跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪裕盛
研究生(外文):Yu-Sheng Hung
論文名稱:牙科用鑄造鈦錫合金之結構及性質研究
論文名稱(外文):Structure and Properties of Cast Ti-Sn Alloys for Dental Applications
指導教授:何文福
指導教授(外文):Wen-Fu Ho
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:198
中文關鍵詞:牙科合金鈦錫合金微結構機械性質研削性切削性
外文關鍵詞:Dental alloyTi-Sn alloysMicrostructureMechanical propertiesGrindabilityMachinability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究中,進行探討一系列二元Ti-xSn合金之微結構、機械性質、研削性及切削性,並以商業用純鈦(Grade II)作為對照組,期望能開發出適合作為牙科應用之鈦合金。實驗結果顯示,Ti-xSn合金之繞射峰完全與純鈦(Grade II) α繞射峰相符,且無發現β相或任何的鋒値。Ti-xSn合金的微硬度值因Sn元素含量增加而提升,由246 HV(TS-A)至357 HV(TS-E),TS-E合金顯示擁有最高的微硬度值。Ti-xSn合金之彎曲強度、彈性模數及彈性回復角均比c.p. Ti高。例如,TS-A合金之彎曲強度高於c.p. Ti約68 %,而彈性模數量高於c.p. Ti約43 %,其彈性回復角高於c.p. Ti約240 %。此外,TS-A、TS-B及TS-C合金展現出韌性性質,當Sn元素添加至TS-D或是更高時,合金之機械性質也會由韌性轉為脆性。
  評估研削性為金屬每分鐘的移除量(研削量)及金屬被研削之切屑體積與砂輪直徑被磨削之體積的比(研削比),而每個金屬之研削性都依賴著這些條件。當Sn元素添加入c.p. Ti發現,在Sn元素含量較高時,使其更加容易加工,有助於改善研削性質。在1200 m/min 研削速率下,TS-D合金之研削速率是c.p. Ti的2.8倍。此外,TS-C、TS-D及TS-E合金於1200 m/min 研削速率下,分別高於c.p. Ti約1.8、1.7、2.4倍。
  切削性的評估為切削進給長度,測試時間固定3分鐘,由刀具從試片邊緣切削進給,計算不同合金之平均切削進給長度。實驗結果顯示,以目前的切削條件下,Ti-xSn合金與c.p. Ti相比,當Sn元素含量遞增時,使其切削進給長度有大幅提升的趨勢。在Sn元素含量較高時,展現出更加容易之加工特性。TS-D合金於120 m/min 切削轉速下,砝碼重為200 gf及300 gf時,切削長度各別為c.p. Ti約1.3、1.4倍;此外,TS-E合金於同樣之切削條件下,切削長度各別為c.p. Ti約1.7、1.8倍。而TS-D及TS-E合金於120 m/min 切削轉速下之試片凹槽表面,顯示出沒有金屬切屑的黏附,且擁有最低的表面粗糙值(Ra)。
  In this study, the microstructure, mechanical properties, grindability and machinability of as-cast Ti-Sn alloys with Sn prepared using a dental cast machine were investigated and compared with commercially pure titanium (c.p. Ti), which was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Sn alloys matched those for α Ti, and no β phase peaks or any intermediate phases were found. The hardness values of the Ti-Sn alloys increased as the Sn contents increased, and ranged from 246 HV (TS-A) to 357 HV (TS-E). Among the Ti-Sn alloys, the alloy with 30 wt.% Sn content showed the highest hardness value. All the Ti-Sn alloys had higher bending strengths, bending moduli and elastic recovery angles than those of c.p. Ti. For example, the bending strength of the TS-A alloy was higher than that of c.p. Ti by 68%, its bending modulus was higher than that of c.p. Ti by 43% and its elastically recoverable angle was higher than that of c.p. Ti by as much as 240%. Additionally, the TS-A, TS-B and TS-C alloys exhibited ductile properties. When the Sn content was TS-D or greater, the alloys showed brittle properties.
  The grindability was evaluated by the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost, calculated from the diameter loss (grinding ratio). The grindability of each metal was found to be largely dependent on the grinding conditions. The addition of Sn to c.p. Ti did contribute to improving the grindability of c.p. Ti. The Ti-Sn alloys with a higher Sn concentration could be ground more readily. The grinding rate of the TS-D alloy at 1200 m/min was about 2.8 times higher than that of c.p. Ti. Additionally, the grinding ratios of the TS-C, TS-D and TS-E alloys at 1200 m/min were about 1.8, 1.7 and 2.4 times higher than that of c.p. Ti, respectively.
