(3.227.0.150) 您好!臺灣時間:2021/05/08 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林柏全
研究生(外文):Po-Chuan Lin
論文名稱:在退化條件下之製程能力指標
論文名稱(外文):Process capability index under deterioration process
指導教授:蔣安國蔣安國引用關係
指導教授(外文):An-kuo Jeang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:工業工程與系統管理學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:38
中文關鍵詞:磨耗品質損失公差成本製程能力指標
外文關鍵詞:Quality lossTolerances CostDeteriorationProcess Capability Index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去的製程能力指標,如Cp、 Cpk、Cpm和Cpmk 已經普遍有效的運用於線上品管(On-line)。相對缺乏對產品設計及製程規劃等線外品管(Off-line)的研究;當使用製程能力指標於線外品管時,產品設計者通常會將製程平均值設定為製程目標值,並且期望最小化製程變異,使製程能力指標值極大化,雖然產品品質提升,卻忽略製程平均值的設定與製程變異的最小化會影響到品質損失、公差成本,所以製程能力指標應用於線外品管時要在品質損失與製造成本之間取得平衡。
本研究將磨耗觀念直接導入製程能力指標中,並結合品質損失的概念,發展出新的製程能力指標Cpmc(Average),以最大化製程能力指標為目標,使用數學軟體Mathematica找出最佳解,最後使用敏感度分析驗證Cpmc(Average)進一步證明磨耗率W和品質損失係數K的增加對Cpmc(Average)會減小,故Cpmc(Average)能更切合實務之製造流程。
Conventional process capability indices (PCIs), such as Cp, Cpk and Cpm, have been used widely and successfully in most of today’s manufacturing sectors. These process capability indices, however, can only measure the process consequence resulting from various combinations of process mean and process variance on site by measuring the output without concern as to cost. Hence, a process capability index, Cpmc, is developed. However, during production process, the quality value of output may change as time passes due to process deterioration, leading to unexpected product failure that is usually costly in both time and money. As is known, changes in process means acquired quality loss and variability, while process tolerance has an effect on tolerance-related costs and quality loss. Because there exists a dependency among time, initial setting of process mean, process mean, and process tolerance, they have to be determined simultaneously.
Thus, in this study, the influence from process deterioration is built into Cpmc expression for a life cycle consideration. Consequently, a high quality but low cost process design can be achieved during the early stages of product design and process planning.
目 錄
中文摘要 -------------------------------------------------i
英文摘要 ------------------------------------------------ii
目錄 ---------------------------------------------------iii
圖目錄 ---------------------------------------------------v
表目錄 --------------------------------------------------vi
第一章 緒論---------------------------------------------1
1.1 研究背景-----------------------------------------1
1.2 研究動機與目的-----------------------------------1
1.3 論文架構-----------------------------------------2
第二章 理論基礎與相關文獻-----------------------------4
2.1 製程能力指標-------------------------------------4
2.1.1 單變量製程能力指標-------------------------------4
2.1.2 多變量製程能力指標-------------------------------6
2.2 公差成本-----------------------------------------8
2.3 品質損失-----------------------------------------9
2.3.1 品質損失函數-------------------------------------9
2.3.2 品值損失函數類型--------------------------------12
2.3.3 平均品質損失------------------------------------14
2.4 製程變異數的估計--------------------------------15
2.5 製程平均值偏移概念------------------------------15
第三章 研究方法----------------------------------------17
3.1 問題描述----------------------------------------17
3.2 製程能力指標Cpmc(Average)-----------------------19
3.3 研究架構---------------------------------------------19
3.4 使用軟體介紹與流程-----------------------------------21
第四章 範例說明與數據分析------------------------------22
4.1 製程能力指標Cpmc(Average)範例-------------------22
4.2 磨耗率W之敏感度分析-----------------------------24
4.3 品質損失函數K之敏感度分析-----------------------26
第五章 結論--------------------------------------------28
參考文獻-------------------------------------------------29
圖目錄
圖1.1 研究流程圖------------------------------------------3
圖2.1 公差成本函數圖--------------------------------------8
圖2.2 田口二次品質損失函數圖-----------------------------10
圖2.3 傳統品質損失函數圖---------------------------------11
圖2.4 日本及美國工廠電視機顏色密度之分布圖---------------12
圖2.5 望小型品質損失函數圖-------------------------------13
圖2.6 望大型品質損失函數圖-------------------------------13
圖2.7 不對稱型品質損失函數圖-----------------------------14
圖2.8 製程平均數偏移製程目標值圖-------------------------16
圖3.1 以時間為基礎之質量損失函數-------------------------18
圖3.2製程能力分析流程圖----------------------------------20
圖3.3 分析流程圖-----------------------------------------21
圖4.1 最佳值a0之Cpmc (Average)圖-------------------------23
圖4.2 最佳值t之Cpmc (Average)圖--------------------------23
圖4.3 最佳值Cpmc (Average)圖-----------------------------24
圖4.4 不同磨耗率W對 Q*的影響-----------------------------25
圖4.5不同品質損失係數K對 Q*的影響------------------------27
表目錄
表4.1磨耗率W敏感度分析-----------------------------------25
表4.2品質損失係數K敏感度分析-----------------------------26
參考文獻
[1] 蔡彰文,"公差調和模式田口方法的應用",機械工業,NO.118,pp.186-198, 1993.
[2] 黎正中譯,Madahav S. Phadke 原著,"穩健設計之工程品質",台北書有限公司,台灣台北, 1993.
