(3.236.122.9) 您好!臺灣時間:2021/05/12 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇偉昌
研究生(外文):Wei-chang Su
論文名稱:以微波法進行纖維物質水解以應用於生物產氫之研究
論文名稱(外文):Hydrolysis of cellulosic biomass with microwave irradiation and application in biohydrogen
指導教授:林屏杰李國興李國興引用關係
指導教授(外文):Ping-jie LinKuo-shing Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:178
中文關鍵詞:微波消化器蔗渣稻稈柳杉酸水解生物產氫
外文關鍵詞:microwave digestion systembagasserice strawcryptomeriaacid hydrolysisbio-hydrogen
相關次數:
  • 被引用被引用:6
  • 點閱點閱:516
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微波來促進纖維物質(柳杉、稻稈、蔗渣)酸水解,分別探討一階段及二階段(先經鹼處理)水解之最適操作條件,隨後再以最佳水解條件所得水解液進行批次醱酵產氫試驗。
在一階段微波水解中,柳杉最佳水解條件為以0.49%硫酸(pH 1.0)進行操作,在固/液比15/100、溫度180℃維持20 min、以及添加氯化鈉7 g/l之條件下,獲致總糖及還原糖產率分別為0.227及0.226 g/g cryptomeria。稻稈最佳水解條件為以0.49%硫酸(pH 1.0)進行操作,在固/液比15/100、溫度180℃維持5 min、以及不添加氯化鈉之條件下,獲致總糖及還原糖產率分別為0.334及0.332 g/g rice straw。蔗渣最佳水解條件為以0.49%硫酸(pH 1.0)進行操作,在固/液比10/100、溫度150℃維持20 min、以及不添加氯化鈉之條件下,獲致總糖及還原糖產率分別為0.409及0.385 g/g bagasse。
在二階段微波水解中,柳杉先以0.2% NaOH進行微波前處理(固/液比15/100,180℃,30 min),而後再進行微波硫酸水解(固/液比10/100,180℃,20 min),獲致總糖及還原糖產率分別為0.255及0.220 g/g cryptomeria。稻稈鹼處理後再進行微波硫酸水解(固/液比10/100,180 ℃,5 min),獲致總糖及還原糖產率分別為0.320及0.319 g/g rice straw。
在醱酵產氫試驗方面,一階段微波酸水解液經過量鹼處理後均可有效轉化成氫氣。其中柳杉及蔗渣以磷酸水解液可獲致最大氫氣產率,分別為5.22及4.91 mmol H2/g total sugar。而稻稈以鹽酸水解液可獲致最大氫氣產率4.02 mmol H2/g total sugar。在二階段微波酸水解液醱酵產氫試驗中,經過量鹼處理之柳杉及稻稈之水解液,其氫氣產率分別為5.56及5.51 mmol H2/g total sugar。
In this study, the microwave irradiation was used to promote the hydrolysis of cellulosic material (cryptomeria, rice straw, and bagasse) in various acid solutions (hydrochloric acid, sulfuric acid, phosphoric acid). One- and two-stage (preatreatment with alkaline solution) hydrolyses were investigated to obtain the optimal operation condition. Sequentially, the hydrolysate obtained under the optimum conditions was used as the feedstock to produce H2 in a batch experiment.
For one-stage microwave hydrolysis, the optimum hydrolysis conditions for cryptomeria were 0.49% sulfuric acid (pH 1.0) at a solid/liquid ratio of 15/100, 180℃ for 20 min, and addition of 7 g/l NaCl. The yields of total sugar and reducing sugar were 0.227 and 0.226 g/g cryptomeria, respectively. For rice straw, the optimum hydrolysis conditions were 0.49% sulfuric acid at a solid/liquid ratio of 15/100, 180℃ for 5 min, and without NaCl addition. The yields of total sugar and reducing sugar were 0.334 and 0.332 g/g rice straw, respectively. The optimum hydrolysis conditions for bagasse were 0.49% sulfuric acid at a solid/liquid ratio of 10/100, 150℃ for 20 min, and without NaCl addition. The yields of total sugar and reducing sugar were 0.409 and 0.385 g/g bagasse, respectively.
For two-stage microwave hydrolysis, cryptomeria was pretreated using microwave irradiation (solid/liquid ratio 15/100 and 180℃ for 30 min) in 0.2% NaOH solution; afterward the pretreated cryptomeria proceeded microwave sulfuric acid hydrolysis (solid/liquid ratio 10/100 and 180℃ for 20 min). The results showed that the yields of total sugar and reducing sugar were 0.255 and 0.220 g/g cryptomeria, respectively. For rice straw, the yields of total sugar and reducing sugar were 0.320 and 0.319 g/g rice straw, respectively, with two-stage microwave hydrolysis (in H2SO4 solution, solid/liquid ratio 10/100, and 180℃ for 5 min).
