Aiba S., Shoda M., Nagalani M., Kinetics of product inhibition in alcohol fermentation, Biotechnol. Bioeng., vol. 10, 845-864 (1968).
Andrew J. F., A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., vol. 10, 707-721 (1968).
Antonio González-Vara R., Giuseppe Vaccari, Elisabetta Dosi, Antonio Trilli, Maddalena Rossi, Diego Matteuzzi, Enhanced production of L(+)-lactic acid in chemostat by Lacotbacillus casei DSM20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR, Biotechnol. Bioeng., vol. 67, 147-156 (2000).
Anuradha R., Suresh A.K., Venkatesh K.V., Simultaneous saccharification and fermentation of starch to lactic acid, Process Biochemistry, vol. 35, 367-375 (1999).
Bar R., Gainer J.L., Acid fermentation in water-organic solvent two-liquid phase systems, Biotechnol. Progr., vol. 3, 102-104 (1987).
Benninga H., A History of Lactic Acid Making, Kluwer Academic Publishers, Dordrecht, Netherlands, 1-61 (1990).
Bernfeld P., Amylases alpha and beta. In: Colowick, S.P. and Kaplan, O.N., Editors, Meth. Enzymology, Academic Press, New York, 140-146 (1955).
Cahvan A.R., Raghunathan A., Venkatesh K.V., Modelingand experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds, J. Ind. Microbiol. Biotechnol., vol. 36, 509-519 (2009).
Callewaert R., Holo H., Devreese B., Van Beeumen J., Nes I., De Vuyst L., Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method, Microbiology, vol. 145, 2559-2568 (1999).
Carothers W.H., Arvin G.A., Studies on polymerization and ring formation, J. Am. Chem. Soc., vol. 51, 2560-2560 (1929).
Chavan A.R., Raghunathan A., Venkatesh K.V., Modeling and experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds, J. Ind. Microbiol. Biotechnol., vol. 36, 509-519 (2009).
Cheng P., Mueller R., Jaeger S., Bajpai R., Iannotti G., Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus, J. Indusk Microb. vol. 7, 27-34 (1991).
Colin J., Suckling, Enzyme Chemistry, 311 (1990).
Colvin R.J., Rozich A.F., Phenol growth kinetics of the heterogeneous population in a two stage continuous culture system, J. Water Pollut Control Fed, vol. 58, 326-332 (1986).
Concepción N.B., Martin R.O., Phillip C.W., Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus, Biotechnol. Prog., vol. 16, 305-314 (2000).
Contois D.E., Kinetics of Bacterial Growth, Relationship between Population Density and Specific Growth Rate of Continuous Cultures, J. Gen. Microbiol., vol. 21, 40-50 (1959).
Cotton J.C., Pometto III A.L., Gvozdenovic-Jeremic J., Continuous lactic acid fermentation using a plastic composite support biofilm reactor, Applied Microbiology and Biotechnology, vol. 57, 626-630 (2001).
Datta R., Henry M., Lactic acid: recent advances in products, processes and technologies-a review, J. Chem. Technol. Biotechnol., vol. 81, 1119-1129 (2006).
Datta R., Tsai S.P., Bonsignore P., Moon S.H., Frank J.R., Technolohical and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiol. Rev., vol. 16, 221-231 (1995).
David L.N., Michael M.C., Lehninger principles of biochemistry, 4th edition, W.H. Freeman and Company, New York (2004).
De Vuyst L., Callewaert R., Crabbe K., Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions, Microbiology, vol. 142, 817-827 (1996a).
De Vuyst L., Callewaert R., Pot B., Characterization of the antagonistic activity of Lactobacillus amylovorus DCE 471 and large scale isolation of its bacteriocin amylovorin L471, Systematic and Applied Microbiology, vol. 19, 9-20 (1996b).
Dicks L.M.T., Dellaglio F., Collins M.D., Proposal to reclassify Leuconostoc oenos as Oenococcus oeni[coorig.] gen. nov., comb. nov., Int J Syst Bacteriol, vol. 45, 395-397 (1995).
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A. and Smith F., Colorimetric Method for Determination of Sugar and Related Substances, Anal. Chem., vol. 28, 350-356 (1956).
Ganzle M.G., Ehrmann M., Hammes W.P., Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation, Applied and Environmental Microbiology, vol. 64, 2616-2623 (1998).
Ganzle M.G., Hertel C., Hammes W.P., Modeling the effect of pH, NaCl and nitrite concentrations on the antimicrobial activity of sakacin P against Listeria ivanovii DSM 20750, Fleischwirtschaft, vol. 76, 409-412, (1996).
