跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孔禹廣
研究生(外文):Khong Vu Quang
論文名稱:複合氣動系統的能量匯流之研究
論文名稱(外文):Study of Flow Energy Merger of Hybrid Pneumatic Power System
指導教授:蔡耀文黃國修黃國修引用關係
指導教授(外文):Tsai Yao WenK.David Huang
學位類別:博士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:114
中文關鍵詞:HPPS廢氣能量能量合併管能量流程合併
外文關鍵詞:Hybrid pneumatic power systemExhaust-gas energyEnergy merger pipeFlow energy merger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
目前最令科學家關注的問題,是生態污染,溫室效應,原油資源被限制等之因素。這些對業者來說是個非常巨大的挑戰。因此也費了許多科學家的時間,知識和努力來做研究,找出新技術。而這項研究的最大目的是專注在環保,無污染的“綠車”。其中包括:雜種電動車(HEV),電動車(EV),及燃料電池車(FCV)。如今HEV, EV 及 FCV 雖然已經不斷在開發並發揮用途,不過還是會存在一些限制。
爲了克服以上這些障礙,科學家已提出一系列的系統,名為: Hybrid Pneumatic Power System (HPPS) 來進行研究。這系統的能源能夠取代流程能量的電化學能量和優選能量的管理和運用。能夠優化管理及使用能量源,並在一個 Internal Combustion Engine (ICE)再生回收內燃機,讓ICE 在極大壓力中能夠穩定運作。因此此系統被視為是對增加能量與改善廢氣排放是最有效率的措施。
這項研究的最大目標是包括兩個項目。第一項目是研究實驗 HPPS的操作水準,壓縮氣的影響度,斷面(CSA)的作用和收縮在結合點於系統的流程能量結合。其項目是此研究還專注研究於合併管子的作用,壓縮氣流和 CSA 對廢氣再循環,並確定 CSA 在合併能量通過使用三度空間的 CFD 軟體所模擬計算,能夠擁有最佳維度及適當的調整。
依各種試驗及模擬在HPPS,此試驗有使用一個結合能量管,而這個結合能量管的形狀及尺寸已設計到最適當的程度。此外,CSA 的活動是由壓縮氣及氣流率的變化而有適當的調整。
實驗結果顯示,廢氣再循環能量以及HPPS 的結合能量流程不僅取決於合併(結合)管的形狀與尺寸狀況,而且還取決於CSA對壓縮氣和壓縮氣流量的變化調整。這些研究結果將是有價值的基礎及有效用。藉此進入研究,設計能量合併管和HPPS的控制系統。
Abstract
Social problems such as environmental pollution and limited crude oil resources are great challenges that have become major concerns, so scientists and researchers are investing significant time and effort in developing new technologies that can be applied in the automobile industry. The focus of these technologies is the realization of zero-pollution and green vehicles, including the creation of hybrid electric vehicles (HEVs), electric vehicles (EVs), fuel cell vehicles (FCVs). HEV, EV, and FCV technologies have been further developed and are now in limited use. However, these vehicles still have limitations.
In order to solve the above limitations, a hybrid pneumatic power system (HPPS) is proposed in this study. This system stores the flow energy instead of a battery’s electrochemical energy; moreover, it can recycle the exhaust-gas energy of an internal combustion engine (ICE) and make the ICE operate at its sweet spot of maximum efficiency. Therefore, it can be considered as an effective solution to significantly increase system energy efficiency and effectively improve exhaust emissions.
This study focuses mainly on achieving two objectives. First, it experimentally investigates the operating capabilities of the HPPS, effects of the Pair, and contraction of section area (CSA) at the merging region on the flow energy merger in the system. Second, this study also investigates the effects of the dimensions of merger pipe, compressed airflow rate, and CSA on the exhaust-gas energy recycling, and determines the optimum dimensions and suitable adjustment of the CSA for the best merging process by using three-dimensional simulation of the computational fluid dynamic (CFD).
The experiments and simulation were performed on a HPPS that used an innovative energy merger pipe where configuration and dimensions were suitably designed, while CSA was adjusted for the change in Pair and compressed airflow rate.
