跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宛汝
研究生(外文):wan ru caiWan Ru Cai
論文名稱:牛奶、乳清粉和乳糖對豆奶酸酪乳特性的影響
論文名稱(外文):Effects of Milk, Whey Powder and Lactose Addition on Quality of Soy Yoghurt
指導教授:陳明造陳明造引用關係
指導教授(外文):Ming Tsao Chen
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:豆奶乳糖乳清粉酸酪乳
外文關鍵詞:soy milklactosewhey powderyoghurt
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1910
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來國人飲用牛奶的比例逐漸增加,不過由於牛奶中含有乳糖,有許多人無法吸收牛奶中的乳糖,故本研究擬採用豆奶、牛奶、乳清粉、乳糖為主原料接種益生菌以生產機能性的酸酪乳。大豆富含蛋白質且含有機能性成分,例如異黃酮、低聚糖、多元不飽和脂肪酸和膳食纖維。於是,我們用豆奶發酵酸酪乳。目前我們在市場上還沒發現好的大豆酸酪乳產品。本研究在探討以豆奶製作機能性酸酪乳以及添加牛奶、乳清粉、乳糖對品質的影響。將豆奶添加牛奶、乳清粉、乳糖加熱至85℃、30min後冷卻,接種益生菌,再於43℃發酵4hr。探討添加不同原料,對大豆酸酪乳理化性質及其機能性成分之影響。
結果顯示:水分含量是以對照組>添加乳清粉>添加乳糖;滴定酸度為添加乳清粉>添加乳糖>對照組;黏度為對照組>添加乳糖>添加乳清粉,但添加乳糖與添加乳清粉的無顯著差異。有機酸含量均以乳酸最高,而對照組以檸檬酸最高,乳酸次之;添加乳清粉組以乳酸最高,檸檬酸次之;添加乳糖組則以乳酸最高,丙二酸次之。乳酸菌數以添加乳清粉及乳糖之酸酪乳最高,而三組之乳酸菌數均比市售產品高。pH值:對照組>添加乳糖>添加乳清粉,三者均隨儲藏時間而降低;凝乳張力:對照組>添加乳糖>添加乳清粉,與黏度同一趨勢;總接受性以添加乳清粉與乳糖之豆奶酸酪乳高於對照組,經儲藏7天和14天後亦然。色澤:以添加乳清粉的產品偏黃,乳糖組和對照組明亮度較添加乳清粉組高,但無顯著差異。異黃酮含量:發酵前後,均無顯著變化;胞外多糖以添加乳清粉組較乳糖組和對照組高。至於產品中乳蛋白和大豆蛋白之電泳分析結果顯示有部分蛋白質成分被分解而消失。整體而言,豆奶酸酪乳會因添加乳清粉和乳糖有利於產品之物性和官能性,而其機能性成分不會因發酵降低。
Among dairy products fermented milk products-yoghurt are growing in popularity specifically for their health image in Taiwan. However, the characteristic milky flavor is very important problem for its utilization by some people in Taiwan. Therefore, we tended to add functional compounds to the products to prefer the domestic consumers. Soybeans rich in protein and contain some functional compounds such as isoflavones,oligosaccharides, polyunsaturated fatty acids and dietary fiber. Thus, we try to make yoghurt using soy milk fermentation. Currently, we have not found any good soy yoghurt products in the market.
The present study investigated appropriate formula for yoghurt making. We use soy milk added milk, whey powder and lactose as raw materials and Lactobacilus acidophilus、Bifidobacterium longum、L.bulgaricus and Streptococcus thermophilus as the starter cultures. The raw materials are pasteurized at 85℃, 30min, cooled to 43℃ and inoculated with the starter culture, then incubated at 43℃ for 4hr. The moisture content, titratable acidity, pH, lactic acid bacterial counts, viscosity and curd tension and sensory scores of the products are determined. The results were shown in the follows:The values of moisture content, titratable acidity, lactic acid bacterial counts, viscosity and curd tension were found the highest in soy milk added milk(M), the second in soy milk added with milk and whey powder(W) and the lowest in soy milk with milk and lactose(L). However, pH values of the products were found the order as L>W>M. The sensory scores of yoghurt made from the soy milk added with milk and lactose were the highest and the product made from the soy milk with milk and whey powder were the second and the product made from soy milk with milk were the lowest. The functional compounds of soy yoghurt – isoflavone contents were not significant before and after fermentation. The content of exopolysaccharides was found the highest in soy yoghurt added with whey powder, then lactose was next, and the control was the lowest. And the bands of some of the protein components of soy beans and milk were found to be disappeared from the SDS-PAGE electrophoreto.
