跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹巧如
研究生(外文):QIAO-RU ZHAN
論文名稱:紫外光/二氧化鈦程序對染整廢水之處理研究
論文名稱(外文):Degradation of Dyeing Wastewater by the UV/TiO2 Process
指導教授:吳忠信吳忠信引用關係
指導教授(外文):Chung-Hsin Wu
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:二氧化鈦光催化過碘酸可行性氧化鈦紫外光有機物染料雙氧水過硫酸鈉過碘酸鈉溴酸鈉氯酸鈉
外文關鍵詞:TiO2PhotocatalyticHydrogen peroxideSodium PersulfateSodium PeriodateSodium BromateSodium Chlorate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以紫外光/二氧化鈦程序(UV/TiO2)為基礎,對染整廢水之處理進行研究,以瞭解光催化處理對染整廢水之可行性。本研究之目標汙染物為C. I. Reaction Red 198 (RR198)與C. I. Reaction Black 5 (RBK5),探討之參數包含溶液pH值、染料初始濃度、TiO2劑量、燈光強度、燈光波長及添加不同氧化劑種類與劑量等。添加之氧化劑計有雙氧水、過硫酸鈉、過碘酸鈉、溴酸鈉與氯酸鈉。
實驗結果指出UV/TiO2系統之最適TiO2添加量為1 g/L,染料初始濃度效應得知染料初始濃度與降解效率成反比,UV/TiO2程序在365 nm與254 nm燈光照射下,兩種染料之降解速率皆為pH 4> pH 7 > pH 10,且RBK5之降解速率較RR198快。對兩種染料光催化分解發現降解效率與燈光強度成正比,但隨燈光波長成反比,溶液中添加NaCl及Na2SO4對UV/TiO2程序的降解能力具促進效果。
紫外光(254 nm)/氧化劑結果顯示,氯酸鈉無任何氧化力,過硫酸鈉、過碘酸鈉及溴酸鈉之氧化力皆隨劑量增加而增加,但雙氧水則呈現隨劑量增加至12 mM達最大氧化速率,而後劑量增加反呈現抑制效應。無論於365 nm或254 nm照射下,NaIO4添加對UV/TiO2系統造成明顯之促進效應,其餘氧化劑添加於UV/TiO2系統中則未呈現促進效應。C2H5OH添加均對UV/TiO2相關系統造成明顯之抑制效應,實驗結果推測氫氧自由基應該是主要氧化有機物之物種,但反應速率並未因C2H5OH添加而完全停止,故電洞之氧化能力於UV/TiO2相關系統中亦扮演重要之角色。對UV/H2O2系統而言,反應速率因C2H5OH添加而近乎完全停止,故推測氫氧自由基是UV/H2O2系統唯一具氧化力之物種。對UV/Na2S2O8、UV/NaBrO3及UV/NaIO4系統而言,反應速率並未因C2H5OH添加而完全停止,故推測氫氧自由基並不是UV/Na2S2O8、UV/NaBrO3及UV/NaIO4系統唯一具氧化力之物種,硫酸根、溴酸根及過碘酸根自由基之氧化能力於UV/Na2S2O8、UV/NaBrO3及UV/NaIO4系統中亦扮演重要之角色。
This study employed the UV/TiO2-based systems to evaluate the treatment efficiency and possibility of textile wastewater. The parent compounds were C.I. Reaction Red 198 (RR198) and C.I. Reaction Black 5 (RBK5). The parameters of this research were pH, dye concentration, TiO2 dosage, light intensity and wavelength and oxidant addition. The oxidants included hydrogen peroxide, sodium persulfate,
sodium periodate, sodium bromate and sodium chlorate.
This study indicated the most appropriate dosage of TiO2 was 1 g/L. The decolorization rate increased with the dye concentration and light wavelength decreasing, conversely, the decolorization rate increased as light intensity increased. The experimental results of pH effect showed the decolorization rate followed the order pH 4 > pH 7 > pH 10; additionally, RBK5 was more easy to decolorize than RR198. The photodegradation efficiency of UV/TiO2 system was promoted by the
addition of NaCl and Na2SO4.
In UV (254 nm)/oxidant systems, the decolorization efficiency increased with the dosage of oxidant increasing; however, sodium chlorate exhibited no photocatalytic ability. For UV/H2O2 system, the most appropriate dosage of H2O2 was 12 mM. In UV/TiO2/oxidant systems, only sodium periodate can accelerate the decolorization rate of UV/TiO2. The inhibition of dye decolorization by adding C2H5OH reveals that the primary decolorization pathway involves hydroxyl radicals, and that direct oxidation by photogenerated holes is probably important in the UV/TiO2-based system. In UV/H2O2 system, the decolorization pathway only involves hydroxyl radicals; however, in UV/Na2S2O8, UV/NaBrO3 andUV/NaIO4 systems, the oxidation of persulfate, bromate and periodate radicals cannot be ignore.
目錄

