跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃威嘉
研究生(外文):Wei-Jia Huang
論文名稱:以掃描探針顯微鏡製作高溫超導量子干涉元件之特性研究
論文名稱(外文):Characteristics of High-Tc Superconducting Quantum Interference Devices Fabricated by Using Scanning Probe Microscope
指導教授:王立民王立民引用關係
指導教授(外文):Li-Min Wang
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:高溫超導掃描探針顯微鏡原子力顯微鏡微影蝕刻技術超導量子干涉元件
外文關鍵詞:High-Tc YBCOScanning Probe MicroscropyAtomic force microscope lithographySuperconducting quantum interference devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用掃描探針顯微鏡(Scanning probe microscopy)之微影蝕刻技術(Lithography),用以製作約瑟夫森穿隧元件之弱連接處,並且改變製作時探針偏壓大小與掃描速率以研究其特性變化。實驗中使用離軸式射頻磁控濺鍍(RF magnetron sputtering)系統,以SrTiO3 (100)為成長基材,成長薄膜厚度150 nm之高品質釔鋇銅氧超導薄膜,再利用X-ray晶格繞射儀(XRD)與原子力顯微鏡(AFM)做薄膜特性量測。而圖形製作方面,則是利用光學微影技術(Photolithography technology)與離子蝕刻技術(Ion etching)製作出3 μm微橋圖形。
當我們施加偏壓超過一個臨界值時,薄膜表面將會成長出奈米級氧化線,而依照陽極氧化作用原理,隨著掃描速度的改變,所生成的氧化物寬度與高度也會有所變化。在電阻對溫度特性曲線量測結果發現,在接近超導態時有因弱連結引起正常態/超導態之展緩變化行為,顯示此技術對於未來製作超導量子干涉元件(SQUID)有更進一步成功的可能。
Superconducting quantum interference devices (SQUIDs) were fabricated by inducing a selective surface modification on YBa2Cu3O7-y (YBCO) microbridges with an atomic force microscope lithography (AFML) attached in a scanning probe microscopy (SPM) system. The surface modification was probated in the electric field of conductive AFM tip and created oxide protrusions across the entire strips as the tunneling barriers High-Tc superconducting YBCO thin films were grown on SrTiO3 (STO) substrates by using rf magnetron sputtering. The photolithography and ion etching techniques were used to fabricate the thin film for SQUID pattern with 3-μm-width mircobridges. The crystalline orientation and the surface morphology were characterized by the X-ray diffraction (XRD) and the AFM, respectively.
The surface modification can be controlled by tuning the applied bias voltage and scan speed with threshold values of 5 V and 0.1 μm/sec. The protrusion height is increased with an increase of bias voltage or a decrease of scan speed. The temperature dependent of resistance for the fabricated SQUID reveals a resistive broadening as temperatures near Tc, showing a superconducting-tunneling-like behavior.
封面內頁
簽名頁
授權書......................iii
中文摘要.....................iv
英文摘要......................v
誌謝.......................vi
目錄.......................vii
圖目錄.......................ix
表目錄......................xiii

第一章 緒論
1.1 研究背景 ....................1
1.2 研究動機....................6
第二章 簡介與基礎原理
2.1 超導體的起源與發展...............8
2.2 超導體的特性..................9
2.2.1 臨界溫度 .................9
2.2.2 零電阻 ..................9
2.2.3 抗磁性 ..................9
2.3 約瑟夫森接面..................11
2.3.1 直流約瑟夫森效應 .............11
2.3.2 交流約瑟夫森效應 .............16
2.4 掃描探針式顯微鏡概況與原理...........22
2.4.1 掃描探針式顯微鏡演進 ...........22
2.4.2 原子力顯微鏡原理 .............23
2.4.3 原子力微影蝕刻技術............ 25
第三章 樣品製作與量測系統
3.1 成長基板選取..................28
3.2 釔鋇銅氧薄膜之成長與特性............30
3.3 光學微影製程..................35
3.4 樣品蝕刻製程與電極接腳製作...........37
3.5 掃描探針顯微鏡微影蝕刻製程...........40
3.6 特性量測系統..................46
第四章 實驗結果與討論
4.1 釔鋇銅氧薄膜氧化作用特性分析..........48
4.2 微橋氧化作用分析................56
4.2.1微橋表面氧化線宽度分析........... 56
4.2.2微橋薄膜深度氧化破壞分析.......... 65
第五章 結論 ......................75
參考文獻 ......................77
[1] G. Bining, H. Rohrer, Helv. Phys. Acta. 55, 726 (1982).
[2] G. Bining, C. F. Quate, Ch. Gerber, Phy. Rev. Lett. 56, 930 (1986).