目錄

1.前言1
2.文獻回顧3
2.1黃豆3
2.1.1黃豆簡介3
2.1.2黃豆組成成分4
2.1.3黃豆之機能性7
2.2乳酸菌14
2.2.1乳酸菌之定義14
2.2.2乳酸菌之生理功能15
2.2.3乳酸菌之分類17
2.3乳清粉之功能及營養特性20
2.4乳糖之功能及營養特性22
2.5發酵豆奶的功用24
3.材料與方法27
3.1實驗藥品與儀器27
3.1.1試藥27
3.1.2儀器27
3.2實驗方法28
3.2.1材料28
3.2.2菌種29
3.2.3酸酪乳製備29
3.3分析項目及方法30
3.3.1水分測定31
3.3.2滴定酸度31
3.3.3黏度31
3.3.4有機酸32
3.3.5乳酸菌數32
3.3.6酸鹼值(pH)33
3.3.7凝乳張力33
3.3.8官能品評33
3.3.9色差33
3.4機能性成分分析34
3.4.1大豆異黃酮測定34
3.4.2醣類測定35
3.4.2.1胞外多醣35
3.4.2.2水蘇糖、棉籽糖的測定36
3.4.3 SDS-PAGE電泳分析37
3.5統計分析40
4.結果與討論41
4.1添加不同原料之豆奶酸酪乳水分含量之比較41
4.2添加不同原料之豆奶酸酪乳滴定酸度之比較43
4.3添加不同原料之豆奶酸酪乳黏度之比較45
4.4添加不同原料之豆奶酸酪乳有機酸的組成47
4.5添加不同原料之豆奶酸酪乳乳酸菌菌數之比較52
4.6添加不同原料之豆奶酸酪乳pH的變化54
4.7添加不同原料之豆奶酸酪乳凝乳張力之比較56
4.8添加不同原料之豆奶酸酪乳官能品評成績58
4.9添加不同原料之豆奶酸酪乳之色澤比較62
4.10添加不同原料之豆奶酸酪乳之機能性成分64
4.10.1豆奶酸酪乳發酵前後之大豆異黃酮比較64
4.10.2豆奶酸酪乳之醣類比較68
4.10.2.1豆奶酸酪乳之胞外多糖(EPS)68
4.10.2.2豆奶酸酪乳之水蘇糖、棉籽糖比較70
4.10.3 豆奶酸酪乳中蛋白質之SDS-PAGE電泳分析圖譜72
5.結論74
參考文獻76

圖目錄

圖2.1黃豆的組成成分7
圖2.2 大豆中異黃酮化學結構11
圖3.1葡萄糖標準曲線36
圖4.1有機酸標準液之高效液相層析圖譜48
圖4.2對照組之有機酸HPLC圖譜49
圖4.3乳清粉添加之豆奶酸酪乳中有機酸之HPLC圖譜50
圖4.4乳糖添加之豆奶酸酪乳中有機酸之HPLC圖譜51
圖4.5豆奶酸酪乳之SDS-PAGE電泳分析圖譜之比較73

表目錄

表2.1胺基酸需要量和大豆產品的胺基酸組成6
表3.1 分離膠組成39
表3.2 排列膠組成39
表4.1不同組成之豆奶酸酪乳中水分含量之比較42
表4.2不同組成之豆奶酸酪乳的滴定酸度之比較44
表4.3不同組成之豆奶酸酪乳之黏度比較46
表4.4添加不同原料之豆奶酸酪乳之乳酸菌菌數比較53
表4.5添加不同原料之豆奶酸酪乳儲藏期間之pH比較55
表4.6添加不同原料之豆奶酸酪乳凝乳張力之比較57
表4.7添加不同成分之豆奶酸酪乳於第1天官能品評成績之比較59
表4.8添加不同成分之豆奶酸酪乳於4℃儲藏之第7天官能品評成績之比較 60
表4.9添加不同成分之豆奶酸酪乳於4℃儲藏之第14天官能品評成績之比較61
表4.10添加不同原料之豆奶酸酪乳之色差比較63
表4.11大豆及相關製品之異黃酮含量65
表4.12豆奶酸酪乳發酵前混合物大豆異黃酮含量之比較66
表4.13豆奶酸酪乳發酵後混合物大豆異黃酮含量之比較67
表4.14豆奶酸酪乳之胞外多糖(EPS)的比較69
表4.15豆奶酸酪乳之水蘇糖、棉籽糖比較71
1. 王文俠、翟麗萍、張文超、董文燕和張玉梅,“大豆低聚糖的製備工藝研究。1999。Study on the conditions of the soybean oligosaccharide production from soybean cake,” 中國乳品工業,27(2): 10-12。
2. 王增興。2003。大豆異黃酮素。青春出版社。612: 28-51。
3. 江文德。1998。簡介大豆中的異黃酮素。食品工業。30(9): 6-12。
4. 李咏梅,厲曙光。2002。大豆異黃酮抗癌作用的研究發展。同濟大學學報23: 351-353。
5. 林彣郁。2001。乳酸菌和雙叉乳桿菌益生特性之探討。中輿大學畜產研究所碩士論文。台中市。
6. 林慶文。1993。乳製品之特性與機能性。第51-58頁。長何出版社。
