(3.238.235.155) 您好!臺灣時間:2021/05/11 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林卓儀
研究生(外文):Zhuo-yi Lin
論文名稱:以Lactobacillusamylovorus利用澱粉醱酵製造乳酸
論文名稱(外文):Lactate production of starch by Lactobacillus amylovorus
指導教授:吳石乙
指導教授(外文):Shu-Yii Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:同步糖化醱酵乳酸Lactobacillus amylovorus澱粉
外文關鍵詞:SSFLactic acidStarchLactobacillus amylovorus
相關次數:
  • 被引用被引用:3
  • 點閱點閱:340
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
以生質物為原料進行同步糖化醱酵,可產生乳酸環保生化基材及生物乙醇再生能源等。樹薯是碳水化合物中較具潛力的農作物之一,樹薯澱粉在糖化作用中能夠被Lactobacillus amylovorus所分泌的α-amylases and glucoamylases液化水解成糖分子。本研究以樹薯澱粉為料源並以L. amylovorus進行批次醱酵產乳酸,探討初始澱粉濃度、酵母萃取物、氯化鈉以及含氧量對L. amylovorus的菌體生長與醱酵產乳酸的效應。
研究發現,以酵母萃取物20 g/L為氮源,進行不同樹薯澱粉濃度醱酵產乳酸,有最大乳酸產量14.4 g/L,且乳酸產量均高於6.0 g/L比未添加酵母萃取物時高約26.6 %,當初始澱粉濃度高於20 g/L時,會有基質抑制效應產生。添加酵母萃取物濃度40 g/L有利於 L. amylovorus的生長且其乳酸產量及轉化率分別為18.1 g/L及83%。添加氯化鈉10 g/L有最大乳酸產量15.2 g/L,當添加氯化鈉濃度高於20 g/L時,會傷害菌體生長及降低乳酸的產量。
L. amylovorus為兼氣性厭氧菌,本研究探討含氧量對L. amylovorus醱酵產乳酸及菌體成長之影響,發現在厭氧狀態及兼氣狀態(瓶頂空間:130 ml air)下,L. amylovorus醱酵產乳酸量為18.4及15.5 g/L,其菌體濃度為0.78與0.64 g/L,顯示在厭氧條件下,有助於L. amylovorus醱酵產乳酸;若以每分鐘1 ml 之空氣輸入反應器,可獲得乳酸與菌體濃度0.01與1.16 g/L,顯示氧氣導致L. amylovorus醱酵產乳酸的效果變差,由實驗數據得知在有氧條件下,L. amylovorus代謝產乳酸途徑可能轉為以菌體生長為主。
Lactic acid could be produced by a simultaneous saccharification and fermentation (SSF) process by using the biomass based substrates. Cassava is one of the most potentially efficient crops in terms of carbohydrate production. It could be liquefied and hydrolyzed to sugar by Lactobacillus amylovorus of α-amylases and glucoamylases in the saccharification process. The effects of initial starch concentrations, yeast extract, sodium chloride and oxygen content on cell growth of L. amylovorus and lactic acid production were investigated in this study.
It was found that maximum lactic acid of 14.4 g/L was obtained at an initial starch concentration of 20 g/L when the yeast extract concentration was 20 g/L. Lactic acid production of 6.0 g/L was obtained with adding yeast extract of 20 g/L which was higher 26.6% than that of without adding yeast extract. A substrate inhibition appeared when initial starch concentrations above 20 g/L. The L. amylovorus gave a better growth on cassava starch, and the final lactic acid concentration and conversion were 18.1 g/L and 83%, respectively, at the yeast extract of 40 g/L. Maximum lactic acid production of 15.2 g/L was observed when adding 10 g/L of sodium chloride in the reactor. It hampered bacterial growth and decreased lactic acid production when sodium chloride concentration was higher than 20 g/L.
