(3.92.96.236) 您好!臺灣時間:2021/05/09 00:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許文嘉
研究生(外文):Wen-Chia Hsu
論文名稱:WO3薄膜氣致色變現象之探討及其在氫氣感測器之應用
論文名稱(外文):Study on the Gasochromic Phenomena of WO3 Thin Films and Their Application to Hydrogen Gas Sensor
指導教授:詹志潔
學位類別:博士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:179
中文關鍵詞:氫氣感測器氣致色變
外文關鍵詞:Hydrogen gas sensorGasochromic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:327
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,主要是利用溶膠凝膠(sol-gel)法將W的前驅物製備成溶膠鍍液。利用旋轉塗佈(spin-coating)技術將鍍液塗佈於玻璃基材上製備成多孔的WO3薄膜,再藉由濺鍍(sputter)法將Pt觸媒覆蓋於WO3薄膜上製成氣致色變元件。
整個實驗規劃是利用田口式實驗計劃法中,L16直交表配置實驗配方,將所測得的數據進行回應表與回應圖計算,求得以Pt層厚度為15 nm、WO3層厚度為700 nm、煅燒溫度於100℃條件下所製備的元件具有最佳效果。
研究中發現我們所製備的氣致色變元件在N2環境下仍有退色現象,而且其退色速度與元件在O2中的速度相當接近,藉此實驗結果建立了一個與常見的反應機制所不同的氣致色變機制。利用化學平衡與質傳理論建構氣致色變的化學平衡及質傳模式,將化學平衡模式與實驗的結果結合,計算出當氣致色變反應達平衡時,形成的HxWO3中H能插層的x值為0.39。在質傳模式中可以模擬出反應中H2、H與HxWO3在薄膜中的擴散情況,另一方面,質傳模擬的結果可以得到整體的氣致色變反應是由H2、H與WO3反應所控制。
最後我們將製備之氣致色變元件應用在光學式氫氣感測器上,並分別檢測元件在不同氫氣濃度著退色時的穿透率與反射率,兩種光學特性在氫氣濃度1 ppm時仍有所變化,實驗所檢測結果繪製出元件光學特性和氫氣濃度之間的關係圖。所以本研究中所製備的氫氣感測器在一般環境下可以檢測10 ppm ~ 100%的氫氣濃度,利用不同的光學特性檢測所繪製的檢量線其線性相關係數(R2 )皆在0.93 ~ 0.99之間,元件的著退色壽命至少有650次,當元件循環次數達到1100次時,元件的著色深度會降低至原來的80%,而應答時間也會增加至4秒。
In this study, we prepared the tungsten trioxide solution with precursor of tungsten by sol-gel method. WO3 tin films were prepared by spin-coating WO3 solution onto glass substrates.
The Taguchi method was adopted to conduct the experiments. Orthogonal array, L16, was used for all experimental designs. After counting the data, response table and response graph and thus the optimum formulation were obtained from the data analysis. The Optimal conditions for experiments were 1. annealed membrance of below 100℃, 2. Pt-thickness of 15 nm, and WO3-thickness of 700 nm.
Coloring and bleaching phenomenon occurred when gasochromic device was in the H2 and N2 gas. The device bleaching were similar rates when it was in the N2¬¬ and O2 gas. A new gasochromic mechanism was established with these results. The chemical equilibrium theory and experimental results were used to establish the chemical equilibrium model. When the gasochromic reaction was at equilibrium, the x value of HxWO3 was 0.39 that calculated by chemical equilibrium model and experimental results. The mass transfer theory was used to construct the mass transfer model.
and mass transfer model were established by theory of chemical equilibrium and mass transfer. When the reaction at equilibrium, the x value of HxWO3 was 0.39 that calculated by chemical equilibrium model and experimental results. In the membrane, Diffusion behavior of H2, H and HxWO3 were comprehended from mass transfer model. We simulated the gasochromic reaction by transfer model. The results show the gasochromic reaction was controlled by reaction of H2, H and WO3.
