跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昆泰
研究生(外文):kun-tai Li
論文名稱:探討半導體產品之良率競爭力-模糊非線性規劃法
論文名稱(外文):Evaluating the yield competitiveness of a semiconductor product with a fuzzy nonlinear programming approach
指導教授:吳欣潔吳欣潔引用關係陳亭志陳亭志引用關係
指導教授(外文):Hsin-Chieh WuTin-Chih Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:工業工程與系統管理學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:良率半導體產能控制競爭力模糊相關係數模糊非線性規劃
外文關鍵詞:competitivenescapacity controlyieldsemiconductorfuzzy nonlinear programmingfuzzy correlation coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
產品良率對於半導體製造廠的競爭力來說,無庸置疑是最重要的因素之ㄧ。因此根據良率去評估產品的競爭力是個合理的作法。為此目的,Chen(2008)根據半導體產品良率的學習模型,提出評估半導體產品良率中期競爭力的方法,本研究則擴展至長期的良率競爭力的評估。
此外為了要提升產品的長期良率競爭力,本研究提出一模糊非線性規劃(fuzzy nonlinear programming, FNP)方法來進行產能的重新分配。理論上,增加一產品的產能可以提升該產品的長期競爭力,我們並以實際應用的例子來說明所提出之方法。實驗的結果顯示,每月增加8350片晶圓的額外產能,可使一產品的長期競爭力最佳化。此外,有效的產能分配方法則是分配給該產品每月額外的6850片晶圓的產能。再者,運用模糊方法來評估具有不確定性的長期競爭力,的確是有助於產能重新分配計劃的擬定。這些研究結果將有助於產能控制決策時之參考。
Yield is undoubtedly the most critical factor to the competitiveness of a product in a semiconductor manufacturing factory. Therefore, evaluating the competitiveness of a product with its yield is a reasonable idea. For this purpose, Chen’s approach is extended in this study to evaluate the long-term competitiveness of a product based on its yield learning model from a new viewpoint – the trend in the mid-term competitiveness. Subsequently, to enhance the long-term competitiveness of a semiconductor product, a fuzzy nonlinear programming (FNP) approach is proposed to optimize the effects of capacity re-allocation. A practical example is used to demonstrate the proposed methodology. Experimental results show that with an additional capacity of 8350 wafers per month, the long-term competitiveness of the product is maximized. Besides, the most efficient way is to allocate 6850 more wafers per month to the product. Further, considering the uncertainty in the long-term competitiveness with the fuzzy set approach is shown to be beneficial to the performance of the capacity re-allocation plan. These results are helpful in making capacity control decisions.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景 2
1.2 研究動機 2
1.2.1 全球環境的變遷 2
1.2.2 經營理念的迷思 2
1.3 研究目的 4
1.4 研究方法 6
1.5 論文架構及研究流程 7
第二章 文獻探討 9
2.1 半導體產品的競爭力 9
2.2 傳統測量競爭力的方法 9
2.3 良率學習模型 10
2.4 評估產的良率的中期競爭力 14
2.5 模糊良率學習模型 15
2.6 估計產品的良率的長期競爭力 17
2.7 運用產能重新分配來提高競爭力 18
2.8 長期競爭力的改善績效評估 19
第三章 研究方法 20
3.1 新觀點:中期競爭力之趨勢 20
3.2 評估競爭力的模糊迴歸線性方程式 20
3.3 提升長期競爭力-模糊非線性規劃模型 21
3.4 轉換成等效的非線性規劃問題 22
第四章 實例運算及驗證 26
4.1實證良率學習模型 26
4.1.1模糊良率學習模型 26
4.1.2實證長期良率競爭力的評估 28
4.1.3實證產能重新分配的效果 30
4.1.4產能重新分配後長期競爭力的改善績效評估 30
4.2中期競爭力之趨勢 31
4.3 觀察競爭力變化之模糊迴歸線性方程式 33
4.4 建構模糊非線性規劃模型 34
4.5 轉換成等效的非線性規劃問題 35
4.6實證的最佳解 35
第五章 結論與未來研究方向 39
參考文獻 40
註解 44
註解一 44
註解二 44
附錄A 45
附錄B 47
附錄C 55
附錄D 57
附錄E 61
附錄F 66
附錄G 68
參考文獻
http://www.semi50.com/04.html資料來源:工研院IEK(2008年2月)、世界半導體貿易統計協會、台灣半導體協會、經濟部ITIS產業資訊服務網、拓墣產業研究所、犇華投信整理
http://www.psc.com.tw/chinese/index.jsp力晶半導體公司網站
http://tw.yahoo.com Yahoo
http://www.google.com.tw Google
http://www.itis.org.tw/index.jsp ITIS智網
http://www.semi50.com/04.html 全球半導體50指數
http://assist.nat.gov.tw/GIP/wSite/ct?xItem=10412&ctNode=23&mp=2 資料來源:經濟部工業局電子資訊組,2008年1月。
http://www.topology.com.tw/TRI/default.asp 拓墣產業研究所網站
http://ssttpro.acesuppliers.com/ 半導體科技
Peter Ven Zent (2001),「半導體製程」,滄海書局,2001年9月初版。
Armstrong, E. (1989) ‘Principles for competitive semiconductor manufacturing’, Proceedings of IEEE SEMI International Semiconductor Manufacturing Science Symposium’89, pp. 67-72.