It was also found that lactic acid concentration and cell concentrations at anaerobic condition were 18.4 g/L and 0.78 g/L, respectively, and 15.5 g/L of lactic acid and 0.64 g/L of cell concentration at facultative anaerobic condition with 130 ml air in head space. This indicates that anaerobic condition could get a better growth and lactic acid production using L. amylovorus. At aeration rate of 1.0 ml air/min, the lactic acid and cell concentration were 0.01 g/L and 1.16 g/L respectively. As a result, oxygen has a negative effect on L. amylovorus for lactic acid fermentation while the metabolism of lactic acid production by L. amylovorus was changed to cell growth.
摘要 I
Abstract II
圖目錄 VII
表目錄 IX
符號表 X
第一章 緒論 1
1-1 研究動機及目的 1
1-2 實驗架構 2
第二章 文獻回顧 3
2-1 澱粉簡介與澱粉水解酵素之種類 3
2-1-1 澱粉簡介 3
2-1-2 澱粉水解酵素之種類 5
2-2 乳酸之簡介 11
2-2-1 乳酸結構與性質 11
2-2-2 乳酸特性與應用 12
2-2-3 聚乳酸的介紹 13
2-2-4 聚乳酸之特性與應用 14
2-2-5 聚乳酸之合成 14
2-3 乳酸菌之介紹 16
2-3-1 乳酸菌(lactic acid bacteria, LAB)之簡介 16
2-3-2 Lactobacillus amylovorus 17
2-3-3 乳酸菌代謝路徑 17
2-3-4 乳酸脫氫酵素 20
2-4 微生物生長之條件 21
2-4-1 碳源 21
2-4-2 氮源 22
2-4-3 溫度 22
2-4-4 pH值 23
2-4-5 氯化鈉 23
2-4-6 厭氧度 24
2-5 乳酸生產方法 26
2-5-1 醱酵法 26
2-5-2 化學合成法 29
2-5-3 乳酸純化與分離 29
2-5-4 同步糖化醱酵(SSF) 30
2-6 微生物動力學 32
2-6-1 醱酵動力學簡介 32
2-6-2 酵素動力學 34
2-6-3 單細胞微生物生長速率 36
2-6-4 基質抑制(Substrate Inhibition) 38
2-6-5 乳酸動力學 39
2-6-6 同步醣化醱酵動力學 40
第三章 實驗材料及方法 41
3-1 儀器設備 41
3-2 藥品試劑 42
3-3 實驗材料 43
3-3-1 菌種來源 43
3-3-2 培養基組成 43
3-4 基質配方 44
3-5 實驗方法 45
3-5-1 菌種培養 45
3-5-2 批次搖瓶之澱粉醱酵實驗 45
3-5-3 不同含氧量之批次搖瓶澱粉醱酵實驗 46
3-6 實驗校正數據分析 47
3-6-1 總醣校正關係式 47
3-6-2 Modified Model 48
3-7 分析方法 49
3-7-1 菌量分析 49
3-7-2 還原糖濃度之定量 49
3-7-3 總醣濃度之定量 50
3-7-4 液相組成分析 51
第四章 結果與討論 52
4-1 澱粉濃度之影響 53
4-1-1 澱粉濃度對總糖產量的影響 56
4-1-2 澱粉濃度對還原糖產量的影響 56
4-1-3 澱粉濃度對乳酸產量的影響 57
4-1-4 澱粉濃度對乳酸菌生長的影響 58
4-2 酵母萃取物之影響 64
4-2-1 酵母萃取物對總醣產量的影響 69
4-2-2 酵母萃取物對還原糖產量的影響 69
4-2-3 酵母萃取物對乳酸產量的影響 70
4-2-4 酵母萃取物濃度對乳酸菌生長之影響 70
4-3 氯化鈉濃度對乳酸菌之影響 77
4-3-1 添加氯化鈉對總醣之影響 80
4-3-2 添加氯化鈉對還原糖之影響 80
4-3-3 添加氯化鈉對乳酸之影響 80
4-3-4 氯化鈉對乳酸菌生長之影響 81
4-4 厭氧度對乳酸菌之影響 86
第五章 結論與建議 88
5-1 結論 88
5-2 建議 89
參考文獻 90
Aiba S., Shoda M., Nagalani M., Kinetics of product inhibition in alcohol fermentation, Biotechnol. Bioeng., vol. 10, 845-864 (1968).