Gasochromic devices were applied to optical hydrogen gas sensor. Transmittance and reflection of device were detected when the device were in different concentrations. Two optical characters were sill change when hydrogen concentration was at 1 ppm. In this research, optical hydrogen sensor could detect the concentration of H2 from 10 ppm to 100% under general environment. Calibration curves were drawn by different optical characters and their R2 values were between 0.93 and 0.99. The best R2 values of calibration curves were drawn by absorbency, R2 values were 0.99. Life time of device was at least 650 cycles. Device color was decayed to 80% when the cycle arrived at 1100 times. Response time increased to 4 s when cycle passes through 1100 times.
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 XI
符號說明 XVII
第一章 緒論 1
1-1 前言 1
1-2 氣體感測器的簡介 2
1-3 氫氣感測器的類型 3
1-4 半導體氫氣感測器簡介 4
1-5 金屬氧化物氫氣感測器的種類 4
第二章 文獻回顧 10
2-1 氣致色變原理 10
2-2 WO3的介紹 21
2-3溶膠凝膠法原理 26
2-4 金屬半導體氧化物型氣體感測器原理 28
2-5 WO3感測性之相關研究 34
2-6 研究目的與架構 35
第三章 實驗方法 37
3-1 藥品與儀器 37
3-1-1 藥品 37
3-1-2 儀器 38
3-2 實驗步驟 39
3-2-1 Sol-gel 鍍液製備 39
3-2-2 變色元件的製備 40
3-3 塗佈層數對於薄膜之影響 40
3-4 煅燒溫度對於薄膜之影響 40
3-5 不同厚度的觸媒層對於元件效能的影響 41
3-6 紫外-可見光(UV-VIS)光譜分析 41
3-7 薄膜表面結構與膜厚分析 44
3-8 薄膜晶相分析 45
第四章 田口氣致色變元件實驗方法 46
4-1 變因及水準設定 46
4-2 實驗數據處理與分析 62
4-2-1 氣致色變元件效能檢測方法 62
4-2-2 實驗數據分析 66

第五章 氣致色變現象探討與感測器應用 78
5-1 氣致色變反應機制建立 78
5-2 氣致色變化學平衡模式建立 83
5-3 氣致色變之擴散模式建立 96
5-3-1 反應與擴散控制氣致色變模式 96
5-3-2 擴散控制氣致色變模式 115
5-3-3 反應控制氣致色變模式 119
5-4 氫氣感測器之應用 128
5-4-1 穿透式氫氣感測器 128
5-4-2 反射式氫氣感測器 134
5-4-3 元件壽命測試 141
第六章 結論與展望 145
6-1 結論 145
6-2 展望 146
參考文獻 148
附錄一 無觸媒之WO3薄膜於氫氣環境中的穿透率變化 162
附錄二 塗佈1層WO3薄膜經不同溫度煅燒之FE-SEM表面分析 163
附錄三 塗佈1層WO3薄膜經不同溫度煅燒之FE-SEM截面分析 164
附錄四 塗佈1層WO3薄膜經不同溫度煅燒之XRD分析 165
附錄五 塗佈3層WO3薄膜經不同溫度煅燒之FE-SEM表面分析 166
附錄六 塗佈3層WO3薄膜經不同溫度煅燒之FE-SEM截面分析 167
附錄七 塗佈3層WO3薄膜經不同溫度煅燒之XRD分析 168
附錄八 塗佈5層WO3薄膜經不同溫度煅燒之FE-SEM表面分析 169
附錄九 塗佈5層WO3薄膜經不同溫度煅燒之FE-SEM截面分析 170
附錄十 塗佈5層WO3薄膜經不同溫度煅燒之XRD分析 171
附錄十一 塗佈7層WO3薄膜經不同溫度煅燒之FE-SEM表面分析 172
附錄十二 塗佈7層WO3薄膜經不同溫度煅燒之FE-SEM截面分析 173
附錄十三 塗佈7層WO3薄膜經不同溫度煅燒之XRD分析 174
附錄十四 全因子實驗配方 175
[1] 蔡嬪嬪, 曾明漢,材料與社會,68 (1992) 50
[2] 陶德和, 科儀新知,75 (1993) 64
[3] 鄭敦仁, 材料與社會,76 (1993) 96
[4] 葉陶淵, 科儀新知, 24 (1999) 4
[5] G. Sberveglieri, Sensors and Actuators B, 23 (1995) 103-109
[6] 蔡嬪嬪,材料與社會,68 (1992) 67

[7] S. M. Sze, Semiconductor Sensors, John Wiley & Sons, Inc (1994)
