(18.204.227.34) 您好!臺灣時間:2021/05/14 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王韋淳
研究生(外文):Wei-chun Wang
論文名稱:堰面裂損修護技術之初步研究
論文名稱(外文):A Preliminary Study of the Cracking Damage on the Faces of Weirs
指導教授:康裕明許澤善許澤善引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:144
中文關鍵詞:橡膠墊高強度混凝土堰面鋼鈑龜裂
外文關鍵詞:crackingweir facerubber padsteel plateconcrete
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
當溢洪道或排砂道等混凝土水工結構物持續遭受洪流夾帶之塊石衝擊時,混凝土堰面經常出現嚴重龜裂及脫層破壞等現象;國內過去持續企圖以提高混凝土強度來解決此一問題,但卻發現混凝土強度越高,龜裂及脫層破壞現象越趨於嚴重。因此於本論文中作者首先藉由混凝土堰面之衝擊模擬試驗,以掌握修護後高強度混凝土堰面持續龜裂之原因;之後再藉由鋼鈑補強及橡膠墊消能之堰面衝擊模擬試驗,期望能夠以為膠著的堰面修護技術,提供有效的可行的修護方法。
由本研究結果顯示:(1)在性質相同的球形巨石衝擊下,由彈性理論公式證明堰面所受衝擊力乃隨混凝土楊氏模數之增加而增加,因此混凝土強度越高,堰面所受衝擊力越大;(2)當堰面為較高強度之混凝土時,因早期裂紋較多及所受衝擊力量較大,在衝擊試驗後堰面凹陷及凹陷邊緣所產生的裂紋有較深之傾向;(3)對於鋼鈑強化及橡膠消能之堰面而言,衝擊點下方混凝土均無應變發生,顯示這種堰面修補技術確實是有效的可行的;(4)對於鋼鈑強化及橡膠消能之堰面而言,衝擊試驗結果發現鋼鈑大小及其側向束縛對衝擊後鋼鈑之翹曲現象有顯著的影響,因此鋼鈑強化及橡膠消能之相關設計對持續遭受衝擊之鋼鈑性質變化將有直接的影響。
When concrete hydraulic structures, such as spillways or sluiceways, are subject to attacks of torrents that carry gravel, cobbles or boulders, it will often cause severe damage such as cracking or delaminating of a concrete weir face. Such damage was attempted to be solved by using higher strength of concrete in our country. However, it was further found that the higher strength concrete was used, the more serious conditions for cracking and delaminating were produced. Therefore, at first, the research tried to understand the reasons for the continuous cracking by performing an impact test for a model of concrete weirs. Then an alternative impact test was conducted by using steel plate and rubber pad to reinforce structures and dissipate energy. It is hoped that an effective repairing technology for a concrete weir face can be obtained.
Results from this study reveal that (1) Under the impact of boulders with the same material properties, it was proved by an elastic theoretical equation that more impact force will be applied on the a concrete weir face when its Young’s modulus is higher; in other words, the higher strength the concrete, the greater the impact force; (2) When higher strength concrete is used for a weir face, due to more micro fissures produced in early stage and higher force resulted by impact, the depths for fissures in a dent and its surrounding edges tend to be deeper; (3) In the case of using both steel plate and rubber pad, almost no strains can be measured for the concrete directly under the impact point; such a result indicates that repairing technology of this kind is feasible and effective for a concrete weir face; (4) When adopting both steel plate and rubber pad, it was found from the results of impact tests that the size of a steel plate and its lateral constrained conditions are directly related to the degree of warping produced by impact forces; therefore, details of the designs for a steel plate and a rubber pad is very important when property reduction of a steel plate is concerned.
