(3.235.245.219) 您好!臺灣時間:2021/05/07 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊碩
研究生(外文):CHUN-SHUO CHEN
論文名稱:PS球大小及金屬塩(氧化物)修飾對PS光子晶體光學特性影響之研究
論文名稱(外文):Study of PS size and metal salt (oxide) modification on the optical properties of PS photonic crystals
指導教授:詹志潔
指導教授(外文):Chih-Chieh Chan
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:光子晶體反光子晶體蛋白石
外文關鍵詞:opalphotonic crystalsinverse photonic crystals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用聚苯乙烯(PS)球以膠體粒子的自組裝技術來製作蛋白石結構的三維光子晶體,並且以矽酸鈉、五氧化二釩、鎢酸鈉三種金屬塩修飾光子晶體的光學特性,並進一步應用於製備反光子晶體。
使用FESEM對製備之PS球光子晶體進行分析,結果顯示出晶體內部呈現規則的排列,再藉由UV-VIS光譜儀對PS球光子晶體、修飾PS球光子晶體及反光子晶體進行反射率量測,結果顯示不同尺寸PS球光子晶體的特徵波長與PS球尺寸成正比,其關係式為λc =4.6808r;在修飾PS球光子晶體的部份,以不同金屬塩修飾的光子晶體有不同程度的紅位移現象,並且可以利用金屬塩的濃度控制光子晶體紅位移的程度,其中以340 mm的PS球最為顯著,修飾前特徵波長為795 mm,以Na2O7Si3修飾後為890 mm。
此外,本研究製程所得到的修飾PS球光子晶體,利用高溫移除膠體模板,可得到以金屬氧化物為骨架的反光子晶體結構。本實驗成功製備以SiO2、WO3為骨架的反光子晶體結構,並以UV-VIS光譜儀進行反射率量測,與原本的光子晶體做比較,結果在短波長的方向有測量到完全不同的特徵波長,SiO2反光子晶體鍛燒前特徵波長為890 mm,鍛燒後約為556 mm,WO3反光子晶體鍛燒前特徵波長為852 mm,鍛燒後約為630 mm。
In the present study, Opaline structures of 3-dimensional PS photonic crystals were prepared via self-assembly method by using five different sizes (150nm, 230nm, 290nm, 320nm and 425nm) of PS microspheres. We added three kinds of metal salts (SiO2 ,WO3 and V2O5) into the PS microsphere, respectively, to modify photonic crystals, which could be use manufacture inverse photonic crystals.
A detailed analysis of the FESEM images verified that the prepared PS photonic crystals were self-assembled into highly ordered crystalline structure. UV-Vis analysis showed that the prepared opaline structural photonic crystals exhibit very strong photonic bandgaps around 349nm, 552nm, 673nm, 746nm and 795nm with the PS size of 150nm,230nm,290nm,320nm and 340nm, respectively. According to there raw results, photonic bandgaps are directly proportional to PS size which is represented by the equation λc=4.6808r.
During the modification on photonic crystals, we used three kinds of metals salt to modify photonic crystals. Adding different salts produce different red-shift levels. Furthermore, the red-shift level could be controlled by the concentration of metal salt. It turns out that the PS size 340nm is obvious. Before modification, the photonic bandgap is 795nm, while it became 890nm after modified by Na2O7Si3.

We found out the colloidal template inside modified photonic crystals could be removed by calcine in this research. Then we could get inverse photonic crystals that were made by metal oxide.
In our study, we got inverse photonic crystals made by SiO2 and WO3. Compared with modified photonic crystals, inverse photonic crystals showed totally different photonic bandgaps.
The SiO2 modification photonic crystals was 890nm while the SiO2 inverse photonic crystals is 556nm.
The WO3 modification photonic crystals was 852nm while the WO3 inverse photonic crystals is 630nm.
第1章 緒論...........................................1
1.1. 前言...........................................1
1.2. 光子晶體簡介...................................3
1.3. 自然界的光子晶體...............................4
1.4. 人造光子晶體...................................6
1.5. 光子晶體的光學性質.............................8
1.6. 反蛋白石結構..................................10
第2章 文獻回顧......................................11
2.1. 自然沉降法(Sedimentation method)..............11
2.2. 高速離心法(Centrifugal method)................15
2.3. 毛細吸引力法(Attractive capillary force)......16
2.4. 有限空間排列法(Physical confinement method)...20
2.5. 電泳沉澱法(Electrophoretic deposition method).23
2.6. 熱對流法(Heat convective flow method).........25
2.7. 電場可逆法(Electric field-reversible method)..26
2.8. 界面成長法(Growth at an interface)............28
2.9. 強化毛細力法..................................30
2.10. 實驗動機與目的................................32
第3章 研究方法......................................33
3.1. 實驗藥品......................................33
3.2. 實驗器材......................................35
3.3. 實驗架構......................................35
3.4. 實驗步驟......................................36
3.4.1. 基材前處理....................................36
3.4.2. 製備光子晶體..................................37
3.4.3. 金屬塩水溶液..................................39
3.4.4. 修飾PS球光子晶體..............................40
3.4.5. 製備反光子晶體................................41
3.5. 物理特性分析..................................43
3.5.1. 冷場發射掃描式電子顯微鏡......................43
3.5.2. 紫外-可見光光譜儀.............................44
第4章 結果與討論....................................45
4.1. 光子晶體特性分析..............................45
4.2. 修飾PS球光子晶體..............................60
4.2.1. 固含量對修飾PS球光子晶體的影響................60
4.2.2. PS球尺寸對修飾PS球光子晶體的影響..............66
4.2.3. 金屬塩種類對修飾PS球光子晶體的影響............70
4.2.4. 金屬塩濃度對PS球光子晶體的影響................81
4.3. 反光子晶體光體................................85
第5章 結論與未來展望................................93
5.1. 結論..........................................93
5.2. 未來展望......................................94
參考文獻...............................................95
誌謝...................................................98
1.J. Bardeen, W. H. Brattain, “The transistor, a semiconductors triode”, Phys. Rev., 71,230(1948).