  Machinability was evaluated by the cutting length, which traveled by the end mill to go from one edge of the specimen for three minutes permitted calculation of the average cutting length for different metals. The experimental results indicated that alloying with Sn significantly improved the machinability of c.p. Ti in terms of cutting length under the present cutting conditions. The Ti-Sn alloys with a higher Sn concentration could be cut more readily. At 120 m/min, the lengths for TS-D were about 1.3 and 1.4 times higher than that of c.p. Ti at 200 and 300 gf, respectively. Additionally, the lengths for TS-E were about 1.7 and 1.8 times higher than that of c.p. Ti at 200 and 300 gf, respectively. For TS-D and TS-E, there was no adhesion of metal chips observed in the appearance of the cut surfaces at 120 m/min. Furthermore, they had the lowest surface roughness (Ra) values at 120 m/min.
封面內頁
簽名頁
授權書.................................................................................................. iii
中文摘要............................................................................................... iv
英文摘要............................................................................................... vi
誌謝.................................................................................................... viii
目錄....................................................................................................... ix
圖目錄................................................................................................. xiv
表目錄.................................................................................................. xx

第一章 緒論.......................................................................................... 1
1.1 生醫材料的定義.............................................................. 1
1.2 生醫材料必須符合的性質.............................................. 2
1.3 生醫材料的分類.............................................................. 4
1.3.1 材料種類分類......................................................... 4
1.3.2 材料活性分類......................................................... 6
1.4 金屬生醫植入材之發展沿革.......................................... 7
1.5 牙科材料之發展應用.................................................... 10
第二章 鈦及錫元素簡介.................................................................... 12
2.1 純鈦與鈦合金................................................................ 12
2.1.1 鈦元素的發展及冶煉........................................... 12
2.1.2 純鈦之基本特性.................................................... 15
2.1.3 鈦合金之分類....................................................... 17
2.2 錫元素簡介.................................................................... 20
2.2.1 錫元素的發展及冶煉........................................... 20
2.2.2 純錫的基本性質.................................................... 24
2.2.3 錫元素對鈦的影響............................................... 25
2.3 鈦-錫合金近年之發展概況........................................... 26
第三章 理論及文獻回顧.................................................................... 31
3.1 口腔專用鑄造機之發展................................................ 31
3.2 鋁當量[Al]eq與鉬[Mo]eq當量方程式............................. 32
3.3 應力遮蔽效應................................................................ 34
3.4 彈性模數對自然骨之影響............................................. 34
3.5 生物相容性.................................................................... 35
3.6 牙科用鈦合金之切削加工(machinability)探討............... 37
3.6.1 切削定義............................................................... 38
3.6.2 切屑型態............................................................... 39
3.6.3 切削溫度及刀具壽命........................................... 40
3.6.4 表面粗糙度........................................................... 42
3.7 研究動機及目的............................................................ 44
第四章 材料及實驗方法.................................................................... 45
4.1 實驗流程........................................................................ 45
4.2 材料及試片之準備........................................................ 47
4.2.1 純鈦....................................................................... 47
4.2.2 鈦-錫合金............................................................. 47
4.3 熔煉及鑄造.................................................................... 48
4.4 SEM/EDS成分分析...................................................... 52
4.5 相分析及顯微觀察........................................................ 52
4.5.1 XRD繞射分析...................................................... 52
4.5.2 金相顯微結構觀察............................................... 53
4.6 機械性質分析................................................................ 54
4.6.1 微硬度測試........................................................... 54
4.6.2 三點彎曲試驗....................................................... 55
4.6.3 彈性回能力........................................................... 57
4.6.4 熱膨脹係數量測.................................................. 58
4.7 研削性測試(Grinding test)............................................. 59
4.7.1 試片準備............................................................... 59
4.7.2 研削性測試系統設計並建立............................... 59
4.7.3 實驗參數選擇....................................................... 61