The obtained results indicate that the exhaust-gas energy recycling and merger flow energy in the HPPS not only strongly depend on configuration and dimensions of the energy merger pipe but also are significantly influenced by CSA adjustment for the change in Pair and compressed airflow rate. These study results will be valuable bases and useful to research and design the energy merger pipe and control system of the HPPS.
Table of contents
AUTHORIZED COPYRIGHT STATEMENT iii
ABSTRACT (Chinese) iv
ABSTRACT (English) vi
ACKNOWLEDGEMENTS viii
TABLE OF CONTENTS x
LIST OF FIGURES xiii
LIST OF TABLES xvii
ABBREVIATIONS xviii
NOMENCLATURES xix
CHAPTER 1. INTRODUCTION 1
1.1. PROBLEM OF LOW THERMAL EFFICIENCY OF INTERNAL COMBUSTION ENGINE 1
1.2. LITERATURE SURVEY OF SIMILAR TECHNOLOGIES OF HYBRID PNEUMATIC POWER SYSTEM 2
1.2.1. Hybrid electric vehicle 3
1.2.2. Electric vehicle 4
1.2.3. Fuel cell vehicle 4
1.2.4. Gas powered hybrid zero pollution vehicle 4
1.3. HYBRID PNEUMATIC POWER SYSTEM 8
1.4. RESERCH OBJECTIVES AND SCOPE 10
1.4.1. Objectives 10
1.4.2. Scope 12
CHAPTER 2. THEORETICAL ANALYSIS 14
2.1. FUNDAMENTAL PRINCIPLE OF THE HYBRID PNEUMATIC POWER SYSTEM 14
2.2. DESIGN CONCEPT OF HYBRID PNEUMATIC POWER SYSTEM 14
2.2.1. Internal combustion engine 14
2.2.2. Air compressor 17
2.2.3. High-pressure air storage tank 20
2.2.4. Energy merger pipe 20
2.2.5. High-efficiency turbine 24
2.2.6. Flow energy merging management 26
2.3. THERMODYNAMIC ANALYSIS OF HYBRID PNEIMATIC POWER SYSTEM 28
2.3.1. Thermal efficiency of the internal combustion engine 28
2.3.2. Exhaust-gas energy of the internal combustion engine 28
2.3.3. Merger flow 30
2.3.4. Overall thermal efficiency of hybrid pneumatic power system 31
CHAPTER 3. EXPERIMENTAL STUDY OF HYBRID PNEUMATIC POWER SYSTEM 33
3.1. INTRODUCTION 33
3.2. EXPERIMENTAL EQUIPMENT 34
3.2.1. Experimental apparatus 34
3.2.2. Energy merger pipe 34
3.3. EPERIMENTAL PROCEDURES 35
3.4. EXPERIMENTAL RESULTS AND DISCUSSION 38
3.4.1. Outstanding characteristics of system 38
3.4.2. Flow energy storing of air storage tank 48
3.4.3. Waste energy of internal combustion engine 48
3.4.4. Effects of cross-sectional area on flow energy merger 49
3.5. CONCLUSIONS 60
CHAPTER 4. SIMULATION OF ENERGY MERGING PROCESS BY COMPUTATION FLUID DYNAMICS 62
4.1. INTRODUCTION 62
4.2. COMPUTATION FLUID DYNAMICS FUNDAMENNTAL AND APPLICATION 62
4.2.1. Physical model 64
4.2.2. Governing equations 65
4.2.2.1. Continuity and momentum equations 65
4.2.2.2. Energy equation 67
4.2.3. Turbulence model adapted 68
4.3. SOLVER ALGORITHMS 71
4.4. MODEL DESIGN AND STUDY SCOPE 74
4.4.1. Model design 74
4.4.2. Study scope 76
4.5. BOUNDARY CONDITIONS 77
4.5.1. Boundary condition at the exhaust-gas inlet 77
4.5.2. Boundary condition at the compressed air inlet 77
4.5.3. Boundary condition at outlet 77
4.6. RESULTS AND DISCUSSION 78
4.6.1. Effect of the Da/De on merging process 78
4.6.2. Effect of  on merging process 78
4.6.3. Effect of the Pair on merging process 82
4.6.4. Effect of the Aair on merging process 84
4.6.5. Suitable adjustment of CSA to achieve the best merging process 89
4.7. CONCLUSION 99
CHAPTER 5. VALIDATION AND CONCLUSIONS 102
5.1. COMPARISON BETWEEN EXPERIMENTAL AND SIMULATION RESULTS 102
5.2. CONCLUSIONS 107
REFERENCES 111
References
[1]W.W. Pulkrabek. Engineering Fundamentals of the Internal Combustion Engine. Second Edition, USA, 2004, by Pearson Prentice-Hall, Pearson Education, Inc, Upper Saddle River, NJ 07458.