[8] K. Ihokura and J. Watson, “The Stannic Oxide Gas Sensor”, CRC ress, Inc. Tokyo, (1994) 3
[9] 張莉毓, 氧化鎢、奈米介孔氧化鎢在NOx 氣體感測器和光致色變之應用, 成功大學材料科學與工程學系研究所 (2005)
[10] T. G. Nenov, S. P. Yordanov, Technomic Publishing Co, Inc (1996)
[11] N. Yamazoe and N. Miura, Sensors and Actuators B, 20 (1994) 95-102
[12] Z. Xu, J. F. Vetelino, R. Lec, D. C. Parker, J. Vac. Sci. Technol. A8 (1990) 3634-3638.
[13] D. J. Dwyer, Sensor and Actuators B, 5 (1991) 155-159.
[14] 邱顯堂, 化工, 38 2 (1991) 74
[15] 何國川, 化工, 37 3 (1990) 32
[16] 楊明長, 化工, 40 2 (1993) 64
[17] A. Azens, G. Gustavsson, R. Karmhag, C. G. Granqvist, Solid State Ionics, 165 (2003) 1-5
[18] B. W. Faughnan, R. S. Crandall, P. M. Heyman, R. C.A. Rev., 36 (1975) 177
[19] H. Qiu, Y. F. Lu, Z.H. Mai, Journal of Applied Physics, 91 (2002) 440
[20] 林宗隆, 氧化鎢、氧化鈦單層膜及多層膜製備及其電致色變特性研究, 東華大學材料科學與工程研究所 (2003)
[21] A.Georg, W. Graf, D. Schweiger, V. Witter, P. Nitz, H. R. Wilson, Solar Energy, 62 3 (1998) 215-228
[22] M. Slaman, B. Dam, H. Schreuders, R. Griessen, International Journal of Hydrogen Energy, 33 ( 2008 ) 1084-1089
[23] S. Bao, K. Tajima, Y. Yamada, M. Okada, K. Yoshimura, Solar Energy Materials & Solar Cells, 92 (2008) 224-227
[24] S. Bao, Y. Yamada, K. Tajima, M. Okada, K. Yoshimura, Vacuum 83 (2009) 486–489
[25] S. Bao, Y. Yamada, K. Tajima, M. Okada, K. Yoshimura, Japanese J. Appl. Phys., 47 10 (2008) 7993-7997
[26] J. Okumu, F. Koerfer, C. Salinga, T. P. Pedersen, M. Wuttig, Thin Solid Films, 515 (2006) 1327-1333
[27] J. Okumu, F. Koerfer, C. Salinga, M. Wuttig, J. Appl. Phys., 95 12 (2004) 7631-7636
[28] E. Maciak, Z. Opilski, M. Urbanczyk, Journal De Physique IV, 129 (2005) 137-141
[29] M. H. Yaacob*, M. Breedon, K. Kalantar-zadeh, W. Wlodarski, Sensors and Actuators B, 137 (2009) 115-120
[30] A. Georg, A. Georg, W. Graf, V. Wittwer, Vacuum, 82 (2008) 730-735
[31] A. Inouye, S. Yamamoto, S. Nagata, M. Yoshikawa, T. Shikama, Nuclear Instruments and Methods in Physics Research B, 266 (2008) 301-307
[32] S. Yamamoto, A. Inouye, M. Yoshikawa, Nuclear Instruments and Methods in Physics Research B, 266 (2008) 802-806
[33] S. Nagata, A. Inouye, S. Yamamoto, B. Tsuchiya, K. Takano, K. Toh, T. Shikama, Journal of Alloys and Compounds, 446-447 (2007) 558-561
[34] S. Yamamoto, K. Takano, A. Inouye, M. Yoshikawa, Nuclear Instruments and Methods in Physics Research B, 262 (2007) 29-32
