sequences”, Int J Syst Evol Microbiol, Vol. 56, pp. 937-945 (2006).
44.Kishino, H., Miyata, T., and Hasegawa, M., “Maximum likelihood inference of protein phylogeny and the origin of chloroplasts”, J Mol Evol, Vol. 31, pp. 151-160 (1990).
45.Kowalchuk, G. A., Stephen, J. R., Boer, W. D., Prosser, J. I., Embley, T. M., and Woldendorp, J. W., “Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments”, Appl Environ Microbiol, Vol. 63, pp.1489-1497 (1997).
46.Keohavong, P., and Thilly, W. G., “Fidelity of DNA polymerases in DNA amplification”, Proc Natl Acad Sci U S A, Vol. 86, pp. 9253-9257 (1989).
47.Kocherginskaya, S. A., Aminov, R. I., White, B. A., “Analysis of the Rumen Bacterial Diversity under two Different Diet Conditions using Denaturing Gradient Gel Electrophoresis, Random Sequencing, and Statistical Ecology Approaches”, Anaerobe, Vol. 7, pp. 119-134 (2001).
48.Kozdroj, J., Van-Elsas, J. D., “Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches”,. Soil Biol Biochem, Vol. 32, pp. 1405-1417 (2000).
49.Kotler, L., He, H., Miller, A. W., Karger, and B. L., Electrophoresis , Vol. 23, pp. 3062-3070 (2003).
50.Liu, H. F., “Phylogenetic Analysis Workshop”, National Health Research Institutes, October, pp. 17-18 (2002).
51.LaPara, T. M., Nakatsu, C. H., Pantea, L. and Alleman, J. E., “Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater”, Appl Environ Microbiol, Vol. 66, pp. 3951-3959 (2000).
52.Lerman, L. S., Fischer, S. G., Hurley, I., Silverstein, K., Lumelsky, N., “Sequence-determined DNA separations”, Annu Rev Biophys Bioeng, Vol. 13, pp. 399-423 (1984).
53.Lin Bingcheng. Introduction of Capillary Electrophoresis. Beijing : Science Press , 1996. 3
54.Liao, J. L., Abramson, J., Hjerten, S., “A highly stable methyl cellulose coating for capillary electrophoresis”, J Capillary Electrophor, Vol. 2, pp. 191-196 (1995).
55.Muyzer, G., de Waal, E. C., Uitterlinden, A. G., “Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA”, Appl Environ Microbiol, Vol. 59, pp. 695-700 (1993).
56.Muyzer, G., and Smalla, K., “Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology”, Antonie van Leeuwenkoek, Vol. 73, pp. 127-141 (1998).
57.Muyzer, G., “DGGE/TGGE a method for identifying genes from natural ecosystems”, Curr Opin Microbiol, Vol. 2, pp. 317-322 (1999).
58.Marsh, T. L., Saxman, P., Cole, J., and Tiedje, J., “Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis”, Appl Environ Microbiol, Vol. 66, pp. 3616-3620 (2000).
59.Myers, R. M., Maniatis, T., and Lerman, L. S.,” Detection and localization of single base change by denaturing gradient gel electrophoresis”, Methods Enzymol, Vol. 155, pp. 501-527 (1987)
60.Moss, C.W., “Gas-liquid chromatography as an analyt- ical tool in microbiology”, J Chromatogr, Vol. 203, pp. 337-347 (1981).
61.Moffett, B. F., Nicholson, F. A., Uwakwe, N. C., Chambers, B. J., Harris, J. A., and Hill, T. C. J., “Zinc contamination decreases the bacterial diversity of agricultural soil”, FEMS Microbiol Ecol, Vol. 43, pp. 13-19 (2003).
62.Myers, R. M., Fischer, S. G., Lerman, L. S., and Maniatis, T., “Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis”, Nucleic Acids Res, Vol. 13, pp. 3131-3145 (1985).
63.Myers, R. M., S. G. Fischer, T. Maniatis, and L. S. Lerman., “Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis”, Nucleic Acids Res Vol 13, pp. 3111-3129. (1985)
64.Muyzer, G., E. C. de Waal, and A. G. Uitterlinden, “Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA”, Applied and Environmental Microbiology, Vol 59(3), pp. 695-700(1993).