授權書...............................................................................................iii
中文摘要...........................................................................................iv
英文摘要...........................................................................................vi
誌謝...................................................................................................vii
目錄...................................................................................................viii
圖目錄...............................................................................................xii
表目錄...............................................................................................xvii

第一章 緒論..................................................................1
1.1 研究緣起......................................................1
1.2 研究目的與內容.............................................2

第二章 文獻回顧............................................................3
2.1 染整廢水............................................................3
2.2 染料簡介............................................................7
2.2.1色素與染料...............................................7
2.2.2 發色原理...................................................8
2.2.3 發色團學說................................................8
2.2.4 染料分類...................................................10
2.3 光觸媒...............................................................13
2.3.1 觸媒簡介...................................................13
2.3.2光觸媒半導體..............................................14
2.3.3 二氧化鈦...................................................14
2.4 UV/TiO2程序.......................................................17
2.5 UV/TiO2程序的影響因子........................................18
2.5.1二氧化鈦添加量...........................................18
2.5.2 染料的初始濃度..........................................18
2.5.3 pH值.......................................................19
2.5.4 反應溫度...................................................20
2.5.5 氧化劑添加................................................21
2.5.5.1 H2O2添加影響...................................21
2.5.5.2 Na2S2O8添加影響..............................22
2.5.5.3 NaIO4添加影響.................................23

第三章 實驗材料與方法...................................................25
3.1 實驗裝置及設備...................................................25
3.2 使用藥品及器材...................................................27
3.3 研究流程............................................................28
3.4 實驗步驟............................................................30
3.4.1 背景實驗.直接光解......................................30
3.4.2 光催化降解反應實驗....................................30
3.4.2.1 二氧化鈦添加量..................................30
第四章 結果與討論............................................................................32
4.1 光催化反應背景實驗...........................................................32
4.1.1 染料檢量線................................................................32
4.1.2 直接光解實驗.不同波長燈光照射...........................32
4.2 光催化反應實驗...................................................................34
4.2.1 TiO2添加量的影響.....................................................34
4.2.2 染料初始濃度的影響................................................36
4.2.3 環境pH值的影響......................................................38
4.2.4 燈光強度的影響........................................................40
4.2.5 鹽類添加的影響........................................................42
4.2.5.1 NaCl添加量.....................................................42
4.2.5.2 Na2SO4添加量.................................................44
4.2.6 氧化劑添加................................................................46
4.2.6.1 添加不同劑量H2O2對反應的影響................46
4.2.6.1.1 添加不同劑量H2O2對UV/TiO2/H2O2系統的影響..............................................50
4.2.6.2 添加不同劑量Na2S2O8對反應的影響...........53
4.2.6.3 添加不同劑量NaBrO3對反應的影響...........56
4.2.6.4 添加不同劑量NaClO3對反應的影響............59
4.2.6.5 添加不同劑量NaIO4對反應的影響..............61
4.2.7 不同系統間之差異....................................................64
4.2.7.1 H2O2添加.........................................................64
4.2.7.2 Na2S2O8添加....................................................66
4.2.7.3 NaBrO3添加.....................................................67
4.2.7.4 NaClO3添加.....................................................69
4.2.7.5 NaIO4添加........................................................70
4.2.8 添加抑制劑的影響....................................................72
4.2.8.1 UV/TiO2系統中添加抑制劑之影響..............72
4.2.8.2 UV/TiO2/H2O2系統中添加抑制劑之影響......73
4.2.8.3 UV/TiO2/Na2S2O8系統中添加抑制劑之影響75
4.2.8.4 UV/TiO2/NaBrO3系統中添加抑制劑之影響76
4.2.8.5 UV/TiO2/NaClO3系統中添加抑制劑之影響78
4.2.8.6 UV/TiO2/NaIO4系統中添加抑制劑之影響....79

第五章 結論與建議............................................................................81
5.1 結論.......................................................................................81
5.2 建議.......................................................................................82