Andrew J. F., A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., vol. 10, 707-721 (1968).

Antonio González-Vara R., Giuseppe Vaccari, Elisabetta Dosi, Antonio Trilli, Maddalena Rossi, Diego Matteuzzi, Enhanced production of L(+)-lactic acid in chemostat by Lacotbacillus casei DSM20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR, Biotechnol. Bioeng., vol. 67, 147-156 (2000).

Anuradha R., Suresh A.K., Venkatesh K.V., Simultaneous saccharification and fermentation of starch to lactic acid, Process Biochemistry, vol. 35, 367-375 (1999).

Bar R., Gainer J.L., Acid fermentation in water-organic solvent two-liquid phase systems, Biotechnol. Progr., vol. 3, 102-104 (1987).

Benninga H., A History of Lactic Acid Making, Kluwer Academic Publishers, Dordrecht, Netherlands, 1-61 (1990).

Bernfeld P., Amylases alpha and beta. In: Colowick, S.P. and Kaplan, O.N., Editors, Meth. Enzymology, Academic Press, New York, 140-146 (1955).


Cahvan A.R., Raghunathan A., Venkatesh K.V., Modelingand experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds, J. Ind. Microbiol. Biotechnol., vol. 36, 509-519 (2009).

Callewaert R., Holo H., Devreese B., Van Beeumen J., Nes I., De Vuyst L., Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method, Microbiology, vol. 145, 2559-2568 (1999).

Carothers W.H., Arvin G.A., Studies on polymerization and ring formation, J. Am. Chem. Soc., vol. 51, 2560-2560 (1929).

Chavan A.R., Raghunathan A., Venkatesh K.V., Modeling and experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds, J. Ind. Microbiol. Biotechnol., vol. 36, 509-519 (2009).

Cheng P., Mueller R., Jaeger S., Bajpai R., Iannotti G., Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus, J. Indusk Microb. vol. 7, 27-34 (1991).

Colin J., Suckling, Enzyme Chemistry, 311 (1990).

Colvin R.J., Rozich A.F., Phenol growth kinetics of the heterogeneous population in a two stage continuous culture system, J. Water Pollut Control Fed, vol. 58, 326-332 (1986).

Concepción N.B., Martin R.O., Phillip C.W., Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus, Biotechnol. Prog., vol. 16, 305-314 (2000).


Contois D.E., Kinetics of Bacterial Growth, Relationship between Population Density and Specific Growth Rate of Continuous Cultures, J. Gen. Microbiol., vol. 21, 40-50 (1959).

Cotton J.C., Pometto III A.L., Gvozdenovic-Jeremic J., Continuous lactic acid fermentation using a plastic composite support biofilm reactor, Applied Microbiology and Biotechnology, vol. 57, 626-630 (2001).

Datta R., Henry M., Lactic acid: recent advances in products, processes and technologies-a review, J. Chem. Technol. Biotechnol., vol. 81, 1119-1129 (2006).

Datta R., Tsai S.P., Bonsignore P., Moon S.H., Frank J.R., Technolohical and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiol. Rev., vol. 16, 221-231 (1995).

David L.N., Michael M.C., Lehninger principles of biochemistry, 4th edition, W.H. Freeman and Company, New York (2004).

De Vuyst L., Callewaert R., Crabbe K., Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions, Microbiology, vol. 142, 817-827 (1996a).

De Vuyst L., Callewaert R., Pot B., Characterization of the antagonistic activity of Lactobacillus amylovorus DCE 471 and large scale isolation of its bacteriocin amylovorin L471, Systematic and Applied Microbiology, vol. 19, 9-20 (1996b).

Dicks L.M.T., Dellaglio F., Collins M.D., Proposal to reclassify Leuconostoc oenos as Oenococcus oeni[coorig.] gen. nov., comb. nov., Int J Syst Bacteriol, vol. 45, 395-397 (1995).



Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A. and Smith F., Colorimetric Method for Determination of Sugar and Related Substances, Anal. Chem., vol. 28, 350-356 (1956).

Ganzle M.G., Ehrmann M., Hammes W.P., Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation, Applied and Environmental Microbiology, vol. 64, 2616-2623 (1998).

Ganzle M.G., Hertel C., Hammes W.P., Modeling the effect of pH, NaCl and nitrite concentrations on the antimicrobial activity of sakacin P against Listeria ivanovii DSM 20750, Fleischwirtschaft, vol. 76, 409-412, (1996).

Gaudy A.F., Rozich A. R., Gaudy E. T., Activated sludge process models for treatment of toxic and non-toxic wastes, Environ. Sci. Technol., vol. 18, 123-137, (1986).

Gordon G.L., Doelle H.W., Purification, properties and immunological relationship of L(+)-lactate dehydrogenase from Lactobacillus casei, Eur. J. Biochem., vol. 67, 543-555, (1976).

Gupta B., Revagade N., Hilborn J., Poly(lactic acid) fiber: An overview, Prog. Polym. Sci. vol. 32, 455-482, (2007).