Chen, T. (2007) ‘Evaluating the mid-term competitiveness of a product in a semiconductor fabrication factory with a systematic procedure’, Computers & Industrial Engineering, Vol. 53, pp. 499-513.
Chen, T. (2008a) ‘A FNP approach for evaluating and enhancing the long-term competitiveness of a semiconductor fabrication factory through yield learning modeling’, International Journal of Advanced Manufacturing Technology, in press.
Chen, T. (2008b) ‘Estimating and incorporating the effects of a future QE project into the semiconductor yield learning model with a fuzzy set approach’, European Journal of Industrial Engineering, in press.
Chen, T., and Lin Y.-C. (2008) ‘A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting’, International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems, Vol. 16, Issue 1, pp. 35-58.
Chen, T., and Wang, M.-J. J. (1999) ‘A fuzzy set approach for yield learning modeling in wafer manufacturing’, IEEE Transactions on Semiconductor Manufacturing, Vol. 12, No. 2, pp. 252-258.
Chen, T., and Wang, Y.-C. (2008) ‘A fuzzy set approach for evaluating and enhancing the mid-term competitiveness of a semiconductor factory’, Fuzzy Sets and Systems, in press.
Cunningham, J. A. (1990) ‘The use and evaluation of yield models in integrated circuit manufacturing’, IEEE Transactions on Semiconductor Manufacturing, Vol. 3, No. 2, pp. 60–71.
Gruber, H. (1984) Learning and Strategic Product Innovation: Theory and Evidence for the Semiconductor Industry, The Netherlands: Elsevier Science B. V.
Haller, M., Peikert, A., and Thoma, J. (2003) ‘Cycle time management during production ramp-up’, Robotics and Computer Integrated Manufacturing, Vol. 19, pp. 183-188.
Jenkins, T., Phail, F., and Sackman, S. (1990) ‘Semiconductor competitiveness in the 1990s’, Proceedings - Society of Automotive Engineers, Vol. P223, pp. 249-255.
Li, T.-S., Huang, C.-L., and Wu, Z.-Y. (2006) ‘Data mining using genetic programming for construction of a semiconductor manufacturing yield rate prediction system’, International Journal of Advanced Manufacturing Technology, Vol. 17, pp. 355-361.
Liao, S.-H., and Hu, T.-C. (2007) ‘Knowledge transfer and competitive advantage on environmental uncertainty: An empirical study of the Taiwan semiconductor industry’, Technovation, Vol. 27, No. 6-7, pp. 402-411.
Liu, X. (2007) ‘Parameterized defuzzification with maximum entropy weighting function - another view of the weighting function expectation method’, Mathematical and Computer Modelling, Vol. 45, pp. 177-188.
Majd, S., and Pindyck, R. S. (1989) ‘The learning curve and optimal production under uncertainty’, Rand J. Economics, Vol. 20, No. 3, pp. 331-343.
Mazzola, J. B., McCardle, K. F. (1995) ‘A Bayesian approach to managing learning-curve uncertainty’, Management Science, Vol. 42, No. 5, pp. 680-692.
Peng, C.-Y., and Chien, C.-F. (2003) ‘Data value development to enhance competitive advantage: A retrospective study of EDA systems for semiconductor fabrication’, International Journal of Services, Technology and Management, Vol. 4, No. 4-6, pp. 365-383.
Shimada, Y., and Sakurai, K. (2003) ‘A new accurate yield prediction method for system-LSI embedded memories’, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3, pp. 436-445.
Spence, A. M. (1981) ‘The learning curve and competition’, Bell J. Economics, Vol. 12, pp. 49-70.
Watada, J., Tanaka, H., and Shimomura, T. (1986) ‘Identification of learning curve based on possibilistic concepts’, Applications of Fuzzy Set Theory in Human Factors, The Netherlands: Elsevier Science Publishers B. V.
Porter, M. E. (1979) ‘How competitive forces shape strategy’, Harvard Business Review, March/April.
Walsh, S. T. , Boylan, R. L. McDermott, C., and Paulson, A. (2005), ‘The semiconductor silicon industry roadmap: Epochs driven by the dynamics between disruptive technologies and core competencies’, Technological Forecasting & Social Change, Vol. 72, pp. 213-236.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