參考文獻..............................................................................................83

圖目錄

圖 2.1 R.R198結構式....................................................13
圖 2.2 R.BK5結構式................................................13
圖 2.3 二氧化鈦中金紅石(a)與銳鈦礦(b)結晶構造..................15
圖 2.4 太陽光波長與能量分布曲線圖..................................16
圖3.1 光反應槽結構裝置..................................................26
圖3.2 研究架構.........................................................29
圖4.1 不同波長UV光直接光解降解比較圖....................................33
圖 4.2(a) UV 365nm不同TiO2添加量R. R198之光催化降解比較圖..........................................................................................................35
圖 4.2(b) UV 365 nm不同TiO2添加量R. BK5之光催化降解比較圖..........................................................................................................35
圖 4.3(a) R.R198在不同初始濃度下光催化降解比較圖.................37
圖 4.3(b) R.BK5 在不同初始濃度下光催化降解比較圖................37
圖 4.4(a) UV 365 nm於不同pH下光催化降解比較圖....................39
圖 4.4(b) UV 254 nm於不同pH下光催化降解比較圖....................39
圖 4.5(a) UV 365 nm不同燈光強度對光催化降解之比較圖..........41
圖 4.5(b) UV 254 nm不同燈光強度對光催化降解之比較圖..........41
圖4.6(a) UV(365 nm)/TiO2/NaCl在不同NaCl添加量對光催化降解之比較圖..............................................................................................43
圖4.6(b) UV(254 nm)/TiO2/NaCl在不同NaCl添加量對光催化降解之比較圖..............................................................................................43
圖4.7(a) UV(365 nm)/TiO2/Na2SO4在不同Na2SO4添加量對光催化降解之比較圖......................................................................................45
圖4.7(b) UV(254 nm)/TiO2/Na2SO4在不同Na2SO4添加量對光催化降解之比較圖......................................................................................45
圖4.8(a) UV(365 nm)/H2O2在不同H2O2添加量對R.R198光催化降解之比較圖..........................................................................................47
圖4.8(b) UV(365nm)/ H2O2在不同H2O2添加量對R.BK5光催化降解之比較圖..........................................................................................48
圖4.8(c) UV(254 nm)/H2O2在不同H2O2添加量對R.R198光催化降解之比較圖..........................................................................................48
圖4.8(d) UV(254 nm)/H2O2在不同H2O2添加量對R.BK5光催化降解之比較圖..........................................................................................49
圖4.9(a) UV(365 nm)/TiO2/H2O2在不同H2O2添加量對R.R198光催化降解..................................................................................................51
圖4.9(b) UV(365 nm)/TiO2/H2O2在不同H2O2添加量對R.BK5光催化降解..................................................................................................51
圖4.9(c) UV(254 nm)/TiO2/H2O2在不同H2O2添加量對R.R198光催化降解..................................................................................................52
圖4.9(d) UV(254nm)/TiO2/H2O2在不同H2O2添加量對R.BK5光催化降解..................................................................................................52
圖4.10(a) UV(365nm)/Na2S2O8在不同Na2S2O8添加量對R.R198光催化降解之比較圖..............................................................................54
圖4.10(b) UV(365nm)/Na2S2O8在不同Na2S2O8添加量對R.BK5光催化降解之比較圖..............................................................................54