[35] V. Vitry, F. Renaux, R. Gouttebaron, J.-P. Dauchot, M. Hecq, Thin Solid Films, 502 (2006) 265-269
[36] H. Shanak, H. Schmitt, J. Nowoczin, C. Ziebert, Solid State Ionics, 171 (2004) 99-106
[37] V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, G. Walze, Solar Energy Materials & Solar Cells, 84 (2004) 305-314
[38] Z. Lin, X. Xu, H. Shen, Surface and Coatings Technology, 167 (2003) 217-220
[39] X. Q. Xu, H. Shen, X. Y. Xiong, Thin Solid Films, 415 (2002) 290-295
[40] C. Salinga, H. Weis, M. Wuttig, Thin Solid Films, 414 (2002) 275-282
[41] S. H. Lee, H. M. Cheong, P. Liu, D. Smith, C. E. Tracy, A. Mascarenhas, J. R. Pitts, S. K. Deb, Electrochimica Acta, 46 (2001) 1995-1999
[42] A. Georg, W. Graf, R. Neumann, V. Wittwer, Thin Solid Films, 384 (2001) 269-275
[43] U. O. Krasovec, B. Orel, A. Georg, V. Wittwer, Solar Energy, 68 6 (2000) 541-551
[44] A. Georg, W. Graf, R. Neumann, V. Wittwer, Solar Energy Materials & Solar Cells, 63 (2000) 165-176
[45] B. Orel, U. O. Krasovec, N. Groslj, M. Kosec, G. Drazic, R. Reisfeld, J. Sol-Gel Sci Technol, 14 (1999) 291-308
[46] B. Orel, N. Groslj, U. O. Krasovec, M. Gabrscek, P. Bukovec, R. Reisfeld, Sensors and Actuators B, 50 (1998) 234-245
[47] M. Zayta, R. Reisfeld, H. Minti, B. Orel, F. Svegl, J. Sol-Gel Sci Technol, 11 (1998) 161-168
[48] A. Georg, W. Graf, R. Neumann, V. Wittwer, Solid State Ionics, 127 (2000) 319-328
[49] A. Georg, W. Graf, R. Neumann, V. Wittwer, Solid State Ionics, Thin Solid Films, 384 (2001) 269-275
[50] 王畯閎, 氧化銦錫添加三氧化鎢薄膜之研究, 國立中央大學化學工程與材料工程研究所 (2007)
[51] P. M. Woodward, A. W. Sleight, Journal of Solid State Chem., 131 (1997) 9-17
[52] P. A. Cox, “Transition Metal Oxides”, Clarendon Press, Oxford (1995)
[53] A. Souza-Filho, V. Freire, J. Sasaki, J. Mendes-Filho, J. Juliao, U. Gomes, Journal of Raman Spectroscopy, 31 451 (2000)
[54] S.K. Deb, Appl. Optics supp., 3 (1969) 192
[55] H. Shanak, H. Schmitt, J. Nowoczin, C. Ziebert, Solid State Ionics, 171 (2004) 99
[56] M. Stolze, D. Gogova, L.K. Thomas, Thin Solid Films, 476 (2005) 185
[57] S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski, Sensors and Actuators B, 108 (2005) 154
[58]Nowoczin, H. Shanak, C. Ziebert, H. Schmitt, K.H. Ehses, Original Paper Phys. Sat. Sol. A, 202 (2005) 1073
[59] Z. Lin, X. Xu, H. Shen, Surface and Coatings Tech., 167 (2003) 217.