7. 周儉。2002。保健食品。九洲圖書公司 台北 pp.113~117。
8. 施明智。1986。不同浸漬及磨漿方式對豆漿品質及豆渣功能特性的影響。國立台灣大學食品科技研究所碩士論文。台北市。台灣。
9. 黃建榕。2002。添加各種膠質對牛乳酸酪禮品質及其理化特性之影響。中國畜牧學會會誌35(4):351~356。
10.陳秀瑩。2002。大豆之機能性成分與其分析方法。食品工業。 34(10): 19-25。
11.張勝善、楊昆霖、洪連欉、郭令錚。1999。以豆乳取代部分牛乳對酸酪乳中嗜酸桿菌及雙叉乳桿菌生長之影響。食品科學。26(1):89-96。
12.楊炳輝。2000。豆奶加工技術。食品工業月刊。32(1): 52-59。
13.蔡英傑。1998。乳酸菌與益生菌。生物產業。
14.蔡佳原。2001。黃豆機能性成分及其加工利用。食品市場資訊。90(8): 7-11。
15.鍾耀慶。2004。功能性食品。化學工業出版社。第343~369頁。北京。
16.蘇宗振,陳銓燦,張永欣。2003。台灣大豆及其加工產業之研究。科學農業51: 1-11。
17. Andersone, J.J., Garner, S.C., 1997. Phytoestrogens and human function. Nutrition Today 32: 232-239.
18. Adams, M. R. 1999. Safety of industrial lactic acid bacteria. Journal of Biotechnology 68: 171-178.
19. Bottazzi, V. 1998. An introduction to rod-shaped lactic-acid bacteria. Biochimie 70: 303-315.
20. Beasley S, Tuorila H, Saris PEJ. 2003. Fermented soymilk with a monoculture of Lactococcus lactis. Int J Food Microbiol 81: 159-162.
21. Benkerroum, Oubel and Mimoun. 2002. Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter. J. Food Prot. 65: 799-805.
22. Bouzar, F., J. Cerning and M. Desmazeaud. 1997. Exo-polysaccharide production and texture-promoting abilities of mixed-strain starter culture in yoghurt production. J. Dairy Sci. 80: 2310-2317
24. Bury D., P. Jelen and K. Kimura. 1998. Whey protein concentrate as a nutrient supplement for lactic acid bacteria. Int. Dairy Journal. 8: 149-151.
25. Clarkson, T.B., Anthony, M.S., Clande, L., Hughes, J.R., 1995. Estrogenic soybean isoflavones and chronic disease risks and benefits. Trends in Endocrinology Metabolism 6: 11-16.
26. Dibois, M., Gilles, K. A., Hamilton, J. K., Reber, P. A. and Smith F. 1956. Colorimetric method for determineation of sugars and related substances. Analytical Chem. 28(3): 350-356.
27. Duboc, P., and Mollet, B. (2001). Application of expolysaccharides in the dairy industry. International Dairy Journal, 11: 759-768.