4.7.4 研削性評估方法................................................... 63
4.7.5 試片測試方式....................................................... 65
4.7.6 金屬切屑(metal chip)收集................................... 66
4.7.7 掃描式電子顯微鏡觀察....................................... 67
4.7.8 光學顯微鏡觀察................................................... 67
4.8 切削性測試(Machinability test) .................................... 68
4.8.1 試片準備............................................................... 68
4.8.2 切削性測試系統設計與建立............................... 68
4.8.3 實驗參數選擇....................................................... 71
4.8.4 切削性評估方法................................................... 72
4.8.5 試片測試方式....................................................... 72
4.8.6 金屬切屑(metal chip)收集................................... 73
4.8.7 掃描式電子顯微鏡觀察....................................... 74
4.8.8 切屑粒徑尺寸(particle size)大小計算................. 74
4.8.9 測試表面粗糙度................................................... 75
第五章 結果與討論............................................................................ 76
5.1 相分析及顯微觀察........................................................ 76
5.1.1 SEM/EDS成分分析............................................. 76
5.1.2 XRD繞射分析...................................................... 79
5.1.3 金相顯微結構觀察............................................... 83
5.2 機械性質分析................................................................ 85
5.2.1 微硬度測試........................................................... 85
5.2.2 彎曲強度分析....................................................... 87
5.2.3 合金變形表面金相分析....................................... 92
5.2.4 彈性模數分析....................................................... 95
5.2.5 彈性回復能力....................................................... 96
5.3 熱膨脹係數量測............................................................ 98
5.4 研削性測試.................................................................. 110
5.4.1 金屬及合金的密度計算.................................... 110
5.4.2 研削量及研削比................................................ 110
5.4.3 SEM切屑觀察.................................................... 115
5.4.4 光學顯微鏡觀察研削後試片表面形態............ 121
5.5切削性測試.................................................................... 127
5.5.1 切削進給長度.................................................... 127
5.5.2 SEM切屑觀察.................................................... 129
5.5.3 切屑粒徑大小.................................................... 139
5.5.4 切屑粒徑分佈.................................................... 142
5.5.5 試片凹槽表面之SEM觀察............................... 146
5.5.6 表面粗糙度........................................................ 155
第六章 結論...................................................................................... 156
參考文獻............................................................................................ 160
附錄.................................................................................................... 174
[1]Narushima T., “Titanium and its alloys as biomaterials,” J. Jpn. Inst. Met., 55(11):561-565, 2005.
[2]Hulbert S.F., Bokros J.C., Hench L.L., Wilson J and Heimke G, “Ceramics in clinical applications-past, present and future, in Ceramics, in Clinical Applications”, edited by Vincenzini P, Elsevier, Amsterdam, Netherlands, pp. 3-27, 1987.
[3]Park J.B. and Lakes R.S., “Biomaterials: an introduction”, Plenum Press, 2nd ed., New York, 1922.
[4]Silver F.H., “Biomaterials, medical devices, and tissue engineering: an integrated approach”, Chapman & Hall, 1st ed., New York, 1994.
[5]Ratner B.D., “Biomaterials science: an introduction to materials in medicine“, Academic Press, San Diego, 1996.
[6]筏義人, “生体材料學”, 產業圖書株式會社, 東京, 日本, 1994。
[7]劉秀琴, “醫療器材產業之孕育-人工骨的誕生”, 材料與社會, 78期, 82年6月, pp. 47-50。
[8]Inglis A.E., “Advances in implant arthroplasty in the upper extremity, circa 1988”, Clinical & Experimental Rheumatology, 7(3):141-144, 1989.
[9]Hench L.L., “Biomaterials: a forecast for the future”, Biomaterials, 19:1419-1423, 1998.
[10]Rateitschak K.H. and Wolf H.F., “Color atlas dental medicine”, Thieme Medical Publishers, pp. 11-24, 1995.
[11]Block M.S., Kent J.N. and Guerra L,S., “Implants in dentistry”, Philadelphia: Saunders, pp. 45-62, 1997.
[12]Park J.B. and Lakes R.S., “Biomaterials: an introduction”, Plenum Press, 2nd ed., New York, 1992.
[13]Paul R., “Alkaline aqueous electrolyte cell for biomedical application”, J. Electrochem Soc., 127(8):1667-1678, 1980.
[14]Hierholzer S., Hierholzer G., Sauer K.H. and Paterson R.S. “Increased corrosion of stainless steel implants in infected plated fractures”, Arch Orthop Trauma Surg 102(3):198-200, 1984.
[15]Rae T., “The action of cobalt, nickel and chromium on phagocytosis and bacterial killing by human polymorphonuclear leucocytes; its relevance to infection after total joint arthroplasty”, Biomaterials, 1983;4(3):175-180.
[16]Hench L.L. and Ethridge E.C., “Biomaterials - an Interfacial approach”, Acdamic Press, New York, pp. 18-21, 1982.
[17]Browning E., “Toxicity of Industrial Metals”, 2nd ed. Butterworths. Lodon, 1969.
[18]Wroblewski B.M., “15-21 year results of the charnley low friction arthroplasty”, Clin. Orthop., 211:30-35, 1986.