摘要 I
英文摘要 III
目錄 IV
圖目錄 IX
表目錄 XIII

第一章 緒論 1
1.1 研究動機與研究目的 1
1.2 論文架構 4
第二章 文獻回顧 5
2.1 水工結構物之侵蝕 5
2.2 水工結構物侵蝕作用之分類 5
2.2.1 ACI 210R-93之分類 5
2.2.1.1 氣穴侵蝕 5
2.2.1.2 磨蝕侵蝕 6
2.2.1.3 化學侵蝕 6
2.2.2 Plum及Xufei之分類 6
2.2.2.1 研磨磨損 6
2.2.2.2 固體顆粒衝擊 6
2.2.2.3 固體顆粒鋒利邊緣之磨損作用 8
2.2.2.4 固體顆粒淘洗作用 8
2.2.2.5 預沖蝕剝落 8
2.2.3 混凝土水工結構物之磨蝕侵蝕機制 9
2.2.3.1 懸浮物體之磨蝕侵蝕 9
2.2.3.2 著床物體之磨蝕侵蝕 10
2.3 混凝土水中構造物磨蝕之控制 11
2.3.1 構造物之優化設計 11
2.3.2 材料之選用 11
2.3.3 混凝土耐磨性影響因素 12
2.3.3.1 骨材性質 14
2.3.3.2 水灰比及抗壓強度 20
2.3.3.3 矽灰 21
2.3.3.4 飛灰 23
2.3.3.5 表面處理 24
2.4 混凝土磨蝕試驗法 26
2.4.1.1 ASTM C418噴砂法 28
2.4.1.1 ASTM C418噴砂法 28
2.4.1.2 ASTM C779水平混凝上表面磨損試驗法 29
2.4.1.3 ASTM C944旋轉磨削試驗法 32
2.4.1.4 ASTM C1138水中磨損試驗法 33
2.4.2 適合水工結構物的磨損試驗方法 34
2.5 水工耐磨混凝土之設計與施工 34
2.6 高強度混凝土 37
2.6.1 高強度混凝土之理論與設計 37
2.6.2 界面過渡區 38
2.6.3 水泥之品質 39
2.6.4 強塑劑之功能 40
2.6.5 骨材性質 41
2.6.6 矽灰性能 42
2.6.7 飛灰性能 45
2.6.8 高強度混凝土之耐磨性 49
2.6.9 高強度混凝土之水化熱 50
第三章 研究內容與方法 53
3.1 鋼筋混凝土堰面衝擊試驗 53
3.1.1 堰面模型 53
3.1.2 落石及落差 55
3.1.3 落差控制構架 59
3.1.4 量測儀器及裝置 59
3.1.5 堰面衝擊模擬試驗程序 60
3.1.6 模擬試驗之規劃 61
3.2 堰面龜裂程度與修補混凝土強度關係之探討 63
3.3 修補堰面之衝擊試驗 63
3.3.1 修補材料為 =55.2MPa混凝土 64
3.3.2 應用結構補強及消能進行修補 66
第四章 研究結果之比較與討論 69
4.1 鋼筋混凝土堰面衝擊試驗結果 69
4.1.1 上層三點衝擊試驗結果 69
4.1.2 中層三點衝擊試驗結果 73
4.1.3 下層三點衝擊試驗結果 76
4.2 堰面修補後之衝擊試驗結果 79
4.2.1 堰面修補材料為 =55.2MPa之混凝土 79
4.2.1.1 上層三點衝擊試驗結果 79
4.2.1.2 中層三點衝擊試驗結果 82
4.2.1.3 下層三點衝擊試驗結果 85
4.2.2 堰面修補以鋼鈑補強及橡膠墊消能 98
4.2.2.1 上層三點衝擊試驗結果 98
第五章 結論與建議 123
5.1 結論 123
5.2 建議 124
參考文獻 126
[1] 徐造華,「高強度水工混凝土摻加飛灰之耐磨性及裂紋防制」,國立中興大學土木工程研究所,博士論文,2006。
[2] ACI 210R-93 Erosion of Concrete in Hydraulic Structures.
[3] D. Plum, F. Xufei, “A rock and a hard place”, International Water Power & Dam construction, pp. 30-33, July 1996.
[4] N. Papenfus, “Applying Concrete Technology to Resistancen, Proceedings of the 7th International Conference on Concrete Block Paving (PAVE AFRICA 2003)”, October 2003.
[5] T. C. Liu, “Abrasion Resistance Of Concrete”, ACI Journal, 78(5), pp. 341-350, 1981.