[3] Y.Z.Li, L.Vazquez, R.Piner, R.P.Andres, Appl. Phys, Lett., vol.54, pp.1424 (1989).
[4] T.R.Albercht, M.M.Dovek, Appl. Phys. Leet., vol.55, pp.1727 (1989).
[5] J.A.Dagata, J.Schneir, H.H.Haray, Appl. Phys. Leet., vol.56,pp.2001 (1990).
[6] Insang Song, Byong Man Kim, Gwangseo Park, Appl. Phys. Leet., vol.76, pp.5 (2000).
[7] M. Faucher, T. Fournier, B. Pannetier, C. Thirion, W. Wernsdorfer,J.C. Villegier, V. Bouchiat, “Niobium and niobium nitride SQUIDs based on anodized nanobridges made with an atomic force microscope”, Physica C 368, pp.211-217 (2002).
[8] V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier, B. Pannetier, “Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films”, Appl. Phys. Lett., Vol 79, No.1 (2001).
[9] Run-Wei Li, Teruo Kanki, Motoyuki Hirooka, Akihiko Takagi, and Takuya Matsumoto, Appl. Phys. Leet., vol.84, pp.14 (2004).
[10] Stuart C. Wimbush, Minoru Tachiki, Eiji Takayama-Muromachi, Hideo Itozaki, “Atomic Force Microscope Based Lithography of YBa2Cu3O7-δThin Films”, Japanese Journal of Applied Physics, Vol. 45, No. 7, pp. 5742-5745 (2006).
[11] K. Char, M. S. Colclough, S. M. Garrison, N. Newman, and G. Zaharchuk, “Bi-epitaxial grain boundary junctions in YBa2Cu3O7”, Appl. Phys. Lett.59, pp.733,(1991).
[12] K. Char, M. S. Colclough, L. P. Lee, and G.Zaharchuk, “Extension of bi-epitaxial Josephson junction process to various substrates”, Appl. Phys. Lett., 59, pp.2177,(1991).
[13] Yu. A. Boikov, A. L. Vasiliev, and T. Claeson, “Biepitaxial Josephson junctions with high current density based on YBa2Cu3O7-δ films on silicon sapphire”, J. Appl. Phys. 77, 1654(1995).
[14] Kiejin Lee and Ienair Iguchi, “Josephson effects in YbaCuO grain boundary junctions on (100)MgO bicrystal substrates ”, Appl. Phys. Lett. 66, 769(1995).
[15] I. V. Borisenko, P. B. Mozhaev, G. A. Ovsyannikov, K. Y. Constantinian, E. A. Stepantsov, “ Superconducting current-phase relation in high-Tc symmetrical bicrystal junction”, Physica C 368, 328,(2002).
[16] J. Gao, Y. Boguslavskij, B. B. G. Klopman, D. Terpstra, R. Wijbrans, G. J. Gerritsma, and H. Rogalla, J. Appl. Phys. 72, 575, (1992).
[17] J. Gao, W. A. M. Aarnink, G. J. Gerritsma, and H. Rogalla, Physica C 171, 126 (1990); see also IEEE Trans. Magn. MAG-27, 3062,(1991).
[18] D. K. Chin and T. van Duzer, Appl. Phys. Lett. 58, 753,(1991).
[19] B. D. Hunt, M. C. Foote, and L. J. Bajuk, Appl. Phys. Lett. 59, 982,(1991).
[20] D. Terpstra, A. J. H. M. Rijnders, F. H. G. Roesthuis, D. H. A. Blank, G. J. Gerritsma and H. Rogalla, Physica C 217, 151 (1993).
[21] R. Gupta, Q. Hu, D. Terpstra, G. J. Gerritsma, and H. Rogalla, Appl. Phys. Lett. 62, 3351 (1993).
[22] Gensoh Matsubara, Katsumi Eikyu, Masayuki Miyazaki, Hiroshi Kimura,and Yoichi Okabe,“Fabrication of YBCO/PBCO/SrTiO3/PBCO/YBCO Layered Structure for Superconductior-Insulator-Superconductor Tnuuel-Type Josephson Junction”, Jpn. J. Appl. Phys. 32, L1324(1993).
[23] Toshiyuki Matsui, Takeshi Suzuki, Akihiko Ohi, Hiroshi Kimura, and Kazuo Mukae, “ Fabrication of Tunnel Junctions with YBCO/Insulator/YBCO Layered Structure Using (013)-Oriented Films as Base Layer”, Jpn. J. Appl. Phys. 32, L1218(1993).
[24] G. Friedl, B. Roas, M. Romheld, L. Schultz, W. Jutzi“ Transport properties of epitaxial YBa2Cu3Ox films at step edges ”, Appl. Phys. Lett., 59, 2751(1991).