[60] M. Zayat, R. Reisfeld, H. Minti, B. Orel, F. Svegl, J. Sol-Gel Sci. Tech., 11 (1998) 161
[61] B. Orel, U. Opara Krašovec, N. Grošelj, M. Kosec, G. Drazic , R. Reisfeld, J. Sol-Gel Sci. Tech., 14 (1999) 291
[62] S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S. Takahashi, Sensors and Actuators B, 66 (2000) 142
[63] K. J. Steveson, J. T. Hupp, Electrochem. Solid State Lett., 2 (10) (1999) 497
[64] Y. S. Krasnov, G. Y. Kolbasov, Electrochimica Acta, 49 (2004) 2425
[65] J. J. Feng, J. J. Xu, H. Y. Chen, Electrochem. Commun., 8 (2006) 77
[66] B. Yang, H. Li, M. Blackford, V. Luca, Current Appl. Phys., 6 (2006) 436
[67] 陳瑞琳, 以溶膠凝膠法製備電致色變材料氧化鎢, 逢甲大學化學工程研究所 (2004)
[68] T. Ivanova, K. Gesheva, F. Hamelmann, G. Popkirov, M. Abrashev, M. Ganchev, E. Tzvetkova, Vacuum, 76 (2004) 195–198
[69] P. S. Patil, S. H. Mujawar, A. I. Inamdar, S. B. Sadale, Applied Surface Science, 250 (2005) 117–123
[70] J. M. Ortega, A. I. Martínez, D. R. Acosta, C. R. Magaña, Solar Energy Materials & Solar Cells, 90 (2006) 2471–2479
[71] R. Solarska, B. D. Alexander, J. Augustynski, C. R. Chimie, 9 (2006) 301–306
[72] A. Subrahmanyam, A. Karuppasamy, Solar Energy Materials & Solar Cells, 91 (2007) 266–274
[73] K. Sauvet, A. Rougier, L. Sauques, Solar Energy Materials & Solar Cells, 92 (2008) 209–215
[74] W. Geffcken and E. Berger, Ger. Pat., 736 (1939) 411
[75] B. Jirgensons and M. E. Straumanis, Colloid Chemistry, McMillan Co. New York. (1962)
[76] 蔡裕榮,周禮君, Chemistry SEP, 60 3 (2002) 307-318
[77] P. Hinz and H. J. Dislich, Non-Cryst. Solids, 82 411 (1986) 58
[78] G. J. Brinker and G. W. Scherer, sol-gel processing, Chapter1 (1990)
[79] H. Dislich, , Edited by Lisa C. Klein, Noyes Publications, (1988) 50-56
[80] H. Dislich, P. Hinz, Journal of Non-Cryst. Solids, 48 (1982) 11-16.
[81] S. M. Sze, “Semiconductor sensors”, John Wiley & Sons, NewYork, Chapter1 (1994) 383-410
[82] Y. Shimizu and M. Egashira, MRS. Bulletin, June (1999) 18-24
[83] C.K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, Sensors and Actuators B, 66 (2000) 116–118
[84] K. H. Lee, Y. K. Fang, W. J. Lee, J. J. Ho, K. H. Chen, K. C. Liao, Sensors and Actuators B, 69 (2000) 96–99
[85] T. Weh, M. Fleischer, H. Meixner, Sensors and Actuators B, 68 (2000) 146–150.