Guyot J.P., Morlon-Guyot J., Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, and amylolytic lactobacillus isolated from sour starch cassava fermentation, Int. J. Food Microbiol., vol. 67, 217-225, (2001).

Haldane JBS. Enzymes London : Longmans, Green (1930).

Hensel R., Mayr U., Stetter K.O., Kandler O., Comparative studies of lactic acid dehydrogenases in lactic acid bacteria, Arch Microbiol, vol. 112, 81-93, (1977).


Hofvendahl K., Fermentation of wheat starch hydorlysate by Lactococcus lactis: factors affecting product formation, Lund, Sweden: Lund University, PhD Thesis (1998).

Hofvendahl K., Akerberg C., Zacchi G., Hahn-Hägerdal B., Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis, Appl. Microbiol. and Biotechnol., vol. 52, 163-169, (1999).

Hofvendahl K., Hahn-Hägerdal B., Factors affecting the fermentative lactic acid production from renewable resources, Enzyme Microb. Tech., vol. 26, 87-107, (2000).

Hongo M., Nomura Y., Iwahara M., Novel method of lactic acid production by electrodialysis fermentation, Appl. Environ. Microbiol., vol. 52, 314-319, (1986).

James J.A., Berger J.L., Lee B.H., Purification of Glucoamylase from Lactobacillus amylovorus ATCC 33621, Current Microbiology, vol. 34, 186-191, (1997).

Jens E.N., Beier L., Otzen D., Torben V., Borchert H. B. F., Kim A. and Svendsen A., Electrostatics in the Active Aite of an α-Amylase, Eur. J. Biochem., vol. 264, 817-823, (1999).

John R.P., Nampoothiri K.M., Pandey A., Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii, Proc. Biochem., vol. 41, 759-763, (2006a).

John R.P., Nampoothiri K.M., Pandey A., Simultaneous saccharification and L-(+)-lactic acid fermentation of proteasetreated wheat bran using mixed culture of lactobacill, Biotechnol. Lett., vol. 28, 1823-1826, (2006b).

Kandler O., Carbhydrate metabolism in lactic acid bacteria, A van Leeuw, vol. 49, 209-224, (1983).

Korkeala H., Alanko T., Tiusanen T., Effect of sodium nitrate and sodium chloride on growth of lactic acid bacteria, Acta Veterinaria Scandinavica, vol. 33, 27-32, (1992).


Kwon S., Lee P.C., Lee E.G., Chang Y.K., Chang N., Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate, Enzyme Microb. Technol., vol. 26, 209-215, (2000).

Kwon S., Yoo I.K., Lee W.G., Chang H.N., Chang Y.K., High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor, Biotechnol. Bioeng., vol. 73, 25-34, (2000).

Lejeune R., Callewaert R., Crabbe K., and De Vuyst L., Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation, Journal of Applied Microbiology, vol. 84, 159-168, (1998).

Li D., Chen H., Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation, Int. J. Hydrogen Energy, vol. 32, 742-1748, (2007).

Linde M., Galbe M., Zacchi G., Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Technol., vol. 40, 1100-1107, (2007).

Lowe C.E., Prepatation of high molecular weight polyhydroxyester, US Patent, vol. 2, 668-162, (1954).

Luedeking R., Piret E.L., A kinetic study of the lactic acid fermentation, J. Biochem. Micobiol. Technol. Eng., vol. 1, 393-412, (1959).

Lunt J., Large scale production, properties and ecommercial applications of polylactic acid polymers, Polym. Deg. Stab., vol. 59, 145-152, (1998).

Lunt J., Shafer A.L., Plolylactic acid polymers from corn: applications in the textiles industry, J. Ind. Text., vol. 29, 191-205, (2000).


Mckay L.L., Baldwin K.A., Applications for Biotechnology: present and future improvements in lactic acid bacteria, FEMS Microbiol. Rev., vol. 87, 3-14, (1990).

Mercier P., Yerushalmi L., Rouleau D., Dochain D., Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus, J. Chem. Tech. Biotechnol., vol. 55, 111-121, (1992).

Messens W., Neysens P., Vansieleghem W., Vanderhoeven J., DeVuyst L., Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations, Applied and Environmental Microbiology, vol. 68, 1431-1435, (2002).

Milcent S., Carrere H., Clarification of lactic acid fermentation broths, Sep. Purif. Technol., vol. 22-23, 393-401, (2001).

Monod J., The growth of bacterial cultures, Review of Microbiol., vol. 3, 371, (1949).