Gaudy A.F., Rozich A. R., Gaudy E. T., Activated sludge process models for treatment of toxic and non-toxic wastes, Environ. Sci. Technol., vol. 18, 123-137, (1986).
Gordon G.L., Doelle H.W., Purification, properties and immunological relationship of L(+)-lactate dehydrogenase from Lactobacillus casei, Eur. J. Biochem., vol. 67, 543-555, (1976).
Gupta B., Revagade N., Hilborn J., Poly(lactic acid) fiber: An overview, Prog. Polym. Sci. vol. 32, 455-482, (2007).
Guyot J.P., Morlon-Guyot J., Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, and amylolytic lactobacillus isolated from sour starch cassava fermentation, Int. J. Food Microbiol., vol. 67, 217-225, (2001).
Haldane JBS. Enzymes London : Longmans, Green (1930).
Hensel R., Mayr U., Stetter K.O., Kandler O., Comparative studies of lactic acid dehydrogenases in lactic acid bacteria, Arch Microbiol, vol. 112, 81-93, (1977).
Hofvendahl K., Fermentation of wheat starch hydorlysate by Lactococcus lactis: factors affecting product formation, Lund, Sweden: Lund University, PhD Thesis (1998).
Hofvendahl K., Akerberg C., Zacchi G., Hahn-Hägerdal B., Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis, Appl. Microbiol. and Biotechnol., vol. 52, 163-169, (1999).
Hofvendahl K., Hahn-Hägerdal B., Factors affecting the fermentative lactic acid production from renewable resources, Enzyme Microb. Tech., vol. 26, 87-107, (2000).
Hongo M., Nomura Y., Iwahara M., Novel method of lactic acid production by electrodialysis fermentation, Appl. Environ. Microbiol., vol. 52, 314-319, (1986).
James J.A., Berger J.L., Lee B.H., Purification of Glucoamylase from Lactobacillus amylovorus ATCC 33621, Current Microbiology, vol. 34, 186-191, (1997).
Jens E.N., Beier L., Otzen D., Torben V., Borchert H. B. F., Kim A. and Svendsen A., Electrostatics in the Active Aite of an α-Amylase, Eur. J. Biochem., vol. 264, 817-823, (1999).
John R.P., Nampoothiri K.M., Pandey A., Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii, Proc. Biochem., vol. 41, 759-763, (2006a).
John R.P., Nampoothiri K.M., Pandey A., Simultaneous saccharification and L-(+)-lactic acid fermentation of proteasetreated wheat bran using mixed culture of lactobacill, Biotechnol. Lett., vol. 28, 1823-1826, (2006b).
Kandler O., Carbhydrate metabolism in lactic acid bacteria, A van Leeuw, vol. 49, 209-224, (1983).
Korkeala H., Alanko T., Tiusanen T., Effect of sodium nitrate and sodium chloride on growth of lactic acid bacteria, Acta Veterinaria Scandinavica, vol. 33, 27-32, (1992).
Kwon S., Lee P.C., Lee E.G., Chang Y.K., Chang N., Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate, Enzyme Microb. Technol., vol. 26, 209-215, (2000).
Kwon S., Yoo I.K., Lee W.G., Chang H.N., Chang Y.K., High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor, Biotechnol. Bioeng., vol. 73, 25-34, (2000).
Lejeune R., Callewaert R., Crabbe K., and De Vuyst L., Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation, Journal of Applied Microbiology, vol. 84, 159-168, (1998).
Li D., Chen H., Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation, Int. J. Hydrogen Energy, vol. 32, 742-1748, (2007).
Linde M., Galbe M., Zacchi G., Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Technol., vol. 40, 1100-1107, (2007).
Lowe C.E., Prepatation of high molecular weight polyhydroxyester, US Patent, vol. 2, 668-162, (1954).
Luedeking R., Piret E.L., A kinetic study of the lactic acid fermentation, J. Biochem. Micobiol. Technol. Eng., vol. 1, 393-412, (1959).
Lunt J., Large scale production, properties and ecommercial applications of polylactic acid polymers, Polym. Deg. Stab., vol. 59, 145-152, (1998).
Lunt J., Shafer A.L., Plolylactic acid polymers from corn: applications in the textiles industry, J. Ind. Text., vol. 29, 191-205, (2000).
Mckay L.L., Baldwin K.A., Applications for Biotechnology: present and future improvements in lactic acid bacteria, FEMS Microbiol. Rev., vol. 87, 3-14, (1990).
Mercier P., Yerushalmi L., Rouleau D., Dochain D., Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus, J. Chem. Tech. Biotechnol., vol. 55, 111-121, (1992).