In biohydrogen production experiment, hydrolysate from one-stage microwave-acid hydrolysis via overliming treatment could be transform into hydrogen efficiently. The hydrolysates of cryptomeria and bagasse with phosphoric acid hydrolysis obtained the maximum hydrogen yield of 5.22 and 4.91 mmol H2/g total sugar, respectively. For rice straw, the hydrolysate with hydrochloric acid hydrolysis got the maximum hydrogen yield of 4.02 mmol H2/g total sugar. For hydrogen production from hydrolysate with two-stage microwave-acid hydrolysis and overliming treatment, cryptomeria and rice straw hydrolysates gained a yield of 5.51 and 5.56 mmol H2/g total sugar, respectively.
摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 2
1-3 實驗架構 2
第二章 原理與文獻回顧 4
2-1 生質能源 4
2-2 木質纖維素 4
2-2-1 纖維素 4
2-2-2 半纖維素 6
2-2-3 木質素 8
2-3 微波 8
2-3-1 微波加熱原理 8
2-3-2 微波加熱與傳統加熱法之比較 9
2-3-3 微波技術的應用 10
2-4 纖維物質水解 12
2-4-1 化學方法 12
2-4-1-1 濃酸水解 12
2-4-1-2 稀酸水解 12
2-4-2 物理方法 12
2-4-2-1 蒸氣爆破 12
2-4-2-2 水熱法 13
2-4-2-3 氨水前處理 13
2-4-3 酵素水解 14
2-4-3-1 內切型纖維素分解酵素 14
2-4-3-2 外切型纖維素分解酵素 14
2-4-3-3 β-葡萄糖酵素(β-glucosidase) 15
2-4-4 聚木糖酵素水解 15
2-4-4-1 Endo-β-1,4-xylanase (E.C.3.2.1.8) 15
2-4-4-2 β-1,4-xylosidase (E.C.3.2.1.37) 15
2-4-4-3 α-L-Arabinofuranosidases (E.C.3.2.1.55) 15
2-4-4-4 α-D-Glucuronidase (E.C.3.2.1.1) 16
2-4-4-5 Acetylxylan esterase (E.C.3.1.1.6)和Phenolic acid esterases 16
2-5 酸水解副產物去除方法 16
2-5-1 醱酵抑制因子 16
2-5-1-1 糠醛和羥甲基糠醛的抑制作用 16
2-5-1-2 乙酸的抑制作用 18
2-5-1-3 木質素降解產物 18
2-5-2 抑制物去除方法 19
2-5-2-1 物理方法 19
2-5-2-2 化學方法 20
2-5-2-3 生物方法 21
2-5-2-4 混合方法 21
2-6 厭氧污泥發酵產氫 22
2-6-1 厭氧產氫微生物特性 25
2-6-2 Clostridium之特性 26
2-6-3 厭氧醱酵之環境因子 28
2-6-3-1 溫度 28
2-6-3-2 pH 28
2-6-3-3 營養鹽 28
2-6-3-4 毒性物質 32
2-6-3-5 攪拌之影響 34
2-6-3-6 基質與產物濃度 34
2-6-3-7 ORP 35
2-6-3-8 氫分壓 35
2-6-3-9 氫氣產率(yield) 35
2-6-4 厭氧醱酵代謝途徑 36
2-6-4-1 葡萄糖厭氧醱酵途徑 36
2-6-4-2 木糖的醱酵途徑 37
2-7 Gompertz修正模式 39
2-8 文獻回顧 39
第三章 實驗材料及方法 44
3-1 藥品試劑與培養基 44
3-1-1 碳源 44
3-1-2 緩衝鹽類 44
3-1-3 無機鹽類 44
3-1-4 其他 44
3-2 分析儀器及方法 45
3-2-1 氣體組成分析 45
3-2-2 液體組成分析 46
3-2-3 菌量分析 46
3-2-4 總糖分析 46
3-2-5 還原糖分析 47
3-3 纖維物質微波酸水解實驗裝置與方法 48
3-3-1 實驗裝置 48
3-3-2 不同酸濃度與氯化鈉濃度微波水解試驗 49
3-3-2-1 不同鹽酸濃度微波水解試驗試驗 49
3-3-2-2 不同氯化鈉濃度微波水解試驗 49
3-3-3 一階段微波酸水解 49
3-3-3-1 柳杉微波酸水解 49
3-3-3-2 稻稈微波酸水解 50
3-3-3-3 蔗渣微波酸水解 52
3-3-4 二階段微波酸水解 53
3-3-4-1 以不同氫氧化鈉濃度進行柳杉微波前處理 53
3-3-4-2 以不同氫氧化鈉濃度進行稻稈微波前處理 54
3-3-5 水解產率 54
3-4 批次產氫實驗裝置與方法 54
3-4-1 儀器裝置 54
3-4-2 產氫菌來源 55
3-4-3 培養基濃度 55