Moser A. and Lafferty R. M., In proc. 5th IFS (Int. Ferment. Symp.), 103, (1976).

Moser H., The dynamics of bacterial populations maintained in the chemostat, Carnegie Inst. Washington Publ. 614, (1958).

Muralikrishna G. and Nirmala M., Cereal α-Amylases-An Overview, Carbohydrate Polymers, vol. 60, 163-173, (2005).

Nakasaki K., Akakura N., Adachi T., Akiyama T., Use of wastewater sludge as a raw material for production of L-lactic acid environs, Sci. Technol., vol. 33, 198-200, (1999).

Nakamura L.K., Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations, Int. J. Syst. Bacteriol., vol. 31, 56-63, (1981).


Narayanan N., Roychoudhury P.K., Srivastava A., L(+)-lactic acid fermentation and its product polymerization, Elestr. J. Biotechnol., vol. 7, 167-179, (2004).

Naveena B.J., Altaf M., Bhadriah K., Reddy G., Selection of medium components by Placket Burman design for the production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran, Bioresour. Technol., vol. 96, 485-490, (2005).

Neysens P., Messens M., Gevers D., Swings J., De Vuyst L., Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions, Microbiology, vol. 149, 1073-1082, (2003).

Nigam P. and Singh D., Enzyme and Microbial Systems Involved in Starch Processing, Enzyme and Microbial Technology, vol. 17, 770-778, (1995).

Nilsen T., Nes I.F., Holo H., An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC 492, Journal of Bacteriology, vol. 180, 1848-1854, (1998).

Passos F.V., Flemming H.P., Ollis D.F., Hassan H.M., Felder R.M., Modeling the specific growth rate of Lactobacillus plantarum in cucumber extract, Applied Mocrobiology and Biotechnology, vol. 40, 143-150, (1993).

Pompeyo C.C., Gomez M.S., Gasparian S., Morlon-Guyot J., Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amylophilus, Applied Microbiology and Biotechnology, vol. 40, 266-269 (1993).

Qian N., Stanley G.A., Hahn-Hägerdal B., Rådström P., Purification and characterization of two phosphoglucomutas from Lactococcus lactis spp. and their regulation in maltose- and glucose- utilizing cells, J. Bacteriol., vol. 176, 5304-5311, (1994).


Rak J., Ford J.L., Rostron C., Walters V., The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier, Pham. Acta. Helv., vol. 60, 162-169, (1985).

Rivas B., Moldes A.B., Domínguez J.M., Parajó J.C., Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation, Enzyme Microb. Technol., vol. 34, 627-634, (2004).

Rojan P.J., Nampoothiri K.M., Nair A.S., Pandey A., L(+)-Lactic acid production using Lactobacillus casei in solid-state fermentation, Biotechnol. Lett,. vol. 27, 1685-1688, (2005).

Romani A., Yáñez R., Garrote G., Alonso J.L., SSF production of lactic acid from cellulosic biosludges, Bioresour Technol., vol. 99, 4247-4254, (2008).

Saucedo G.C., Gonzalez P.B., Revah S.M., Viniegra G.G., Raimbault M., Effect of Lactobacilli Inoculation on Cassava (manihotesculenta) Silage: Fermentation Pattern and Kinetic Analysis, Journal of Science Food Agric, vol. 50, 467-477, (1990).

Siebold M., Frieling P.V., Joppien R., Rindfleisch D., Schugerl K., Roper H., Comparasion of the production of lactic acid by three different lactobacilli and its recovery by extraction and electrodialysis, Process Biochemistry, vol. 30, 81-95, (1995).

Simon J. H., Brian J.T., Philip L.G., Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems, J. Controlled Release, vol. 4, 155-180, (1986).

Soccol C., Marin B., Raimbault M., Lebeault J.M., Potential of solid state fermentation for the production of L(+) lactic acid by Rhizopus oryzae, Appl. Microbiol. Biot., vol. 41, 286-290, (1994).

Srivastava A., Roychoudhury P.K., Sahai V., Extractive lactic acid fermentation using ion exchange resins, Biotechnol. and Bioeng., vol. 39, 607-613, (1992).


Uguen P., Hamelin J., Le Pennec J.P., Blanco C., Influence of osmolarity and the presence of an osmoprotectant on Lactococcus lactis growth and bacteriocin production, Applied and Environmental Microbiology, vol. 65, 291-293, (1999).