Messens W., Neysens P., Vansieleghem W., Vanderhoeven J., DeVuyst L., Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations, Applied and Environmental Microbiology, vol. 68, 1431-1435, (2002).
Milcent S., Carrere H., Clarification of lactic acid fermentation broths, Sep. Purif. Technol., vol. 22-23, 393-401, (2001).
Monod J., The growth of bacterial cultures, Review of Microbiol., vol. 3, 371, (1949).
Moser A. and Lafferty R. M., In proc. 5th IFS (Int. Ferment. Symp.), 103, (1976).
Moser H., The dynamics of bacterial populations maintained in the chemostat, Carnegie Inst. Washington Publ. 614, (1958).
Muralikrishna G. and Nirmala M., Cereal α-Amylases-An Overview, Carbohydrate Polymers, vol. 60, 163-173, (2005).
Nakasaki K., Akakura N., Adachi T., Akiyama T., Use of wastewater sludge as a raw material for production of L-lactic acid environs, Sci. Technol., vol. 33, 198-200, (1999).
Nakamura L.K., Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations, Int. J. Syst. Bacteriol., vol. 31, 56-63, (1981).
Narayanan N., Roychoudhury P.K., Srivastava A., L(+)-lactic acid fermentation and its product polymerization, Elestr. J. Biotechnol., vol. 7, 167-179, (2004).
Naveena B.J., Altaf M., Bhadriah K., Reddy G., Selection of medium components by Placket Burman design for the production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran, Bioresour. Technol., vol. 96, 485-490, (2005).
Neysens P., Messens M., Gevers D., Swings J., De Vuyst L., Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions, Microbiology, vol. 149, 1073-1082, (2003).
Nigam P. and Singh D., Enzyme and Microbial Systems Involved in Starch Processing, Enzyme and Microbial Technology, vol. 17, 770-778, (1995).
Nilsen T., Nes I.F., Holo H., An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC 492, Journal of Bacteriology, vol. 180, 1848-1854, (1998).
Passos F.V., Flemming H.P., Ollis D.F., Hassan H.M., Felder R.M., Modeling the specific growth rate of Lactobacillus plantarum in cucumber extract, Applied Mocrobiology and Biotechnology, vol. 40, 143-150, (1993).
Pompeyo C.C., Gomez M.S., Gasparian S., Morlon-Guyot J., Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amylophilus, Applied Microbiology and Biotechnology, vol. 40, 266-269 (1993).
Qian N., Stanley G.A., Hahn-Hägerdal B., Rådström P., Purification and characterization of two phosphoglucomutas from Lactococcus lactis spp. and their regulation in maltose- and glucose- utilizing cells, J. Bacteriol., vol. 176, 5304-5311, (1994).
Rak J., Ford J.L., Rostron C., Walters V., The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier, Pham. Acta. Helv., vol. 60, 162-169, (1985).
Rivas B., Moldes A.B., Domínguez J.M., Parajó J.C., Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation, Enzyme Microb. Technol., vol. 34, 627-634, (2004).
Rojan P.J., Nampoothiri K.M., Nair A.S., Pandey A., L(+)-Lactic acid production using Lactobacillus casei in solid-state fermentation, Biotechnol. Lett,. vol. 27, 1685-1688, (2005).
Romani A., Yáñez R., Garrote G., Alonso J.L., SSF production of lactic acid from cellulosic biosludges, Bioresour Technol., vol. 99, 4247-4254, (2008).
Saucedo G.C., Gonzalez P.B., Revah S.M., Viniegra G.G., Raimbault M., Effect of Lactobacilli Inoculation on Cassava (manihotesculenta) Silage: Fermentation Pattern and Kinetic Analysis, Journal of Science Food Agric, vol. 50, 467-477, (1990).
Siebold M., Frieling P.V., Joppien R., Rindfleisch D., Schugerl K., Roper H., Comparasion of the production of lactic acid by three different lactobacilli and its recovery by extraction and electrodialysis, Process Biochemistry, vol. 30, 81-95, (1995).
Simon J. H., Brian J.T., Philip L.G., Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems, J. Controlled Release, vol. 4, 155-180, (1986).
Soccol C., Marin B., Raimbault M., Lebeault J.M., Potential of solid state fermentation for the production of L(+) lactic acid by Rhizopus oryzae, Appl. Microbiol. Biot., vol. 41, 286-290, (1994).
Srivastava A., Roychoudhury P.K., Sahai V., Extractive lactic acid fermentation using ion exchange resins, Biotechnol. and Bioeng., vol. 39, 607-613, (1992).