[3] 鄭春生,"品質管理",育有圖書股份有限公司,台灣台北, 1997.
[4] 蘇朝敦編著,"產品穩健數計",中華民國品質學會,台灣台北, 1997.
[5] 王政,"田口式品質損失函數與製程規格最佳化",品質管制月刊,Vol.23,No.11, pp.9-28, 1987.
[6] Jeang, A., "Tolerance Chart Balancing for Machining Process Planning", Quality and Reliability Engineering International, Vol.12, No.5, pp.355-364, 1996.
[7] Jeang, A., "Tolerance Design: Choosing Optimal Tolerance Specification in the Design Machined Parts", Quality and Reliability Engineering International, Vol. 10, No.1, 1994.
[8] Ji, P., "A Linear Programming Model for Tolerance Assignment in a Tolerance Chart", International Journal of Production Research, Vol.31, No.3, pp.739-751, 1993.
[9] Phadke, M.S., "Quality Engineering Using Robust Design", Prentice Hall, Englewood Cliffs, New Jersey, 1989.
[10] Nogi, B.K.A. and Ong, J.M., "A complete tolerance charting system in assembly", International Journal of Production Research, Vol.37, No.11, pp.2477-2498, 1999.
[11] Juran, J.M., " Quality Control Handbook", 3rd edition, McGraw-Hill, New York, 1974.
[12] Kane, V.E., "Process Capability indices", Journal of Quality Technology, vol.18, pp.41-52, 1986.
[13] Chan, L.K., Cheng, S.W. and Spring, F.A., "A New Measure of Process Capability: Cpm", Journal of Quality Technology, Vol.20, pp.162-175, 1998.
[14] Pearn, W.L., Kotz, S. and Johnson, N.L., "Distributional and Inferential Properties of Process Capability Indices", Journal of Quality Technology, Vol.24, pp.216-231, 1992.
[15] Jenag, A., "Process Capability Index for Off-line Application of Product Life Cycle", Design Quality and Productivity, Manuscript received March 3, 2008.
[16] Jenag, A., "Process mean, process tolerance, and use time determination for product life application under deteriorating process", Int J Adv Manuf Technol, Vol.36, pp.97-113, 2008.
[17] Krishnamoorthi, K.S., "Capability Indices for Processes Subject to Unilateral and Positional Tolerances", Quality Engineering, 2, pp.461-471, 1990.
[18] Wang, F.K., Hubele, N.F., Lawrence, P.F., Miskulin, J.D. and Shahriari, H., "Comparison ofThree Multivariate Process Capability Indices", Journal of Quality Technology, 32, pp.263-275, 2000.
[19] Chan, L. K., Cheng, S.W. and Spiring, F.A., "A Multivariate Measure of Process Capability", Journal of Modeling and Simulation, 11, pp.1-6, 1991.
[20] Kocherlakota, S. And Kocherlakota, K., "Process capability index: Bivariate Normal Distribution", Commun. Statist.- Theory Method., 20(8), pp.2529-2547, 1991.
[21] Littig, S. J., Lam C. T. And Pollock, S. M., "Capability measurements for mulitivariate processes:Definition and an example for a gear carrier", Technucal Report, 42-92, Dept. Of Industrial and Operations Engineering, Univ. Of Michigan, Ann Arbor, MI, 1992.
[22] Wierda, S. J., "Multivariate Quality Control- Estimation of the percentage of good products." Technical Repot, Dept. Of Econometrics, University of Groningen, The Netherlands, 1992.
[23] Taam, W., Subbaiah, P., and Liddy, J. W., "A Note on Multivariate Capability Indices", Journal of Applied Statistics, 20, pp.339-351, 1993.
[24] Chen, "A Multivariate Process Capability Index Over A Rectangular Solid Tolerance Zone", Statistica Sinica, 4, pp.749-758, 1994.
[25] Niverthi, M. And Dey, D. K., "Multivariate process capability: a Bayesian perspective". Technical Report, Dept. Statistics, University of Connecticut, Storres, 1995.
[26] Shahriari, H., Hubele, N. F., Lawerence, F. "A Multivariate Process Capability Vector", preswnted at the 4th Industrial Engineering Research conference, Nashville, TN, May 24,1995.
[27] Veevers, A., "A Capability Index for Multiple Response", CSIRO Mathematics and Statistics Report DMS-095, Australia, 1995.
[28] Hellmich, M. And Wolff, H., "A new Approach for Describing and controlling process Capability for a Multivariate Process", Proceedings of the ASA Section on Quality and productivity, pp.44-48, 1996.
[29] Li, Y. And Lin, C., "Multivariate Cp Value", Chinese Journal of Applied Probability and Statistics, 12, pp.132-138, 1996.
[30] Bernardo, J. M. And Irony, T. Z., "A general multivariate Bayesian process capability index", Statistician, 45(3), pp.487-502, 1996.
[31] Yeh, A. B. And Chen, H., "A Nonparametric Multivariate Process Capability Index", Preprint, 1999.
[32] Bothe , D. R., "Composite Capability Index for Multiple Product Characteristics", Quality Engineering, 12(2), pp.253-258, 2000.
[33] Kotz., S. And Johnson, N. L., "Process Capability Indices-A Review, 1999-2000", Journal of Quality Technolog, 34(1), pp.2-19, 2002.
[34] Madahva, S. Phadke, "Quality Engineering Using Robust Design", Prentice Hall, Englewood Cliffs, New Jersey, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