[25] J. G. Bednorz, and K. A. Müller, “Possible High Tc Superconductivity in the Ba-La-Cu-O System”, Z. Phys. B64, 189 (1986).
[26] M.K. Mu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Hng, Y. Q. Wang, and C. W. Chu, “Superconductivity at 93K in a new Mxed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure”, Phys. Rev. Lett., 58, 908(1987).
[27] Antonio Barone, Gianfranco Paterno, “Physics and Applications of the Josephson Effect”, John Wiley & Sons, Canada, (1982).
[28] Konstantin K. Likharev, “Dynamics of Josephson Junction and Circuits”, Gordon and Breach Science Publishers, New York, (1986).
[29] Shu-Ang Zhou, “Electrodynamics of solids and microwave superconductivity”, John Wiley & Sons, New York, (1999).
[30] T. Van Duzer, C. W. Turner, “Principles of Superconductive Devices and Circuits”, Elsevier, New York, (1981).
[31] J.C. Gallop, SQUIDS, “The Josephson Effects and Superconducting Electronics”, Adam Hilger, Bristol, (1991).
[32] B. D. Josephson,“Coupled Superconductors”, Rev. Mod. Phys. 36, pp.216,(1964 ).
[33] B. D. Josephson, “Supercurrents Through Barriers”, Adv. Phys. 14, pp.419,(1965 ).
[34] Liming Tsau, Dawen Wang, K.L.Wang, “ Nanometer scale patterning of silicon (100) sufaces by an atomic force microscope operating in air “, Appl. Phys. Lett., vol.64, pp.2133, (1994).
[35] E.S.Snow, P.M.Campbell, ” Fabrication of Si nanostructures with an atomic force microscope”, Appl. Phys. Lett., vol.64, pp.1932, (1994).
[36] Dawen Wang, Liming Tsau, K.L.Wang, ” Nanofabrication of thin chromium film deposited on Si (100) surfaces by tip induced anodization in atomic force microscopy”, Appl. Phys. Lett., vol.67, pp.1295, (1995).
[37] C.Huh, S.Park, ” Atomic force microscope tip-induced anodization of titanium film for nanofabrication of oxide patterns “, J. Vac. Sci. Technol. B, vol.18, pp.55, (2000).
[38] E.S.Snow, D.Park, P.M.Campbell, ” Single-atom point contact devices fabricated with an atomic force microscope “, Appl.Phys. Lett., vol.69, pp.269, (1996).
[39] K.Matsumoto, “ STM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices “, Proceedings of The IEEE, vol.85, pp.612, (1997).
[40] Run-Wei Li, Teruo Kanki, Motoyuki Hirooka, Akihiko Takagi, Takuya Matsumoto, “Relaxation of nanopatterns on Nb-doped SrTiO3 surface” Appl. Phys. Lett., vol 84, No.14, (2004).
[41] Jinyoung Park, Haiwon Lee, “Effect of surface functional groups on nanostructure fabrication using AFM lithography”, Materials Science and Engineering C, 24, 311- 314, (2004).
[42] Marco Rolandi, Itai Suez, Andreas Scholl, Jean M. J. Fr_chet, “Fluorocarbon Resist for High-Speed Scanning Probe Lithography”, Angew. Chem. Int. Ed., 46, 7477 -7480, (2007).
[43] Hyeong-Gon Kang, Seong Kyu Kim, Haeseong Lee, “The analysis of superconducting thin films modified by AFM lithography with a spectroscopic imaging technique”, Surface Science 600, 3673-3676, (2006).
[44] Seunghyun Lee, Jungoh Kim, Wan Sub Shin, Ha-Jin Lee, Sunyoung Koo, Haiwon Lee, “Fabrication of nanostructures using scanning probe microscope lithography”, Materials Science and Engineering C, 24, 3-9, (2004).
[45] Hiroyuki Sugimura, Osamu Takai, Nakagiri Nakagiri, “Scanning probe lithography for electrode surface modification”, Journal of Electroanalytical Chemistry , 473, 230-234, (1999).
[46] H. Bloe, G. Staikov, J. W. Schultze, Electrochim. Acta 47, 335 (2001).
[47] S. Gwo, C. L. Yeh, P. F. Chen, Y. C. Chou, T. T. Chen, Appl. Phys. Lett. 74, 1090 (1999).
[48] X. Jin, W. N. Unertl, Appl. Phts. Lett. 61, 657 (1992).
[49] 大葉大學,張耿銘,94碩士論文
[50] K. Ueno, R. Okada, K. Saiki, A. Koma, Surf. Sci. 514, 27 (2002).
[51] M. Tello, R. Garcia, Appl. Phys. Leet. 79, 424 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top