Uguen P., Hamelin J., Le Pennec J.P., Blanco C., Influence of osmolarity and the presence of an osmoprotectant on Lactococcus lactis growth and bacteriocin production, Applied and Environmental Microbiology, vol. 65, 291-293, (1999).
Van Ness J.H., Hydroxy carboxylic acid. In Kirk-othmer encyclopedia of chemical technology, 3rd, J. Wiley and Sons, New York, vol. 13, 80-103, (1981).
Van Niel E.W.J., Hahn-Hägerdal B., Nutrient requirements of Lactococci in defind growth media, Appl. Microbiol. Biotechnol., vol. 52, 617-627, (1999).
Verhulst P.E., Notice sur la loi que la population suit dans son accroissement, Correspond, Math. Phys., vol. 10, 113-121, (1992).
Vihinen M., Mantasala P., Microbial Amylolytic Enzymes, Critical Reviews in Biochemistry and Molecular Biology, vol. 24, 329-418, (1989).
Webb J.L., Enzyme and metabolic inhibitors., Boston: Academic Press. (1963).
Wee Y.J., Kim J.N., Ryu H.W., Biotechnological production of lactic acid and its recent applications, Food Technol. Biotechnol., vol. 44, 163-172, (2006).
Wood B.J.B., Holzapfel W.H., The Genera of Lactic Acid Bacteria, 1st edition. Glasgow, UK: Blackie Academic and Professtional. (1995).
Xiaodong W., Xuan G., Rakshit S.K., Direct fermentative production of lactic acid on cassava and other starches, Biotechnol. Lett. vol. 19, 841-843, (1997).
Yabannvavar V.M., Wang D.I.C., Analysis of mass transfer for immobilized cells in an extractive lactic acid fermentation, Biotechnol. Bioeng., vol. 37, 544-548, (1991).
Yano T., Nakahara T., Kamiyama S., Yamada K., Kinetic studies on microbial activities in concentrated solutions. I. Effect of excess sugars on oxygen uptake rate of a cell-free respiratory sytem, Agr. Brol. Chem., vol. 30, 42-48, (1966).
Yeh P.L.H., Bajpai R.K., Iannotti E.L., An improved kinetic model for lactic acid fermentation, Journal of Fermentation and Bioengineering, vol. 71, 75-77, (1991).
Yoo I.K., Chang H.N., Lee E.G., Chang Y.K., Effect of B vitamin supplementation on lactic acid production by Lactobacilus casei, Journal of Fermentation and Bioengineering, vol. 84, 172-175, (1997).
Yumoto I., Ikeda K., Direct fermentation of starch to L(+)-lactic acid using Lactobacillus amylophilus, Biotechnol. Lett., vol. 17, 543-546, (1995).
Zhang D.X., Cheryan M., Direct fermentation of starch to lactic acid by Lactobacillus amylovorus, Biotechnol. Lett., vol. 13, 733-738, (1991).
Zhang D.X., Cheryan M., Starch to lactic acid in a continuous membrane bioreactor, Process Biochem., vol. 29, 145-150, (1994).
王博彥、金其榮,醱酵有機酸生產與應用手冊,中國輕工業出版社,第2-3頁,(2000)。
朱明毅、郭文法、林靜宜、林麗桂、黃筱萍、陳憲明,天然澱粉高分子之材料特性簡介,化工技術,第12卷,第3期,第144頁,(2004)。沈萍,微生物學,初版,五南出版機構出版,第95-100頁;第178-183頁,(2003)。
徐敬衡,微生物醱酵動力學與數學模型之研究發展,生化工程專刊,化工,第48卷,第5期,(2001)。陳懋彥,台灣地熱區嗜熱性細菌之研究,國立台灣大學植物學研究所博士論文,(2002)。程麗君,饋料批式醱酵之進料策略探討,成功大學化學工程學系博士論文,(2002)。葉例雅,利用Lactobacillus casei在批式及饋料批式方法下產製乳酸並探討醱酵期間成份之變化,中興大學食品暨應用生物科技學系,(2009)。
葉獻彬,生物可降解性聚乳酸高分子之合成與降解性質探討,陽明大學醫學工程所碩士論文,(2001)。曾季清,利用乳酸菌表達大腸桿菌酸性磷酸酶與其在模擬胃道環境之定性討論,中央大學生命科學所碩士論文,(2000)。詹哲豪、林绣茹、顏瑞鴻、池華瑋,簡明微生物學,第五版,華杏出版機構出版,第41-72頁,(2000)。
廖玉潔,酵素分離與化學治療用藥層析分析之探討,成功大學化學工程學系博士論文,(2005)。蘇遠志,黃世佑,微生物化學工程,華香園出版社,第二版,(1999)。