[86] M. Fleischer, S. Kornely, T. Weh, J. Frank, H. Meixner, Sensors and Actuators B, 69 (2000) 205–210
[87] T. Kanashima, A. Fujimoto, M. Okuyama, Sensors and Actuators B, 64 (2000) 189–192
[88] J. Deng, W. Zhu, O. K. Tan, X. Yao, Sensors and Actuators B, 77 (2001) 416-420
[89] D. Davazoglou, T. Dritsas, Sensors and Actuators B, 77 (2001) 359-362
[90] K. Scharnagl, M. Eriksson, A. Karthigayan, M. Burgmair, M. Zimmer, Sensors and Actuators B, 78 (2001) 138-143
[91] B. K. Narayanan, S. A. Akbar, P. K. Dutta, Sensors and Actuators B, 87 (2002) 480–486
[92] T. D. Wang, C. L. Ma, X. H. Wu, X. D. Sun, H. D. Li, Sensors and Actuators B, 85 (2002) 270-276
[93] J. Bodzenta, B. Burak, Z. Gace , W. P. Jakubik, S. Kochowski, M. Urbanczyk, Sensors and Actuators B, 87 (2002) 82-87
[94] M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, S. Kanzaki, Thin Solid Films, 419 (2002) 213–217
[95] S. Nakagomi, K. Okuda, Y. Kokubun, Sensors and Actuators B, 96 (2003) 364–371
[96] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. A. Grimes, Sensors and Actuators B, 93 (2003) 338–344
[97] S. Shukla, S. Patil, S.C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, S. Sea, Sensors and Actuators B, 96 (2003) 343–353
[98] W. Shin, M. Matsumiya, F. Qiu, N. Izu, N. Murayama, Sensors and Actuators B, 97 (2004) 344–34.
[99] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, W. C. Liu, Sensors and Actuators B, 99 (2004) 425–430
[100] A. Trinchi, W. Wlodarski, Y.X. Li, Sensors and Actuators B 100 (2004) 94–98
[101] K. Luongo, A. Sine, S. Bhansali, Sensors and Actuators B, 111–112 (2005) 125–129.
[102] S. Kandasamy, A. Trinchi, W. Wlodarski E. Comini, G. Sberveglieri, Sensors and Actuators B, 111–112 (2005) 111–116
[103] S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski, Sensors and Actuators B, 108 (2005) 154–158
[104] C. H. Han, S. D. Han, I. Singh, T. Toupance, Sensors and Actuators B, 109 (2005) 264–269
[105] K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, Sensors and Actuators B, 108 (2005) 973–978
[106] K. Tsukada, T. Kiwa, T. Yamaguchi, S. Migitaka, Y. Goto, K. Yokosawa, Sensors and Actuators B, 114 (2006) 158–163
[107] M. Sakthivel, W. Weppner, Sensors and Actuators B, 113 (2006) 998–1004
[108] D. Ding, Z. Chen, C. Lu, Sensors and Actuators B, 120 (2006) 182–186
[109] M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, O. Ambacher, Sensors and Actuators B, 113 (2006) 797–804
[110] G. N. Chaudhari, A. M. Bende, A. B. Bodade, S. S. Patil, V. S. Sapkal, Sensors and Actuators B, 115 (2006) 297–302
[111] I. J. Kim, S. D. Han, C. H. Han, J. Gwak, D. U. Hong, D. Jakhar, K. C. Singh, J. S. Wang, Sensors and Actuators B, 127 (2007) 441–446
[112] O. Lupan , G. Chai, L. Chow, Microelectronics Journal 38 (2007) 1211–1216.