[19]Steflik D.E., McKinney R.V., Sisk A.L., Koth D.L., Singh B.B. and Parr G.R., “Ultrastructural investigations of the bone and fibrous connective tissue interface with endosteal dental implants”, Scanning Microsc., 4(4):1039-1047, 1990.
[20]Block M.S., Kent J.N. and Guerra L,S., “Implants in dentistry”, Philadelphia: Saunders, pp. 45-62, 1997.
[21]島村 昭治, “未來を拓く先端材料”, 工業調查会, 1989; pp. 186-190。
[22]王盈錦, “生物醫學材料”, 合記圖書出版社, 2002。
[23]Hayasahi K. “Biodegradation of implant materials”, JSME Int J., 30:(268) 1517-1525, 1987.
[24]Chiba A., Sakakura S., Kobayashi K. and Kusayanagi K. “Dissolution amounts of nickel, chromium and iron from SUS 304, 316 and 444 stainless steels in sodium chloride solutions”, J. Mater. Sci., 32:1995-2000, 1997.
[25]陳昭清, “牙科鑄造學”, 中台醫專出版社, 1987。
[26]Kokubo T., Nakamura T. and Miyaji F, “Bioceramics 9: Proceedings of the 9th International Symposium on Ceramics in Medicine”, Otsu Japart, p.11, 1996.
[27]Rieu J., Pichat A., Rabbe L.M., Rambert A., Chabeol C. and Robelet M., “Structural modifications induced by ion implantation in metals and polymers used for orthopaedic porsthese”, Mater. Sci. T., 8:589-593, 1992.
[28]Okazaki Y., Ito Y., Kyo K. and tateishi T., “Corrosion resistance and coorosion fatigue strength of new titanium alloys for medical implants without V and Al”, Mater. Sci. Eng., A213:1388-147, 1996.
[29]Okazaki Y., Ito Y., Tateishi T. and Iyo A., “Effect of heat treatment on microstrucyure and mechanical properties of new titanium alloys for surgical implantation”, J. Japan. Inst. Met., 59:108-115,1995.
[30]Rao S., Ushida T., Tateishi T., Okazaki T. and Asao S., “Effect of Ti, Al, and Vions on the relative growth rate of fibroblasts (L292) and osteoblasts (MC3T3-E1) cells”, Bio-Med. Mater. Eng., 6:79-86, 1996.
[31]Yumoto S., Ohashi H., Nagai H., Kakimi S., Ogawa Y., Iwata Y. and Ishii K., “Aluminum neurotoxicity in the rat brain”, Int J. PIXE, World Scientific Publishing Company, 2(4):493-504, 1992.
[32]Walker P.R., LeBlanc J. and Sikorska M., “Effects of aluminum and other cations on the aturcture of brain and liver chromatin”, Biochemistry, 28(9):3911-3915, 1989.
[33]Okazaki Y., Nishimura E., Rao S., Tateishi T. and Ito Y., “Cytocompatibility of new Ti alloys without Al and V for medical implants”, J. Japan. Inst. Met., 61(5):462-469, 1997.
[34]Craig, R.D., E.D., “Restorative Dental Material”, 8th. ed., C.V. Mosby, 1989.
[35]Phillips R.W., “Science of Dental , 8th. ed., W.E. Saunders, 1982.
[36]Könönen M. and Kivilahti J., “Fusing of dental ceramics to titanium”, J. Dent. Res., 80(3):848-854, 2001.
[37]Yilmaz H and Dinçer C, “Comparison of the bond compatibility of titanium and an NiCr alloy to dental porcelain”, J. Dent. Rec., 27(3):215-222, 1999.
[38]Combe E.C., Trevor Burke F.J. and Douglas W.H., “Dental biomaterials”, Boston: Kluwer Academic Publishers, pp. 476, 1999.
[39]Moffat D.L. and Larbalestier D.C., “The competition between Martensite and Omega in Quenched Ti-Nb Alloys”, Metall Trans., A19, (7):1677-1686, 1988.
[40]Covington L.C., “Corrosion resistance of titanium”, Met. Handb., 9th, ASM publications, Ohio, 3:413-415, 1979.
[41]郁仁貽, “冶金學概論(下冊)”, 徐氏基金會出版, 1988。
[42]草道英武, “金属チタンとその応用”, 日刊工業新聞社, 東京, 日本, 1983。
[43]賴耿陽, 金屬鈦, 復漢出版社, 1990, pp. 1-60。
[44]楊榮顯, “工程材料學”, 全華科技圖書股份有限公司, 2005。
[45]Nishiyama Z., “Transformation, Academic Press”, New Tork, 1978.