28. Deeth, H. C. 1984. Yoghurt and cultured products. Aust. J.Dairy Technol. 39: 111-113.
29. Deeth HC, Tamine HY. 1981. Yoghurt: Nutritive and therapeutic aspects. J Food Prot 44: 13-19.
30. Eldridge, A.C., Kwolek, W.F., 1983.Soybean isoflavones: effect of environment and variety on composition. Journal of Agricultural and Food Chemistry 31: 394-396.
31. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19: 501-508.
32. Gehrke C, Weiser HH. 1948. A Comparative study of the biochemical activity of Streptococcus lactis, Streptococcus citrovorus and Streptococcus paracittrovorus when grown in cow’s milk and soybean milk. J Dairy Sci 31: 213-218.
33. Gehrke C, Weiser HH. 1947. Comparative studies on growth and biochemical features of microorganisms grown in cow’s and soybean milk. Food Res 12: 360-365.
34. Genistein and Genistin in Soybeans and Soybean products. Food Chemistry and Toxicology 34: 457-461.
35. Hollenberg, M.D., 1994. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends in Pharmacological Sciences 15: 108-114.
36. Hoeck, J.A., Fehr, W.R., Murphy, P.A., Welke, G.A., 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Science 40: 48-51.
37. Hamang C., Samalouti, V. E. L., Ulmev, A. J., Flad, H. D., Rietschel, E. T. 1998. Components of gut bacteria as immunomodulators. Int. J.Food Microbiol. 41: 141-154.
38. Harlow, E. and Lane, D. 1988. Antibodies. p.636-69, p.685. Cold Spring Harbor Laboratory, New York, USA.
39. Kinsella, J.E., 1979. Functional properties of soy protein. Journal of the American Oil Chemists’ Society 56: 242-258.
40. Kim, J.J., Kim, S.H., Hahn, S.J., Chung, I.M., 2005. Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Research International 38: 435-444.
41. Keenan, T. W., and Bills, D. D. 1986. Metabolism of volatile compounds by lactic starter culture circoorganisms-A review. J. Dairy Sci. 51: 1561.
42. Kroger, M. 1976. Quality of yoghurt. J. Dairy Sci.59: 344-350.
43. Kneifel, W., jaros, D. and Erhard, F. 1993. Microflora and acidification properties of yoghurt and yoghurt-related products fermented with commercially available starter cultures. Int.J. Food Microbiol. 3: 277-291.
44. Linassier, C. M., Pierre, M., Pecq, J. B. L. and Pierre, J. (1990). Mechanisms of action in NIH 3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem. Pharmacol., 39: 187-193.
45. Lee, J., Renita, M., Fioritto, R.J., St, M.S.K., Schwartz, S.J., Vodovotz, Y., 2004. Isoflavone characterization and antioxidant activity of ohio soybeans. Journal of Agricultural and Food Chemistry 52: 2647-2651.
46. Liu, S. Q. 2003. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. International Journal of Food Microbiology 83: 115-131.
47. Labropoulos, A. E., Collins, W. F. and Stone, W. K. 1984. Effects of ultra-high temperature and vat processes on heat-induced rheological properties of yoghurt. J. Dairy Sci. 67:405-409.
48. Mital BK, Steinkraus KH. 1974. Growth of lactic acid bacteria in soy milk. J Food Sci 39: 1018-1022.
49. Mital BK, Steinkraus KH. 1975. Utilization of oligosaccharides by lactic acid bacteria during fermentation of soy milk. J Food Sci 40: 114-118.
50. Mital BK, Shallenberger RS, Steinkraus KH. 1973. α- galactosidase activity of lactobacilli. Appl Microbiol 26: 783-788.
51. Murti TW, Bouillanne C, Landon M, Desmazeaud MJ. 1993. Bacterial growth and volatile compounds in yoghurt-type products from soymilk containing Bifidobacterium spp. J Food Sci 58: 153-157.
52. Murrill, W. B., Brown, N. M., Zhang, J. X., Manzolillo, P. A., Barnes, S. and Lamartiniere, C. A. (1996). Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats.
53. Messina, M. J., Messina, V., and Setchell, K. D. R. 1994. The Simple Soybean and Your Healthy. Avery Publishing Group, New York.