[113] J. Zhang, W. Luan, H. Huang, Y. Qi, S. T. Tu, Sensors and Actuators B, 128 (2007) 266–272
[114] L. Yadav, N. C. Gupta, R. Dwivedi, R. S. Singh, Microelectronics Journal 38 (2007) 1226–1232
[115] A. Z. Adamyan, Z. N. Adamyan, V. M. Aroutiounian, A. H. Arakelyan, K. J. Touryan, J. A. Turner, International Journal of Hydrogen Energy, 32 (2007) 4101 – 4108
[116] C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, K. C. Singh, Sensors and Actuators B, 128 (2007) 320–325
[117] N. N. Samotaev, A. A. Vasiliev, B. I. Podlepetsky, A. V. Sokolov, A. V. Pisliakov, Sensors and Actuators B, 127 (2007) 242–247
[118] L. F. Houlet, W. Shin, M. Nishibori, N. Izu, T. Itoh, I. Matsubara, Sensors and Actuators B, 129 (2008) 1–9
[119] Z. Zhao, M. Knight, S. Kumar, E. T. Eisenbraun, M. A. Carpenter, Sensors and Actuators B, 129 (2008) 726–733
[120] C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, L. Y. Chen, K. Y. Chu, W. C. Liu, Sensors and Actuators B, 128 (2008) 574–580
[121] H. Huang, W. Luan, J. S. Zhang, Y. S. Qi, S. T. Tu, Sensors and Actuators B, 128 (2008) 581–585
[122] A. Chtanov, M. Gal, Sensor and Actuator B, 79 (2001) 196-199
[123] S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T Shigemori, S. Takahashi, Sensors and Actuators B, 66 (2000) 142–145
[124] K. Ihokura, J. Watson, “The Stannic Oxide Gas Sensor”, CRC Press, (1994) 1-9
[125] N. Yamazoe and N. Miura, “Environmental gas sensing“, Sensors and Actuators B, 20 (1994) 95-102
[126] W. C. Hsu, C. C. Chan, C. H. Peng, C. C. Chang, Thin Solid Films 516 (2007) 407–411
[127] 周金淑, 葉信宏, 工業材料雜誌, 150 (1999) 168-172
[128] P. W. Atkins, Physical Chemistry, 5th ed., Oxfpr University Press, Oxford, (1994) 545
[129] 蘇朝墩, 產品穩健設計, 1997
[130] P. Camagni, A. Manara, G. Campagonli, A. Gustinetti, A. Stella, Phy. Rev. B, 15 (1977) 4623-4630
[131] F. Consadori, A. Stella, Lett. Nuovo Cimento, 3 (1907) 600-603
[132] P. G. Dickens, R. M. P. Quilliam, M. S. Whittingham, Mater. Res. Bull. 3
[133] S. Fujieda, Sci. Light (Tokyo), 18 (1969) 1-32
[134] D. W. Lynch, R. Rosei, J. H. Weaver, C.G. Olson, J. Solid Stat Chem., 8 (1987) 130-137
[135] J. F. Owen, K. J. Teegarden, H.R. Shanks, Phys. Rev. B, 18 (1978) 3827-3837
[136] J. F. Scott, R. F, Reheny, J. P. Remeika, A. R. Sweedler, Phys. Rev. B, 2 (1970) 3883-3887
[137] G. H. Taylor, J. Solid State Chem., 1 (1969) 359-367
[138] P. G. Dickens, M.S. Whittinggham, Quart. Rev. Chem. Soc., 22 (1968) 30-44
[139] J. B. Goodenough, in Progress in Solid State Chemistry, edited by H. Reiss (Pergamon, Oxford, 1971) Vol. 5, 145-399
[140] G. G. Granqvist, Handbook of Inorganic Electrochromic Materials, (1995)
[141] B. Ampe, J.M. Le Roy, D. Thomas, G. Tridot, Rev. Chim Minérale, 5 (1968) 801-812
[142] J. Chevrier, G. Siclet, Bull. Soc. Chim., (1976) 1037-1042
[143] P. G. Dickens, R. J. Hurditch, Nature, 215 (1967) 1266-1267
[144] O. Glemser, C. Naumann, Z. Allg. Anorg. Chem., 265 (1951) 288-302
[145] R. S. Crandall, B. W. Faughnan, Phys. Rev. Lett., 39 (1977) 232
[146] W. F. Gale, T. C. Totemeier, Smithells Metals Reference Book (8th Edition) (2004)
[147]J. F. Scott, R. F, Reheny, J. P. Remeika, A. R. Sweedler, Phys. Rev. B, 2 (1970) 3883-3887
[148] G. H. Taylor, J. Solid State Chem., 1 (1969) 359-367
[149] 詹志傑,張忠傑,許文嘉,彭嘉祥,氣體感測器,中華民國專利發明第TWI303310號
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