圖4.10(c) UV(254nm)/Na2S2O8在不同Na2S2O8添加量對R.R198光催化降解之比較圖..............................................................................55
圖4.10(d) UV(254nm)/Na2S2O8在不同Na2S2O8添加量對R.BK5光催化降解之比較圖..............................................................................55
圖4.11(a) UV(365nm)/NaBrO3在不同NaBrO3添加量對R.R198光催化降解之比較圖..................................................................................57
圖4.11(b) UV(365nm)/NaBrO3在不同NaBrO3添加量對R.BK5光催化降解之比較圖..................................................................................57
圖4.11(c) UV(254nm)/NaBrO3在不同NaBrO3添加量對R.R198光催化降解之比較圖..................................................................................58
圖4.11(d) UV(254nm)/NaBrO3在不同NaBrO3添加量對R.BK5光催化降解之比較圖..................................................................................58
圖4.12(a) UV(365nm)/NaClO3在不同NaClO3添加量對R.R198光催化降解之比較圖..................................................................................59
圖4.12(b) UV(365nm)/NaClO3在不同NaClO3添加量對R.BK5光催化降解之比較圖..................................................................................60
圖4.12(c) UV(254nm)/NaClO3在不同NaClO3添加量對R.R198光催化降解之比較圖..................................................................................60
圖4.12(d) UV(254nm)/NaClO3在不同NaClO3添加量對R.BK5光催化降解之比較圖..................................................................................61
圖4.13(a) UV(365nm)/NaIO4在不同NaIO4添加量對R.R198光催化降解之比較圖......................................................................................62
圖4.13(b) UV(365nm)/NaIO4在不同NaIO4添加量對R.BK5光催化降解之比較圖......................................................................................62
圖4.13(c) UV(254nm)/NaIO4在不同NaIO4添加量對R.R198光催化降解之比較圖......................................................................................63
圖4.13(d) UV(254nm)/NaIO4在不同NaIO4添加量對R.BK5光催化降解之比較圖......................................................................................63
圖4.14(a) UV(365 nm)/TiO2/H2O2光催化降解之比較圖..................65
圖4.14(b) UV(254 nm)/TiO2/H2O2光催化降解之比較圖..................65
圖4.15(a) UV(365 nm)/TiO2/Na2S2O8光催化降解之比較圖.............66
圖4.15(b) UV(254 nm)/TiO2/Na2S2O8光催化降解之比較圖............67
圖4.16(a) UV(365 nm)/TiO2/NaBrO3光催化降解之比較圖..............68
圖4.16(b) UV(254 nm)/TiO2/NaBrO3光催化降解之比較圖.............68
圖4.17(a) UV(365nm)/TiO2/NaClO3光催化降解之比較圖...............69
圖4.17(b) UV(254nm)/TiO2/NaClO3光催化降解之比較圖...............70
圖4.18(a) UV(365nm)/TiO2/NaIO4光催化降解之比較圖.................71
圖4.18(b) UV(254nm)/TiO2/NaIO4光催化降解之比較圖.................71
圖4.19(a) UV(365nm)/TiO2/C2H5OH光催化降解之比較圖.............72
圖4.19(b) UV(254nm)/TiO2/C2H5OH光催化降解之比較圖.............73
圖4.20(a) UV(365nm)/TiO2/H2O2/C2H5OH光催化降解之比較圖....74
圖4.20(b) UV(254nm)/TiO2/H2O2/C2H5OH光催化降解之比較圖....74
圖4.21(a) UV(365nm)/TiO2/Na2S2O8/C2H5OH光催化降解之比較圖……………………………………………………………………..75
圖4.21(b) UV(254nm)/TiO2/Na2S2O8/C2H5OH光催化降解之比較圖……………………………………………………………………..76
圖4.22(a) UV(365nm)/TiO2/NaBrO3/C2H5OH光催化降解之比較圖……………………………………………………………………..77
圖4.22(b) UV(254nm)/TiO2/NaBrO3/C2H5OH光催化降解之比較圖……………………………………………………………………..77
圖4.23(a) UV(365nm)/TiO2/NaClO3/C2H5OH光催化降解之比較圖……………………………………………………………………..78
圖4.23(b) UV(254nm)/TiO2/NaClO3/C2H5OH光催化降解之比較圖………………………………………………………………..……79
圖4.24(a) UV(365nm)/TiO2/NaIO4/C2H5OH光催化降解之比較圖..80
圖4.24(b) UV(254nm)/TiO2/NaIO4/C2H5OH光催化降解之比較圖..80