2.P. N. Noyce, “Semiconductor device-and-lead structure”, U. S. Patent 2, 981, 877(filed 1959, granted 1961).
3.王世凱,應用葡萄汁染料敏化TiO2太陽能電池之研究,逢甲大學化工系(2007)。
4.E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics andelectronics”, Physical Review Letters, 58, 2059(1987).
5.S. John, “Strong localization of photons in certain disordered dielectric superlattices”,Physical Review Letters, 58, 2486(1987).
6.http://nano.nchc.org.tw/
7.鍾儀文,以膠體製程製備光子晶體及其性質之探討,國立成功大學材料科學及工程學系(2006)。
8.董繼堯,空氣式超音波對SiO2粒子組裝的影響,國立清華大學化工系(2004)。
9.行政院國家科學委員會
10.丁效強,光子晶體抗反射膜研究,國立中央大學,光電科學系(2005)。
11.L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth,J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P.Vigneron, “Role of Photonic-Crystal-Type Structures in the Thermal Regulation of a Lycaenid Butterfly Sister Species Pair,” Phys. Rev. E 67, 021907(2003).

12.E. Pennisi, “Naturalist''s Surveys Show That British Butterflies AreGoing, Going...,” Science 303, 1747(2004).
13.S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 89, 605(2002).
14.逢甲大學化工系界面化學實驗室,張忠傑提供。
15.P. G. Hewitt, “Conceptual physics, eighth edition”, Addison & Wesley, New York,Chapter 27, P496 (1998).
16.T. Taton, D. Norris, “Defective promise in photonics”, Nature, 416,685(2002).
17.P. G. Hewitt, “Conceptual physics, eighth edition”, Addison & Wesley, New York, Chapter 27,P496(1998).
18.M. Muller, R. Zentel, T. Maka, S. G. Romanov, C. M. S. Torres,“Dye-containing polymer beads as photonic crystals”,Chemistry of Materials, 12, 2508(2000).
19.O.Vickreva, O. Kalinina, E. Kumacheva,“Colloid Crystal Growth under Oscillatory Shear” Advanced Materials, 12, 110-112(2000).
20.Y. Xia, B. Gates, Y. Yin, Y. Lu “Monodispersed Colloidal Spheres: Old Materials with New Applications” Advanced Materials, 12, 693-713 (2000).
21.J. E. G. J. Wijnhoven, W. L. Vos;,“Preparation of Photonic Crystals Made of Air Spheres in Titania” Science, 281, 802-804(1998).
22.A. S. Dimitrov, T. Miwa, K. Nagayama,“A Comparison between theOptical Properties of Amorphous and Crystalline Monolayers of Silica Particles”Langmuir, 15, 5257-526(1999).
23.A. S. Dimitrov, C. D. Dushkin, H. Yoshimura, K. Nagayama,”Observations of Latex Particle Two-Dimensional-Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica” Langmuir, 10, 432-440(1994)
24.S. H. Park, D. Qin, Y. Xia, “Crystallization of Mesoscale Particles over Large Areas” Advanced Materials, 10, 1028-1032 (1998).
25.M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C.J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, C. López “Electrophoretic Deposition to Control Artificial Opal Growth” Langmuir, 15,4701-4704 (1999).
26.Q.-B. Meng, Z.-Z. Gu, O. Sato, A. Fijushima, “Fabrication of Highly Ordered Prous Sructures” Appl. Phys. Lett., 77, 4313-4315 (2000).
27.Y. A. Vlasov, X-Z. Bo, J. C. Sturm, D. J. Norris “ On-chip NaturalAssembly of Silicon Photonic Bandgap Crystals” Nature, 414, 289-293 (2001).
28.T. Gong, D. T. Wu, D. W. M. Marr “Electric Field-Reversible Three-Dimensional Colloidal Crystals” Langmuir, 19, 5967-5970 (2003).
29.S. H. Im, Y. T. Lim, D. J. Suh, O. O. Park “Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals”Advanced Materials, 14, 1367-1369 (2002).
30.D. E. Newbury, D. C. Joy, P. Echlin, C. Fiori and J. I. Goldstein,Advanced Scanning Electron Microscopy and X-rayMicroanalysis, Plenum Press, New York(1986).
31.J. I. Goldstein, D. E. Newbury, P. Echlin, D.C. Joy, A. D. Romig,C. E. Lymen, C. Fiori and E. Lifshin, Electron Microscopy and X-ray Microanalysis, Wiley, London(1992).
32.F. Gracia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractiveindex properties of calcined silica submicrometer spheres”, Langmuir,18, 1942(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