54. Murphy, C.T., Kellie, S., Westwick, J., 1993. Tyrosine –kinase activity in rabbit platelts stimulated with platelet-activating factor. European Journal of Biochemistry 216: 639-651.
55. Marsili, R. T., Ostapenko, H., Simmons, R.E.and Green. D.E. 1981. Hight performance liquid chromatography determination of organic acid in dairy products. J.Food Sci. 46: 52.
56. Mclean, E. O. 1982. Soil pH and Line requirement. In“Method of siol analysis”.Part2. Chemical and microbiological properties. Second edition pp.206-209. A. L Page, R. H. Miller, and D.R.keeney(eds). American Society of Agronomy Carcinogenessis, 17: 1451-1457.
57. Fukutake, M., Takahashi, M., Ishida, K., Kawamura, H., Sugimura, T., Wakabayashi, K., 1996.
58. Needs, E. C., Capellas, M., Bland, A. P., Manoj, P., Macdougal, D. and Paul, G. 2000. Comparison of heat and pressure treatment of skim milk, fortified with whey protein and gel structure. J. Dairy Res. 67: 329-348.
59. Patel AA, Waghmare WM, Gupta SK. 1980. Lactic fermentation of soymilk-a review. Process Biochem 15: 9-13.
60. Peng, I.C., Quass, D.W., Dayton, W.R., Allen, C.E., 1984. The physicochemical and functional properties of soybean 11S globulin. A review. Cereal Chemistry 61: 480-491.
61. Parnll-Clunies, E. M. Y. Kauda and Deman, J. M. 1986. Influence of heat treatment of milk on the flow properties of yoghurt. J. Food Sci. 51: 1459-1462.
62. Richmond, M. L., Barfuss, D. L., Harte, B. R., Gray, J. I., and Stine, C.M. 1982. Separation of carbohydrates in dairy products by high performance liquid chromatograph. J. Dairy Sci. 65: 1394-1400.
63. Seth KK, Nath N. 1988. A simple blanch-dry process for lipoxygenase inactive in soymilk cotyledons. Int J Sci Technol. 23: 275-279.
64. Stiles, M. E. and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29.
65. Spilburg, C.A., Goldberg, A.C., Mcgill, J.B., Stenson, W.F., Racette, S.B., Bateman, J., Mcpherson, T.B., Ostlund, R.E., 2003. Fat-free foods supplemented with soy stanol-lecithin power reduce cholesterol absorption and LDL cholesterol. Journal of American Diet Association 103: 577-581.
66. Stile, M. E., and W.H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology 36: 1-29.
67. Speck, M. L. 1984. Compendium of methods for the microbiological examination of food. Pp.184-202. American Public Health Association. Washington, D.C.,U.S.A.
68. Thananunkul D, Tanaka M, Chichester CO, Lee TC. 1976. Degradation of raffinose and stachyose in soybean milk by α-galactosidase from Mortierella vinacea. Entrapment of α-galactosidase within polyacrylamide gel. J Food Sci 41: 173-175.
69. Tamine, A. Y. and Deeth, H. C.1980.Yoghurt : technology and biochemistry. J.Food prot. 43: 937-977.
70. Tango, M. S. A. and A. E. Ghaly. 1999. Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions. Biomass Bioenergy 16: 61-78.
71. Tripathi, A. K., A. K. Misra, V. K. Batish, and H. Chander. 2002. Perfermance of lactic starter cultures adapted to varied pH in Elliker’s broth. Res. Article 55: 17-21.
72. Wang YC, Yu RC, Chou CC. 2002. Garro MS, Valdez GF, Oliver G, Giori GS. 1996. Influence of carbohydrates on the α-galactosidase activity of Lactobacillus fermentum. Cur Microbiol 33: 302-305.
73. Wang ZH, Dou J, Macura D, Durance TD, Nakai S. 1998. Solid phase extraction for GC analysis of beany flavours in soymilk. Food Res Int 30: 503-511.
74. Wang, H., Murphy, P.A., 1994. Isoflavone composition of
Americanand Japanese soybeans in Iowa: effects of variety, crop year,and location. Journal of Agricultural and Food Chemistry 42: 1674-1677.
75. Yin, L. J., L. T. Li, Z. G. Li, E. Tatsumi, and M. Saito. 2004. Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chemistry 87: 587-592.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top