[6] P. Laplante, P. C. Aitcin, and D. Vexina, “Abrasion Resistance of Concrete”, Journal of Material in Civil Engineering, Vol. 3, No. 1, February, 1991.
[7] 顏聰、劉玉雯等,「高強度混凝土耐磨性及工程力學特性之研究」,台灣電力公司研究計畫,2000。
[8] 顏聰、劉玉雯等,「耐撞擊磨耗之水工構造物表層材料研發」,台灣電力公司研究計畫,2003。
[9] T. C. Holland and R. A. Gutschow, “Erosion Resistance with Silica-Fume Concrete”, Concrete lnternational, pp. 32-40, March 1987.
[10] P. J. Tikalsky, P. M. Carrasquillo, and R. L. Carrasquilgo. “Strength and Durability Considerations Affecting Mix Proportioning of Concrete Containing Fly Ash”. ACI Materials Journal, V85, No. 6, pp. 505-511, November-December 1988.
[11] T. R. Naik, S. S. Singh, and M. M. Hossain. “Abrassion Resistance Of High-Strength Concrete Made with Class C Fly Ash”. ACI Materials Journal V92, No. 6, pp. 649-659, November-December 1995.
[12] A. Nanni, “Abrasion Resistance of Roller Compacted Concrete”. ACI Materials Journal, V86, No. 6, pp. 559-565, November-December 1989.
[13] A. Bilodeau and V. M. Malhotra Concrete in Corporating High Volumes of ASTM Class F Fly Ashes: Mechanical Properties and Resistance to Deicing Salt Scaling and to Chloride-Ion Penetration. Fly Ash, Silica Fume, and Natural Pozzolans in Concrete. V. M. Malhotra, Ed. Proceedings, Fourth International Conference. ACI SP-132, pp. 319-349, 1992.
[14] R. Siddique. “Effect of fine aggregate replacement Wth Class F fly ash on the abrasion resistance of concrete”. Cement and Concrete Research 33, pp. 1877-1881, 2003.
[15] M. Sadegzadeh, C. L. Page and R. J. Kettle. “Surface microstructure and abrasion resistance of concrete”. Cement and Concrete Research 17(4), pp. 581-590, 1987.
[16] M. Sonebi and K. H. Khayat,“Testing Abrasion Resistance of High-Strength Concrete”, Cement, Concrete, and Aggregates, pp. 34-43, 2001.
[17] Annual Book of ASTM C418-98, “Standard Test Method for Abrasion Resistance of Concrete by Sandblasting”, Vol 04.02, 1998.
[18] Annual Book of ASTM C779-00, “Standard Test Method for Abrasion Resistance of Horizontal Concrete Surfaces”, Vol 04.02, 2000.
[19] Annual Book of ASTM C1138-97,“Standard Test Method for Abrasion Resistance of Concrete (Underwater Method)”, Vol. 04.02, 1997.
[20] 台灣電力公司,「鯉魚潭水庫士林水力發電工程竣工報告」,
2002。
[21] 台灣電力公司,「新武界引水工程第I-A標栗栖壩與進水口土木工程
技術規範」,2003。
[22] 台灣電力公司,「和平溪碧海水力發電工程第IA標南溪壩與進水口
土木工程技術規範」,pp. 5-45,200l。
[23] AC ComTttee 363, “State-of-the-Art Report on High-Strength Concrete”, ACI 363R-92 (Reapproved 1997) , 1997.
[24] A. M. Neville, “Properties of Concrete”, Fourth Edition, 1995.
[25] S. Mindess, J. F. Young, and D. Darwin, “Concrete”, Second Edition, 2003.
[26] G. Escadeillas and J. C. Maso, “In Advances in Cementitious Materials. Mindess, Second Edition, pp. 169-184, 1991.
[27] Federal Highway Administration and the Silica Fume Association, “Silica Fume User''s Manual”, 2005.
[28] A. Elsharief, M. D. Cohen, J. Olek, “Influence of aggregate size, water cement ratio and age on the microstructure of the interracial transition zone”, Cement and Concrete Research 33, pp. 1837-1849, 2003.
