1.王人鋒(2003),「兩階段決策之委員會機器」,中山大學機械與機電工程學系,碩士論文。2.吳政庭(2004),「多元尺度影像與半變異元紋理法於都市區水稻田分類之研究」,逢甲大學土地管理學系碩士論文。3.吳鴻謙、史天元、劉榮寬(2005),「以小波理論進行影像壓縮之三種實現比較」,航測及遙測學刊,Vol. 10,No. 3,pp. 305-314。4.李斌(2003),「分類器優化算法的研究」,復旦大學碩士學位論文,中國。
5.周紅英、蔺启忠、吳昀昭、王欽軍(2007),「基於AdaBoost的組合分類器在遙感影像分類中的應用」,計算機應用研究,Vol. 24,No. 10,中國。
6.施奕良(2005),「知識表達方法於衛星影像判釋之研究—以粗糙集合理論與主成分分析為例」,逢甲大學環境資訊科技研究所碩士論文。7.張宏宇(2008),「模糊分類法應用於衛星影像之對比增揚」,中央大學土木工程學系碩士論文。8.張紘炬(1988),「統計學」,華泰文化事業有限公司,頁150-260。
9.許晉嘉(2006),「應用支援向量機法於高解析度衛星影像分類之研究」,逢甲大學環境資訊科技研究所碩士論文。10.陳谷瑋(2006),「多類別AdaBoost的穩健性研究」,中正大學統計科學研究所,碩士論文。11.陳承昌、史天元(2007),「支持向量機應用於水稻田辨識之研究」,航測及遙測學刊,Vol. 12,No. 3,pp. 225-240。12.陳彥宏(2004),「運用紋理資訊輔助高解析度衛星影像於都會區水稻田萃取之研究」,逢甲大學土地管理學系碩士論文。13.陳哲俊(1989),「研究計畫綜合報告」,中央大學太空及遙測研究中心研究計畫報告。
14.陳益凰(1998),「應用多時段衛星影像辨識水稻田之研究」,成功大學測量工程研究所碩士論文。15.陳慧欣(2008),「以Boosting法改進監督式分類於水稻田樣本特性之研究」,逢甲大學土地管理學系碩士論文。16.黃凱翔(2007),「利用支持向量機於機載高光譜感測影像之分類」,中興大學土木工程學系所碩士論文。17.琚旭、王浩、姚宏亮(2006),「基於Boosting的支持向量機組合分類器」,合肥工業大學學報-自然科學版,Vol. 29,No. 10,中國。
18.楊川正(2007),「基於AdaBoost之生物認證融合技術」,中正大學資訊工程所,碩士論文。19.楊龍士、周天穎(2006),「遙感探測理論與分析實務」,逢甲大學地理資訊系統研究中心,頁5-3,台中。
20.鄭敏松(1997),「結合多時段遙測影像、耕地坵塊與領域知識之區域式影像辨識法於水稻田耕作調查之應用」,成功大學測量工程研究所碩士論文。
21.盧英權(1994),「作物學」,國立編譯館,台北市。
22.Bigin, G., and Congalton, R., “Advances in Forest Inventory Using Advanced Digital Imagery”, Proceedings of Global Natural Research Monitoring and Assessments: Preparing for the 21st Century, Venice, Italy, September, Vol. 3, pp. 1241-1249, 1989.
23.Boser, B. E., I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers”, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144-152, ACM Press, 1992.
24.Breiman, L. “Bagging predictions”, Machine Learning, Vol. 24, No. 2, pp. 123-140, 1996.
25.Chica-Olmo, M. and Abarca-Hernandez, F., “Computing Geostatistical Image Texture for Remotely Sensed Data Classification”, Computers & Geosciences, 26: 373-383, 2000.
26.Dasarathy B.V. and B.V. Sheela, “Composite classifier system design: Concepts and methodology”, Proceedings of the IEEE, Vol. 67, No. 5, pp. 708-713, 1979.
27.Diettercih, T. G., “Machine learning research: four current directions”, AI Magazine, 18(4): 97-136, 1997.
28.Dominic, M., M. J. Garay, R. Davies, and D. Nelson, “An operational MISR pixel classifier using support vector machines”, Remote Sensing of Environment, Vol. 107, Issues 1-2, pp. 149-158, March 2007.
29.Efron, B. and Tibshirani, R. J., “An introduction to the Bootstrap”, Chapman and Hall, 1993.
30.Freund, Y. and R. E. Schapire, “Decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer and System Sciences, Vol. 55, No. 1, pp. 119-139, 1997.
31.Gonzalez, R. C., and R. E. Woods, “Digital Image Processing”, Addison-Wesley, 2002.
32.Hansen, L.K. and P. Salamon, “Neural network ensembles”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 10, pp.993-1001, 1990.
33.Hay, G. J., K. O. Niemann, and G. McLean, “An Object-Specific Image-Texture Analysis of H-Resolution Forest Imagery”, Remote Sensing of Environment, 55: 108-122, 1996.
34.Hsu, C. -W., C. -C., C., and C. -J., L., “A Practical Guide to Support Vector Classification”, Available at http://www.csie.ntu.edu.tw/~cjlin, 2008.
35.Meynet. J., V. Popovici, J. P. Thiran, “Face detection with boosted Gaussian features”, Journal of Pattern Recognition Society, Vol. 40, pp. 2283-2291, 2007.
36.Pakorn, W., M. K. Arora, and P. K. Varshney, “Multisource Classification Using Support Vector Machines: An Empirical Comparison with Decision Tree and Neural Network Classifiers”, Photogrammetric Engineering & Remote Sensing, Vol. 74, No. 2, pp. 239-246, February 2008.
37.Polikar, R. “Ensemble based systems in decision making”, IEEE Circuits and Systems Magazine, Third Quarter, pp.21-45, 2006.
38.Rangel, P., F. Lozano, and E. García, “Boosting of Support Vector Machines with application to editing”, Proceedings of 4th International Conference on Machine Learning and Applications, IEEE Computer Society, 2005.
39.Richards, J. A. and Jia, X., “Remote sensing digital image analysis: an introduction (3rd ed.)”, New York: Springer, 1999.
40.Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W., “Monitoring vegetation systems in the great plains with ERTS”, In Third ERTS Symposium, NASA SP-351, NASA, Washington, DC., Vol. 1, pp.309-317, 1973.
41.Schapire, R.E. “The strength of weak learnability”, Machine Learning, Vol. 5, No.2, pp.197-227, 1990.
42.Shao Y., X. Fan, H. Liu, J. X, S. Ross, and B. Brisco, “Rice monitoring and production estimation using multitemporal RADARSAT”, Remote Sensing of Environment, Vol. 76, pp. 310-352, 2001.
43.Tinku Acharya, Ajoy K. Ray, “Image Processing: Principles and Applications”, Wiley, 2005.
44.Vapnik, V. “The Nature of Statistical Learning Theory”, Springer Verlag, New York, 1995.
45.Wolpert D. H., “Stacked generalization”, Technical Report LA-UR-90-3460, Complex Systems Group, Theoretical Division, and Center for Non-linear Studies, MS B213, LANL, Los Alamos, NM, 1990.