[46]Collings E.W., “The physical metallurgy of titanium alloys”, Met. Park, OH: Am. Soc. Met., pp. 3-5, 1984.
[47]Williams D.F., “Biocompatiblity of clinical implant materials”, ed. Williams, D.F., CRC Press, 1981.
[48]Molchanova, E.K., “Phase Diagrams of Titanium”, Isr. Pro. Sci. Trans., Jerusalem, 1965.
[49]Kahles J.F., Field M., Eylon D. and Froes F.H., “Machining of titanium alloys”, J. Met., 37(4):27-35, 1985.
[50]Blenkinsop P.A., “High temperature titanium alloys”, IMI Titanium Limited, Birmingham, England, pp. 189-198, 1986.
[51]Machado A.R. and Wallbank J., “Machining of titanium and its alloys - a review”, Proc. Inst. Mech. Eng. B, 204(1):53-60, 1990.
[52]Borradaile J.B. and Jeal R.H., “Mechanical properties of titanium alloys”, Warrendale: Metallurgical society of AIME, vols. 1-3, 1980.
[53]Donachie M.J., “Titanium: a technical guide”, ASM INTERNATIONAL, Met. Park, OH 44073, USA, pp. 21-33, 1988.
[54]郁仁貽, “冶金學概論(上冊)”, 徐氏基金會出版, 1988。
[55]吳啟岳, “金屬材料”, 三民書局印行, 1976。
[56]Niinomi M., “Recent research and development in titanium alloys for biomedical applications and healthcare goods”, Sci. Tech. Adv. Mater., 4:445-454, 2003.
[57]Bania P.J. and Hall J.A., “Titanium Science and Technology. Deutsche Gesellschaft fur Metallkunde”, Oberursel. Germany, 1985.
[58]Ogata T., Tanaka Y., Miura E., Takuma. Y, Shiraishi T. and Hisatsune K., “Castability and Mechanical Properties of Experimental Ti-Zr-Sn Alloys for Dental Application”, J. J. Soc. Dent. Mater. Device., 240-246, 2005.
[59]Das J., Ettingshausen F., Theissmann R., Löser W. and Eckert J., “Microstructure and mechanical properties of Ti-Fe-(Sn) ultrafine eutectic alloys", Trans. Indian. Inst. Met., 60(2-3):229-233, 2007.
[60]Murray J.L., “Phase diagrams of binary titanium alloys”, v15, ASM International, Met. Park, Ohio, 1987.
[61]Okazaki Y., Kyo K., Ito Y. and Tateishi T., “Corrosion resistance and mechanical properties of new titanium alloys for centrifugally cast dental”, Materials Transactions, 38:163-170, 1997.
[62]Okazaki Y., Rao S., Ito Y. and Tateishi T., “Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V”, Biomaterials, 19(13):1197-1215, 1998.
[63]Maeshima T., Ushimaru S., Yamauchi K. and Nishida M., “Effect of heat treatment on shape memory effect and superelasticity in Ti-Mo-Sn alloys”, Mater. Sci. and Eng., A 438-440:844-847, 2006.
[64]Hao Y.L., Li S.J., Sun S.Y. and Yang R., “Effect of Zr and Sn on Young’s modulus and superelasticity of Ti-Nb-based alloys”, Mater. Sci. and Eng., A 441:112-118, 2006.
[65]Sutou Y., Yamauchi K., Takagi T., Maeshima T. and Nishida M., “Mechanical properties of Ti-6at.%Mo-4at.%Sn alloy wires and their application to medical guidewire”, Mater. Sci. and Eng., A 438-440:1097-1100, 2006.
[66]Matsumoto H., Watanabe S. and Hanada S., “Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated”, J. Alloys Comp, 439:146-155, 2007.
[67]Hao Y.L., Li S.J., Sun S.Y., Zheng C.Y. and Yang R., “Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications”, Acta Biomater, 3:277-286, 2007.
[68]王濤, 戴品強, 謝宇玲, 項忠楠, “生物醫用Ti-16Nb-4Sn合金的超彈性和形狀記憶效應”, 熱加工工藝, 37(2):9-12, 2008.
[69]Nouri A., Chen X., Li Y., Yamada Y., Hodgson P.D. and Wen C., “Synthesis of Ti-Sn-Nb alloy by powder metallurgy”, Mater. Sci. and Eng., A 485:562-570, 2008.