[2]C. Davis, B. Edelstein, B. Evenson, A. Brecher, D. Cox. Hydrogen Fuel Cell Vehicle Study. Report Prepared for the Panel on Public Affairs (POPA), Ameican Physical Society. USA, Jun. 12, 2003.
[3]N. Iwai. Analysis on fuel economy and advanced systems of hybrid vehicles. JSAE Review 20 1999; 20: 311.
[4]J.V. Mierlo, G. Maggetto, Ph. Lataire. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management 2006; 47: 27482760.
[5]Toyota Co. Worldwide Prius Sales Top 1 Million Mark. Available from: http://www.toyota.co.jp/en/news/08/0515.pdf.
[6]M. Granovskii, I. Dincer, M.A. Rosen. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J. Power Sources 2006; 159: 8693.
[7]I. Dincer. Environmental and sustainability aspects of hydrogen and fuel cell systems. International Journal of Energy Research 2007; 31: 2955.
[8]M.M. Hussain, I. Dincer, X. Li. A preliminary life cycle assessment of PEM fuel cell powered automobiles. Applied Thermal Engineering 2007; 27: 9499.
[9]K. Morita. Automotive power source in 21st century. JSAE Review 2003; 24: 3–7.
[10]R. Priddle. Automotive fuels for the future. 21th International Energy Agency, 1999, IEA – AMF advanced motor fuels.
[11]M.J. Kellaway. Hybrid buses-What their batteries really need to do. J. Power Sources 2007; 186: 9598.
[12]H. Tsuchiya. Innovative renewable energy solutions for hydrogen vehicles. International Journal of Energy Research 2008; 32: 427435.
[13]F. Barbir, S. Yazici. Status and development of PEM fuel cell technology. International Journal of Energy Research 2008; 32: 369378.
[14]A. Emadi, S.S. Williamson. Fuel Cell Vehicles: Opportunities and Challenges. Power Engineering Society General Meeting, 2004. IEEE, vol. 2, pp. 16401645, June 2004.
[15]Moteur Development International (MDI). Availabel from: http://www.theaircar.com/.
[16]C. Knowlen, A.T. Mattick, H. Deparis, A. Hertzberg. Quasi-isothermal expansion engines for liquid nitrogen automotive propulsion. SAE Paper No. 972649; 1997.
[17]C. Knowlen, A.T. Mattick, A.P. Bruckner, A. Hertzberg. High-efficiency energy-conversion systems for liquid-nitrogen automobiles. SAE Paper No. 981898; 1998.
[18]M.C. Plummer, C.A. Ordonez, R.F. Reidy. Liquid nitrogen as a non-polluting vehicle fuel. Society of Automotive Engineers, SAE Paper 01-2517; 1999.
[19]C.A. Ordonez. Liquid nitrogen fueled, closed Brayton cycle cryogenic heat engine. Energy Conversion and Management 2000; 41: 331341.
[20]S. Lemofouet, A. Rufer. Hybrid Energy Storage Systems based on Compressed Air and Super-capacitors with Maximum Efficiency Point Tracking. EPE 2005, ISBN: 90-75815-08-5.
[21]K.D. Huang, S.C. Tzeng. Development of a hybrid pneumatic power vehicle. Applied Energy 2005; 80: 4759.