[29] J. P. Ollivier, J. C. Maso, and B. Bourdette, “Intel-facial Transition Zone in Concrete”, ADVANCED CEMENT BASED MATERIALS, 2, pp. 30-38, 1995.
[30] M. Kuroda, T. Watanabe, N. Terashi, “Increase of bond strength at interfacial transition zone by the use of fly ash”, Cement and Concrete Research 30, pp. 253-258, 2000.
[31] A. Cetin and R. L. Carrasquillo, “High-Performance Concrete: Influence of Coarse Aggregates on Mechanical Properties”, ACI Material Journal, May-June, pp.252-261, 1998.
[32] J. Yajun and J. H. Cahyadi, “Effects of densified silica fume on microstructure and compressive strength of blended cement pastes”, Cement and Concrete Research 33, pp. 1543-1548, 2003.
[33] M. D. Cohen, J. Oiek, and W. L. Dolch, “Mechanism of Plastic Shrinkage Cracking in Portland Cement and Portland Cement-Silica Fume Paste and Mortar”, Cement and Concrete Research, Vol. 20, No. 1, pp. 103-119, 1990.
[34] ACI Committee 234, “Guide for the Use of Silica Fume in Concrete”, ACI 234R-96, 1996.
[35] G. Appa Rao, “Role of water-binder ratio on the strength development in mortars incorporated Wth silica fume”, Cement and Concrete Research 31, pp. 443-447, 2001.
[36] G. Appa Rao, “Development of strength Wth age of mortars containing silica fume”, Cement and Concrete Research 31, pp. 1141-1146, 2001.
[37] S. Bhanja and B. Sengupta, “Investigations on the compressive strength of silica fume concrete using statistical methods”, Cement and Concrete Research 32, pp.1391-1394, 2002.
[38] K. Ganesh Babu, “Efficiency of silica fume in concrete”, Cement and Concrete Research Vol. 25, No. 6, pp. 1273-1283, 1995.
[39] R. Duval and E.H. Kadri, “influence of silica fume on the workability and the compressive strength of high-performance concretes”, Cement and Concrete Research, Vol. 28, No. 4,pp. 533-547, 1998.
[40] C. S. Poon, L. Lam, Y. L. Wong, “A study on high strength concrete prepared Wth large volumes of low calcium fly ash”, Cement and Concrete Research 30, pp. 447-455, 2000.
[41] L. Lam, Y.L. Wong, C.S. Poon, “Degree of hydration and gel/space ratio of high-volume fly ash/cement systems”, Cement and Concrete Research 30, pp. 747-756, 2000.
[42] K. G. Babu, G. S. N. Rao, “Efficiency of fly ash in concrete with age”, Cement and Concrete Research, VoL 26, No. 3, pp. 465-474, 1996.
[43] A. Oner, T, S. Akyuz, R. Yildiz, “An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete”, Cement and Concrete Research , Article in Press, 2005.
[44]S. Yazci, G. Tnan, “An investigation on the wear resistance of high strength concretes”, Wear, Article in Press, 2005.
[45] E. Horszczaruk, "Abrasion resistance of high-strength concrete in hydraulic structures", Wear, pp. 62-69, 2005.
[46] 吳中傳及廉慧珍, 「高性能混凝土」,中國鐵道出版社,1999。
[47] M. I. Sanchez de Rojas and M. Frias, “The pozzolanic activity of different materials, its influence on the hydration heat in mortars”, Cement and Concrete Research , Vol. 26, No. 2, pp. 203-213, 1996.
[48] B.W. Langan, K. Weng, M.A. Ward, “Effect of silica fume and f ly ash on heat of hydration of Portland cement”, Cement and Concrete Research 32 , pp. 1045-1051, 2002.
[49] 羅遠光,「高強度混凝土耐磨性質之研究」,國立中興大學土木工程研
究所,碩士論文,2001。
[50] 邱欽賢,「水工結構混凝土之抗沖蝕性」,國立中興大學土木工程研究所,碩士論文,2002。
[51] 林晴達 ,「表面裂紋及材料性質對混凝土沖蝕性之影響」,國立中興
大學土木工程研究所,碩士論文,2003。
[52] 詹錢登,「土石流概論」,科技圖書,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