[70]Wang B.L., Zheng Y.F. and Zhao L.C., “Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti-Nb-Sn alloys”, Mater. Sci. and Eng., A 486:146-151, 2008.
[71]Han J.H., Park D.H., Bang C.W., Yi S., Lee W.H. and Kim K.B., “Sn effect on microstructure and mechanical properties of ultrafine eutectic Ti-Fe-Sn alloys”, J. Alloys Compd, 2008.
[72]Henning G., “The casting of precious metal alloys in dentistry”, Brit. Dent J., 133:428-435, 1972.
[73]昌金聖泰, 小田豐, 住井俊夫, “齒科チタン鑄造システマの評價に關する研究”, 齒科學報, 94:845-857, 1994。
[74]Ida K., Tani Y., Tsutsumi S. and Togaya T., “Clinial application of pure titanium crowns”, Dent. Material. J., 4:191-195, 1985.
[75]Duwez P., “The martensite transformation temperature in titanium binary alloys”, Transactions of the A.S.M., 45:943-940, 1952.
[76]Froes F.H. and Bomberger H.B., “The beta titanium alloys”, July JOM, 28-37, 1985.
[77]Seagle S.R. and Kessler H.D., “Principles of beta transformations and heat treatment of titanium alloys”, Course 27, Lesson 4, Met. Eng. Inst., ASM INTERNATIONAL, Met. Park., OH, 1969.
[78]Mackenzie J.K. and Bowles J.S., “The crystallography of martensite transformations”, Acta Metall, 2:138, 1954.
[79]Barksdale J., “Titanium: it occurrence, chemistry, and technology”, Ronald Press Co., New York, 1949.
[80]Jones L.C. and Hungerford D.S., “The photoelastic coating technique-its validation and use”, Trans. Orthopaedic Reach Soc., 33:306, 1987.
[81]Niinomi M., “Mechanical properties of biomedical titanium alloys”, Mater. Sci. Eng., A 243:231-236, 1998.
[82]Steinemann S.G., “Surgical implant and alloy for use in making an implant”, US Patent No. 4040129. 1977.
[83]Kawhara K., “Cytotoxicity of implantable metals and alloys”, Bull. Jpn. Inst. Met., 31:1033-1039, 1992.
[84]菊地聖史, 奧野攻, “歯科用快削チタン合金の開発”, 第19回日本齒科チタン学会学術講演会, 10月, 福島, 日本, p. 8-13, 2006。
[85]黃盈智, 黃盈仁, “自動化加工技術”, 全華科技圖書股份有限公司, 台灣, 1989。
[86]Takeyama H. and Murata R., “Study on machinability of pure titanium”, J. Jpn. Soc. Preci. Eng., 28(6):331-337, 1962. (in Japanese)
[87]孟繼洛, 傅兆章, 許源泉, 黃聖芳, 李炳寅, 翁豐在, 黃錦鐘, 林守儀, 林瑞璋, 林維新, 馮展華, 胡毓忠, 楊錫杭, “機械製造”, 全華科技圖書股份有限公司, 台灣, 2005。
[88]王俊傑, 王千億, “機械製造(下)”, 全華科技圖書股份有限公司, 台灣, 1986。
[89]王千億, 王俊傑, “機械製造(上)”, 全華科技圖書股份有限公司, 台灣, 1986。
[90]竹山秀彥, “切削加工”, 丸善株式会社, 東京, 日本, 1997。
[91]Che-Haron C.H. and Jawaid A., “The effect of machining on surface integrity of titanium alloy Ti-6Al-4V”, J. Mater. Proc Technol, 166:188-192, 2005.
[92]Sun J. and Guo Y.B., “A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V”, J. Mater. Proc Technol, 209:4036-4042, 2009.
[93]Ezugwu E.O. and Wang Z.M., “Titanium alloys and their machinability - A review”, J. Mater. Proc. Tech., 68(3):262-274, 1997.
[94]Amin N.A.K.M., Ismail A.F. and Khairusshima N.M.K., “Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy Ti-6Al-4V”, J. Mater. Proc. Technol. 192/193, 147-158, 2007.
[95]Zoya Z.A. and Krishnamurthy R., “The performance of CBN tools in the machining of titanium alloys”, J. Mater. Proc. Technol. 100, 80-86, 2000.
[96]Lopez de lacalle L.N., Perez J.I., Llorente J. and Sanchez J.A., “Advanced cutting conditions for the milling of aeronautical alloys”, J. Mater. Proc. Technol. 100, 1-11, 2000.