65.Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., and Renellam, G., “Microbial diversity and soil functions”, European Journal of Soil Science, Vol. 54, pp. 655-670 (2003).
66.Nubel, U., Ferran, G. P., Kuhl, M., and Muyzer, G., “Quantifying microbial diverity: morphotypes,16S rRNA genes,and carotenoids of oxygenic phototrophs in microbial mats”, Appl Environ Microbiol, Vol. 65, pp. 4803-4809 (1999).
67.Olsen, G. J., Larsen, N., and Woese, C. R., “ The ribosomal database project”, Nucleic Acids Res, Vol. 19, pp. 2017-2021 (1991).
68.Olivera, B. M., Baine, P., and Davidson, N., “Electrophoresis of the nucleic acids”, Biopolymers, Vol. 1, pp. 245-257 (1964).
69.Palys, T., Nakamura, L. K., and Cohan, F. M., “Discovery and classification of ecological diversity in the bacteria world: the role of DNA sequence data”, Int J Syst Bacteriol, Vol. 47, pp. 1145-1156 (1997).
70.Reischl, U., Feldmann, K., Naumann, L., Gaugler, B. J., Ninet, B., Hirschel, B., and Emler, S., “16S rRNA sequence diversity in Mycobacterium celatum strains caused by presence of two different copies of 16S rRNA gene”, J Clin Microbiol, Vol. 36, pp. 1761-1764 (1998).
71.Roing, W. F. M., van Breukelen, B. M., Braster, M., Lin, B., van Verseveld, H. W., “Relationships between Microbial Community Structure and Hydrochemistry in a Landfill Leachate-Polluted Aquifer”, Appl. Environ. Microbiol. Vol. 67, pp. 4619-4629(2001).
72.Ramakrishna, N., Meeker, C., Li, S., Jenkins, E. C., Currie, J. R., Flory, M., Lee, B., Liu, M. S., and Miller, D. L., “Miller Polymerase chain reaction method to identify Down syndrome model segmentally trisomic mice”, Anal Biochem, Vol. 340, pp. 213-219 (2005).
73.Sokal, R., and Michener, C., “A statistical method for evaluating systematic relationships”, Univ Kansas Sci Bull, Vol. 28, pp. 1409-1438 (1958).
74.Swofford D., and Begle, D., “PAUP: Phylogenetic analysis using parsimony, ver.3.1. user’s manual”, Illinois Natural History Survey, Champaign, IL (1993).
75.Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R., Lendl, B., “Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy”, Anal Chem, Vol. 72, pp. 5529-5534 (2000).
76.Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K., “Phylogenetic analysis and in situ identification of bacteria in activated sludge”, Appl Environ Microbiol, Vol. 63, pp. 2884-2896 (1997).
77.Supaphol, S., Panichsakpatana, S., Trakulnaleamsai, S., Tungkananuruk, N., Roughjanajirapa, P., and ODonnell, A. G., “The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils”, J Microbiol Methods, Vol. 65, pp. 432-441 (2006).
78.Shortreed, M. R.; Li, H.; Huang, W. H. and Yeung, E. S. “High-Throughput Single-Molecule DNA Screening Based on Electrophoresis”, Anal. Chem., Vol 72 , pp. 2879–2885(2000)
79.Shintani T, Yamada K, TorimuraM. “Optimization of a rapid and sensitive identification system for Salmonella enteritidis by capillary electrophoresis with laser-induced fluorescence”,FEMS Microbiol. Lett, Vol 210, pp. 245-249(2002)
80.Sigler, W. V., Miniaci, C., and Zeyer, J., “Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure”, J Microbiol Methods, Vol. 57, pp. 17-22 (2004).
81.Saitou, N., and Nei, M., “The neighbor-joining method: A new method for reconstructing phylogenetic trees”, Mol Biol Evol, Vol. 4, pp. 406-425 (1987).