Van Ness J.H., Hydroxy carboxylic acid. In Kirk-othmer encyclopedia of chemical technology, 3rd, J. Wiley and Sons, New York, vol. 13, 80-103, (1981).

Van Niel E.W.J., Hahn-Hägerdal B., Nutrient requirements of Lactococci in defind growth media, Appl. Microbiol. Biotechnol., vol. 52, 617-627, (1999).

Verhulst P.E., Notice sur la loi que la population suit dans son accroissement, Correspond, Math. Phys., vol. 10, 113-121, (1992).

Vihinen M., Mantasala P., Microbial Amylolytic Enzymes, Critical Reviews in Biochemistry and Molecular Biology, vol. 24, 329-418, (1989).

Webb J.L., Enzyme and metabolic inhibitors., Boston: Academic Press. (1963).

Wee Y.J., Kim J.N., Ryu H.W., Biotechnological production of lactic acid and its recent applications, Food Technol. Biotechnol., vol. 44, 163-172, (2006).

Wood B.J.B., Holzapfel W.H., The Genera of Lactic Acid Bacteria, 1st edition. Glasgow, UK: Blackie Academic and Professtional. (1995).

Xiaodong W., Xuan G., Rakshit S.K., Direct fermentative production of lactic acid on cassava and other starches, Biotechnol. Lett. vol. 19, 841-843, (1997).

Yabannvavar V.M., Wang D.I.C., Analysis of mass transfer for immobilized cells in an extractive lactic acid fermentation, Biotechnol. Bioeng., vol. 37, 544-548, (1991).

Yano T., Nakahara T., Kamiyama S., Yamada K., Kinetic studies on microbial activities in concentrated solutions. I. Effect of excess sugars on oxygen uptake rate of a cell-free respiratory sytem, Agr. Brol. Chem., vol. 30, 42-48, (1966).

Yeh P.L.H., Bajpai R.K., Iannotti E.L., An improved kinetic model for lactic acid fermentation, Journal of Fermentation and Bioengineering, vol. 71, 75-77, (1991).

Yoo I.K., Chang H.N., Lee E.G., Chang Y.K., Effect of B vitamin supplementation on lactic acid production by Lactobacilus casei, Journal of Fermentation and Bioengineering, vol. 84, 172-175, (1997).

Yumoto I., Ikeda K., Direct fermentation of starch to L(+)-lactic acid using Lactobacillus amylophilus, Biotechnol. Lett., vol. 17, 543-546, (1995).

Zhang D.X., Cheryan M., Direct fermentation of starch to lactic acid by Lactobacillus amylovorus, Biotechnol. Lett., vol. 13, 733-738, (1991).


Zhang D.X., Cheryan M., Starch to lactic acid in a continuous membrane bioreactor, Process Biochem., vol. 29, 145-150, (1994).

王博彥、金其榮,醱酵有機酸生產與應用手冊,中國輕工業出版社,第2-3頁,(2000)。

朱明毅、郭文法、林靜宜、林麗桂、黃筱萍、陳憲明,天然澱粉高分子之材料特性簡介,化工技術,第12卷,第3期,第144頁,(2004)。

沈萍,微生物學,初版,五南出版機構出版,第95-100頁;第178-183頁,(2003)。

徐敬衡,微生物醱酵動力學與數學模型之研究發展,生化工程專刊,化工,第48卷,第5期,(2001)。

陳懋彥,台灣地熱區嗜熱性細菌之研究,國立台灣大學植物學研究所博士論文,(2002)。

程麗君,饋料批式醱酵之進料策略探討,成功大學化學工程學系博士論文,(2002)。

葉例雅,利用Lactobacillus casei在批式及饋料批式方法下產製乳酸並探討醱酵期間成份之變化,中興大學食品暨應用生物科技學系,(2009)。
葉獻彬,生物可降解性聚乳酸高分子之合成與降解性質探討,陽明大學醫學工程所碩士論文,(2001)。

曾季清,利用乳酸菌表達大腸桿菌酸性磷酸酶與其在模擬胃道環境之定性討論,中央大學生命科學所碩士論文,(2000)。

詹哲豪、林绣茹、顏瑞鴻、池華瑋,簡明微生物學,第五版,華杏出版機構出版,第41-72頁,(2000)。

廖玉潔,酵素分離與化學治療用藥層析分析之探討,成功大學化學工程學系博士論文,(2005)。

蘇遠志,黃世佑,微生物化學工程,華香園出版社,第二版,(1999)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