[97]姜宗佑, “生醫用鈦-鉻二元合金之結構及性質探討”, 大葉大學, 2007。
[98]Guha A. Metals handbook. 9th ed. v8. In: Boy HE, Gall TL, editors. Am. Soc. Met. Met. Park, p.133-136, 1985.
[99]Ho W.F., Ju C.P. and Chern Lin J.H., “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-2122, 1999.
[100]Ohkubo C., Watanabe I., Ford J.P., Nakajima H., Hosoi T. and Okabe T., “The machinability of cast titanium and Ti-6Al-4V alloy”, Biomaterials, 21(4):421-428, 2000.
[101]Watanabe I., Kiyosue S., Ohkubo C., Aoki T. and Okabe T, “Machinability of cast commercial titanium alloys”, J. Biomed. Mater. Res., A63 (6):760-764, 2002.
[102]Kikuchi M., Takada Y., Kiyosue S., Yoda M., Woldu M., Cai Z., Okuno O. and Okabe T., “Grindability of cast Ti-Cu alloys”, Dent. Mater., 19(5):375-381, 2003.
[103]Kikuchi M., Takahashi M. and Okuno O., “Mechanical properties and grindability of dental cast Ti-Nb alloys”, Dent. Mater. J., 22(3):328-342, 2003.
[104]Kikuchi M., Takahashi M., Okabe T. and Okuno O., “Grindability of dental cast Ti-Ag and Ti-Cu alloys”, Dent. Mater. J., 22(2):191-205, 2003.
[105]Takahashi M., Kikuchi M. and Okuno O., “Mechanical properties and grindability of experimental Ti-Au alloys”, Dent. Mater. J., 23(2):203-210, 2004.
[106]Koike M., Ohkubo C., Sato H., Fujii H. and Okabe T., “Evaluation of cast Ti-Fe-O-N alloys for dental applications”, Mater. Sci. Eng., 25(3):349-356, 2005.
[107]Koike M., ltoh M., Okuno O., Kimura K., Takeda O., Okabe T.H. and Okabe T., “Evaluation of Ti-Cr-Cu alloys for dental applications”, J. Mater. Eng. Perform., 14(6):778-783, 2005.
[108]Ohkubo C., Hosoi T., Ford J.P. and Watanabe I., “Effect of surface reaction layer on grindability of cast titanium alloys”, Dent. Mater., 22(3):268-274, 2006.
[109]Kikuchi M., Takahashi M., Sato H., Okuno O., Nunn M.E. and Okabe T., “Grindability of cast Ti-Hf alloys”, J. Biomed. Mater. Res. B. Appl. Biomater., 77(1):34-38, 2006.
[110]Takahashi M., Kikuchi M., Takada Y. and Okuno O., “Effect of Zr Addition on the Grindability of Titanium”, 85th General Session and Exhibition, 2007.
[111]Koike M., Guo Q., Ford J.P. and Okabe T., “Grindability of Cast Ti-Al and Ti-Al-Cu Alloys”, Metro Toronto Convention Centre Exhibit Hall D-E, 2008.
[112]Kikuchi M., Takahashi M. and Okuno O., “Machinability of Experimental Ti-Ag Alloys”, Dent. Mater. J, 27(2):210-220, 2008.
[113]Goeuriot D., Dubois J.C., Merle D., Thevenot F. and Exbrayat P., “Enstatite Based Ceramics for Machinable Prosthesis Applications”, J. Eur. Cer. Soc., 18(14):2045-2056, 1998.
[114]EZUGWU E.O. and WANG Z.M., “Titanium alloys and their machinability-a review”, J. Mater. Process Technol., 68(3): 262-274, 1997.
[115]鄭文偉, “添加合金元素對鈦或鈦合金鑄造性及性質研究”, 成功大學,2002。
[116]Murray J.L., “Alloy Phase Diagrams”, ASM International, Mater. Park, Ohio, p. 294, 1987.
[117]Sato T., Hukai S. and Huang Y., J. Aust. Inst. Met., 5(2):149-153, 1960.
[118]Bagariaskii I.A., Nosova G.I. and Tagunova T.V., “Factors in the formation of metastable phase in titanium-base alloys”, Sov. Phys. Dokl., 30:1014-1018, 1959.
[119]Combe EC., “Notes on dental materials”, Churchill Livingstone. New York, p.64, 1977.
[120]William D.C., “Materials science and engineering: an introduction”, John Wiley & Sons, New York, 2003.
[121]William D.C., “Materials science and engineering: an integrated approach”, John Wiley & Sons, New York, pp. 255-256, 2003.