表目錄

表2.1 精練劑種類及其適用纖維.........................................4
表2.2 漂白劑種類及其適用纖維.........................................5
表2.3 國內印染整業放流水排放標準...................................7
表2.4 吸收光線及補色之關係............................................8
表2.5 二氧化鈦光觸媒性質..............................................16
表2.6 UV/TiO2程序處理污染物及添加物之文獻整理............23
表3.1實驗之變異因子.....................................................31
表4.1 直接光解實驗之k與R2值表...................................................33
表4.2不同 TiO2添加量之k與R2值表..............................................36
表4.3 UV/ TiO2在不同染料初始濃度之k與R2值表........................38
表4.4 UV/TiO2在不同pH環境下之k與R2值表...............................40
表4.5 UV/ TiO2在不同燈光強度下之k與R2值表............................42
表4.6 UV/ TiO2在不同NaCl添加劑量下之k與R2值表...................44
表4.7 UV/ TiO2在不同Na2SO4添加劑量下之k與R2值表...............46
表4.8 UV/H2O2系統添加不同H2O2劑量下之k與R2值表...............49
表4.9 UV/TiO2/H2O2系統添加不同H2O2劑量下之k與R2值表......53
表4.10 UV/Na2S2O8系統添加不同Na2S2O8劑量下之k與R2值......56
表4.11 UV/ NaBrO3系統添加不同NaBrO3劑量下之k與R2值表...59
表4.12 UV/NaIO4系統添加不同NaIO4劑量下之k與R2值表.........64
1.Alaton, I. A., Balcioglu, I. A., and Bahnemann, D. W., (2002) Advanced Oxidation of a reactive dye bath effluent: Comparison of O3,H2O2/UV-C and TiO2/UV-A process, Water Research, 36, 1143-1154
2.Bejarano-Pe’rez, N. J., and Sua’rez-Herrera, M. F., (2007) Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst, Ultrasonics Sonochemistry, 14, 589-595
3.Kaur, S., and Singh, V., (2007) TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation, Journal of Hazardous Materials, 141, 230-236
4.Liu,W., Chen, S., Zhao,W., and Zhang, S., (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase, Journal of Hazardous Materials, 164, 154-160
5.Lea, J., and Adesina, A. A., (1998) The photo-oxidative degradation of sodium dodecyle sulfate in aerated aqueous TiO2 suspension, Journal of Photochemistry and Photobiology A: Chemistry, 118, 111-122
6.Muruganandham, M., and Swaminathan, M., (2006) Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process, Dyes and Pigments, 68, 133-142
7.Muruganandham, M., Sobana, N., and Swaminathan, M., (2006) Solar assisted photocatalytic and photochemical degradation of Reactive Black 5, Journal of Hazardous Materials, 137, 1371-1376
8.Mills, A., Davis, R. H., and Worsley, D., (1993) Water purification by semiconductor photocatalysis, Chemical Society Reviews, 22, 7-413
9.Mahmoodi, N. M., Arami, M., and Limaee, N. Y., (2006) Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study, Journal of Hazardous Materials, 133, 113-118
10.Sadik,W. A., (2007) Effect of inorganic oxidants in photodecolourization of an azo dye, Journal of Photochemistry and Photobiology A: Chemistry, 191, 132-137
11.Sadik,W. A., Nashed, A. W., and El-Demerdash, A. G. M., (2007) Photodecolourization of ponceau 4R by heterogeneous photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 189, 135-140
12.Shchukin, D., Poznyak, S., Kulak, A., and Pichat, P., (2004) TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water, Journal of Photochemistry and Photobiology A: Chemistry, 162, 423-430
13.So, C. M., Cheng, M. Y., Yu, J. C., and Wong, P. K., (2002) Degradation of azo Procion Red MX-5B by photocatalytic oxidation, Chemosphere, 46, 905-912
14.Sun, J. H., Wang, Y. K., Sun, R. X., and Dong, S. Y., (2009) Photodegradation of azo dye Conog Red from aqueous solution by the WO3-TiO2/activated carbon (AC) photocatalyst under the UV irradiation, Materials Chemistry and Physics, 115, 303-308
15.Tang, C., and Chen, V., (2004) The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor, Water Research, 38, 2775-2781
16.Wu, C. H., (2008) Effects of operational parameters on the decolorization of C.I. Reactive Red 198 in UV/TiO2-based systems, Dyes and Pigments, 77, 31-38
17.Xu, X. R., Li, S. X., Li, X. Y., Gu, J. D., Chen, F., Li, X. Z., and Li, H. B., (2008) Degradation of n-butyl benzyl phthalate using TiO2/UV, Journal of Hazardous Materials
18.Zhang, X., Li, G., and Wang, Y., (2007) Microwave assisted photocatalytic degradation of high concentration azo dye Reactive Brilliant Red X-3B with microwave electrodeless lamp as light source, Dyes and Pigments, 74, 536-544
19.行政院環境保護署,水污染防治法第七條第二項,http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0010。
20.邱永亮 譯,(1989)染料之合成與特性,徐氏基金會。
21.垰田博史,(2003)光觸媒圖解。
22.林哲民,(2001)利用UV/H2O2、O3及UV/O3光化學氧化法處理反應性染料廢水之研究,碩士論文,私立逢甲大學環境工程與科學研究所。
23.廖盛焜、郭文貴、林尚明、張振忠、陳兆琦,(2005)染整技術原理與實務,經濟部工業局。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