[22]K.D. Huang, S.C. Tzeng, W.P. Ma, W.C. Chang. Hybrid pneumatic power system which recycles exhaust-gas of an internal combustion engine. Applied Energy 2005; 82: 1732.
[23]K.D. Huang, S.C. Tzeng, W.C. Chang. Energy saving hybrid vehicle using a pneumatic power system. Applied Energy 2005; 81: 118.
[24]K.D. Huang, K.V. Quang, S.H. Wei, T.C. Liu, K.T. Tseng, Y.W. Tsai. Study of an innovative hybrid pneumatic power system. Fourth International Conference on Flow Dynamics, Sep. 2628, 2007, Sendai, Miyagi, Japan.
[25]K.D. Huang, K.V. Quang, N.H. Nam, T.C. Liu, C.H. Lin. Study of flow energy merging capability of hybrid pneumatic power system. 25th National Conference on Mechanical Engineering of CSME. Nov. 2122, 2008, Dayeh, Changhua, Taiwan.
[26]K.D. Huang, K.V. Quang, K.T. Tseng. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD. Energy Conversion and Management 2009; 50: 12711278.
[27]K.D. Huang, K.V. Quang, N.H. Nam, C.H. Lin. Improvement of exhaust-gas energy recycling in hybrid pneumatic power system by an innovative energy merger pipe. 20th international symposium on transport phenomena ISTP-20, Jul. 7-10, 2009, Victoria, Canada.
[28]R.V. Basshuysen, F. Schafer. Internal Combustion Engine handbook, Basics, Components, Systems, and Perspectives. SAE Order No. R-345, Canada, ISBN 0-7680-1139-6.
[29]FU SHENG GROUP. A-series, air-cooled heavy-duty reciprocating air compressor. Available from: http://www.fusheng.com/machinery/products/series_a.htm.
[30]D.E. Winterbone, R.J. Pearson. Theory of Engine Manifold Design Wave Action Methods for Internal Combustion Engine. Professional Engineering Publishing Limited London and Bury St Edmunds, UK, ISBN 1 86058 209 5.
[31]M.J. Zucrow. Principles of Jet Propulsion and Gas Turbines. Printed in the United States of America – 1954.
[32]K.D. Huang, N.H. Nam, K.V. Quang. Validation of dynamic model of hybrid pneumatic power system. SAE paper No. 2009-01-1304.
[33]K.V. Quang. Simulation of the thermodynamic cycle and mass flow in scavenge process of ICE using AVL Boost. Master of science Thesis, Hanoi University of Technology, Hanoi, 2002.
[34]AVL, Thermodynamic cycle simulation Boost. Boost user’s guide, Version 4.0.4, Jun. 2004.
[35]R.E. Sonntag, C. Borgnakke, G.J. Van Wylen. Fundamentals of thermodynamics. Sixth edition, Printed in the United States of America, ISBN 0-471-15232-3.
[36]N.T. Tien. Principle of Internal Combustion Engine. Educational Publishing House, Hanoi, 2003.
[37]K.D. Huang, K.V. Quang, Y.Y. Wu, K.T. Tseng. Energy merger pipe optimization of hybrid pneumatic power system by using CFD. The First International Conference on Applied Energy (ICAE09), Jan. 57, 2009, Hong Kong.
[38]K.D. Huang, K.V. Quang, K.T. Tseng. Study of the effect of contraction of cross-sectional area on flow energy merger in hybrid pneumatic power system. Applied Energy 2009; 86: 21712182.
[39]K.D. Huang, K.V. Quang, K.T. Tseng. Experimental study of exhaust-gas energy recycling efficiency of hybrid pneumatic power system. International Journal of Energy Research 2009; 33: 931-942.
[40]K.D. Huang, K.V. Quang, K.T. Tseng. Experimental study of flow energy merger of hybrid pneumatic power system. IEEE International Conference on Sustainable Energy Technologies (ICSET 2008), Nov. 2429, 2008, Singapore.
[41]FLUENT 6.3, 2006: User guide, all volumes; Fluent Inc. Lebanon, Jun. 2006.
[42]Gambit 2.2, 2001: User’s guide; Fluent Inc. Lebanon, Dec. 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top