[122]Seetharaman V., Semiatin S.L., “Microstructures and tensile properties of Ti-45.5Al-2Nb-2Cr rolled sheets”, Mater. Sci. Eng., A, 299, 195-209, 2001.
[123]Lammie G.A. and Laird W.R.E., “Osborne & Lammie’s partial dentures”, London: Blackwell Scientific, 5th ed., pp. 190-192, 1986.
[124]Leinfelder K.F., Lemons J.E., “Clinical Restorative Materials and Techniques”, Lea& Febiger, Philadelphia, pp. 142-144, 1988.
[125]W.F. Ho, W.K. Chen, S.C. Wu, H.C. Hsu, J. Mater. Sci. Mater. Med. 19:3179-3186, 2008.
[126]Kobayashi E., Matsumoto S., Yoneyama T. and Hamanaka H., “Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials”, J. Biomed. Mater. Res. 29:943-950, 1995.
[127]Bobyn J.D., Mortimer E.S., Glassman A.H., Engh C.A., Miller J. and Brooks C., “Producing and avoiding stress shielding: laboratory and clinical observation of noncemented total hip arthroplasty”, Clin. Orthop., 274:79-96, 1992.
[128]Wang K., “The use of titanium for medical applications in the USA”, Mater. Sci. Engng. A., 213:134-137, 1996.
[129]Kuroda D., Niinomi M., Morinaga M., Kato Y., Yashiro T., “ Design and mechanical properties of new β type titanium alloys for implant materials”, Mat. Sci. Eng. A., 243:244-249, 1998.
[130]Akagi K., Okamoto Y., Matsuura T. and Horibe T. “Properties of test metal ceramic titanium alloys”, J. Prosth. Dent., 68:462-467, 1992.
[131]Weast, R.C., “Handbook of chemistry and physics”, CRC Press Inc., 63rd edn, Florida., pp. D-191, 1982.
[132]Togaya T., Suzuki M., Tsutsumi S. and Ida K., “An application of pure titanium to the metal porcelain system”, Dent. Mater. J., 2(2):210-219, 1983.
[133]Kimura H., Horng C.J., Okazaki M. and Takahashi J., “Thermal compatibility of titanium-porcelain system”, Journal of the Osaka University Dental School, 30:43-52, 1990.
[134]Hautaniemi J.A. and Herø H., “Effect of crystalline leucite on porcelain bonding on titanium”, J. Am. Ceram. Soc., 74:1449-1451, 1991.
[135]Boyer H.E. and Gall T.L., “Metals Handbook Desk edn”, Am. So. Met., Ohio., pp. 1-48, 1995.
[136]Boyer R., Welsch G. and Collings E.W., “Materials properties handbook: titanium alloys”, 1st edn ASM International, Ohio. pp. 221, 1994.
[137]Anusavice K.J., “Phillip's Science of Dental Materials”, Saunders Company, Philadelphia, 10th edn, pp. 45-493, 1996.
[138]Fairhurst C.W., Anusavice K.J., Hashinger D.T., Ringle R.D. and Twiggs S.W., “Thermal expansion of dental alloys and porcelain”, J. Biomed. Mater. Res., 14:435-436, 1980.
[139]Adachi M., Mackert J.R., Parry E.E. and Fairhurst C.W., “Oxide adherence and porcelain bonding to titanium and Ti-6Al-4V alloy”, J. Dent. Res., 69(6):1230-1235, 1990.
[140]Ammen C.W., “The Metalcaster’s Bible”, McGraw Hill, PA, U.S.A., 1980.
[141]H. Takeyama, T. Yoshikawa, T. Takada, J. Jpn. Soc. Preci. Eng. 41 (1975) 392-394.
[142]Miyakawa O., “Reactivity of titanium with abrasive materials and its polishing”, J. Jpn. Prosthodont Soc., 42(4):540-546, 1998. (in Japan)
[143]Narutaki N. and Murakoshi A., “Study on machining of titanium alloys”, Annals CIRP, 321:65-69, 1983.
[144]Chandler H.E., “Machining of reactive metals”, Metals Handbook 9th ed., v16 Machining, ASM Int., Metals Park, OH, pp. 844-846, 1989.
[145]Takeyama H. and Murata R., “Temperature dependence of tool wear”, J. Jpn. Soc. Preci. Eng., 27(1):33-38, 1961. (in Japanese)
[146]洪良德, “切削刀具學”, 全華科技圖書, 台北, 台灣, pp. 60-63, 1992。
[147]徐明堅, “最新切削加工技術”, 復漢出版社, 台南, 台灣, pp. 179-182, 1992。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top