82.Sassi, A. P., Barron, A. E., Alonso-Amigo, G., Hion, D., Yu, J., Soane, D. S., Hooper, H. H., “Electrophoresis of DNA in novel thermo-reversible matrices”, Electrophoresis, Vol. 17, pp. 1460-1469 (1996).
83.Speksnijder, A. G., Kowalchuk, G. A., Jong, S. D., Kline, E., Stephen, J. R., and Laanbroek, H. J., “Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences”, Appl Environ Microbiol, Vol. 67, pp. 469-472 (2001).
84.Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., and Harada, H., “Fluorescent in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules”, Appl Environ Microbiol, Vol. 65, pp. 1280-1288 (1999).
85.Sekiguchi, H., Tomioka, N., Nakahara, T., and Uchiyama, H., “A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis”, Biotechnology Letters, Vol. 23, pp. 1205-1208 (2001).
86.Satokari, R. M., Vaughan, E. E., Akkermans, A. L., Saarela, M., and DE, W. M., “Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis”, Appl Envirm Microbiol, Vol. 67, pp. 504-513 (2001).
87.Sassi AP, Barron AE, Alonso-Amigo G, Hion D, Yu J, Soane DS, Hooper HH, “Electrophoresis of DNA in novel thermo-reversible matrices,” Electrophoresis, Vol 17, pp. 1460-1469(1996)
88.Szantai, E., Ronai, Z., Sasvari-Szekely, M., Bonn, G., and Guttman, A., “Multicapillary Electrophoresis Analysis of Single-Nucleotide Sequence Variations in the Deoxycytidine Kinase Gene”, Clin Chem, Vol. 52, pp. 1756-1762 (2006).
89.Talbot, H. M., Watson, D. F, Murrell, J. C., Carter, J. F., Farrimond, P., “Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry”, J Chromatogr A, Vol. 921, pp. 175-185 (2001).
90.Tannock, G. W., Munro, K., Bibiloni, R., Simon, M. A., Hargreaves, P., Gopal, P., Harmsen, H., and Welling. G., “Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans”, Appl Environ Microbiol, Vol. 70, pp. 2129-2136 (2004).
91.Vaneechoutte, M., Beenhouwer, H. D., Claeys, G., Verschraegen, G., Rouck, A. D., Paepe, N., Elaichouni, A., and Portaels. F., “Identification of Mycobacterium species with amplified rDNA restriction analysis”, J Clin Microbiol, Vol. 31, pp. 2061-2065 (1993)
92.Vallaeys, T., Topp, E., Muyzer, G., Macheret, V., Laguerre, G., Rigaud, A., and Soulas. G., “Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs”, FEMS Microbiol Ecol, Vol. 24, pp. 279-285 (1997).
93.Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V., “DNA Polymorphism Amplified by Arbit rary Primers are Useful as Genetic Markers”, Nucleic Acids Res, Vol. 18, pp. 6531-6535 (1990).
94.Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W,Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR,Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K,Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L,Yaschenko E., “Database resources of the National Center for Biotechnology Information”, Nucleic Acids Res, Vol. 34, pp.173-180(2006).
95.W. Maddison, and D. Maddison, “MacClade: Analysis of phylogeny and character evolution”, Sinauer Associates, Sunderland, MA, 1992.
96.Wu, J. H., Liu, W. T., Tseng, I. C., and Cheng, S. S., “Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system”, Microbiol, Vol. 147, pp. 373-382 (2001).
97.Watanabe, K., Teramoto, M., Futamata, H., and Harayama, S., “Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria”, Appl Environ Microbiol, Vol. 64, pp. 4396-4402 (1998).
98.Wawer, C., Jetten, M. S. M., and Muyzer, G., “Genetic diversity and expression of the NiFe hydrogenase large-subunit gene of desulfovibrio spp. in environmental samples”, Appl Environ Microbiol, Vol. 63, pp. 4360-4369 (1997).
99.Zhong, W. H., and Cai, Z. C., “Methods for studying soil microbial diversity”, Ying Yong Sheng Tai Xue Bao, Vol. 15, pp. 899-904 (2004).
100.Zhu, M., Hansen, D. L., Burd, S., and Gannon, F., “Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis”, J Chromatogr, Vol. 480, pp. :311-319 (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文