3-4-4 纖維物質直接醱酵產氫實驗 56
3-4-5 水解液直接醱酵產氫實驗 56
3-4-6 水解液經過量鹼處理醱酵產氫實驗 57
3-4-7 修正型Gompertz Model模式探討 57
3-4-8 氫氣產率 (yield) 58
第四章 結果與討論 59
4-1 酸與氯化鈉濃度對微波水解之影響 59
4-1-1 不同鹽酸濃度對微波水解之影響 59
4-1-2 不同氯化鈉濃度對微波水解之影響 61
4-2 一階段微波酸水解實驗 61
4-2-1 柳杉之不同酸液微波水解實驗 62
4-2-1-1 以鹽酸水解實驗 62
4-2-1-2 以硫酸水解實驗 66
4-2-1-3 以磷酸水解實驗 70
4-2-1-4 柳杉之不同酸水解效率評比 74
4-2-2 稻稈不同酸微波水解實驗 75
4-2-2-1 以鹽酸水解實驗 75
4-2-2-2 以硫酸水解實驗 79
4-2-2-3 以磷酸水解實驗 83
4-2-2-4 稻桿之不同酸水解效率評比 87
4-2-3 蔗渣不同酸微波水解實驗 88
4-2-3-1 以鹽酸水解實驗 88
4-2-3-2 以硫酸水解實驗 92
4-2-3-3 以磷酸水解實驗 96
4-2-3-4 蔗渣之不同酸水解效率評比 100
4-3 二階段微波酸水解實驗 101
4-3-1 以不同氫氧化鈉濃度進行柳杉微波前處理 102
4-3-1-1 鹼處理後以固/液比15/100進行硫酸水解 102
4-3-1-2 鹼處理後以固/液比10/100進行硫酸水解 103
4-3-2 以不同氫氧化鈉濃度進行稻稈微波前處理 104
4-3-2-1 鹼處理後以固/液比15/100進行硫酸水解 104
4-3-2-2 鹼處理後以固/液比10/100進行硫酸水解 105
4-3-3 一階段與二階段微波水解效率評比 107
4-4 纖維物質一階段微波水解液批次產氫實驗 108
4-4-1 葡萄糖與木糖醱酵產氫實驗 108
4-4-2 纖維物質直接醱酵產氫實驗 110
4-4-3 纖維物質水解液直接醱酵產氫實驗 111
4-4-3-1 柳杉水解液直接醱酵產氫實驗 111
4-4-3-2 稻稈水解液直接醱酵產氫實驗 114
4-4-3-3 蔗渣水解液直接醱酵產氫實驗 116
4-4-4 纖維物質水解液經過量鹼處理後再行醱酵產氫 119
4-4-4-1 柳杉水解液醱酵產氫實驗 120
4-4-4-2 稻稈水解液醱酵產氫實驗 123
4-4-4-3 蔗渣水解液醱酵產氫實驗 125
4-4-5 水解液未處理與經鹼處理之產氫效率評比 128
4-5 纖維物質二階段微波水解液批次產氫實驗 129
4-5-1 水解液直接醱酵產氫 129
4-5-2 水解液經過量鹼處理後再行醱酵產氫 130
4-5-3 一階段與二階段微波水解液之產氫效率評比 132
第五章 結 論 134
參考文獻 137
附錄一 146
附錄二 150
附錄三 154
附錄四 157
致 謝 163
Adams MWW. 1990. The metabolism of hydrogen by extremely thermophilic sulphur-dependent bacteria. FEMS Microbiol Rev 75:219-238.
Aguilar R, Ramírez JA, Garrote G, Vázquez M. 2002. Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng, 55:309-318.
Alves LA, Felipe MGA, Silva, JB. 1998. Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem and Biotech 70-72, 89-98.
Amartey S, and Jeffries T. 1996. An improvement in Pichia stipitis fermentation of acid-hydrolysated hemicellulose achieved by overliming(calcium hydroxide treatment)and strain adaptation. World J Microbiol. Biotechnol 12:281-283.
Anuj KC, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P. 1996. Economice and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Review 2(1):14-31.
Azuma J, Tanaka F, Koshijima T. 1984. Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. Ferment Technol 62(4):377-384.
Banerjee N, Bhatnagar R, and Viswanathan L. 1981. Development of resistance in Saccharomyces cerevisiage against inhibitory effects of browning reaction production. Enzyme Microb Technol 3:24-28.
Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol. 13:25-58.
Bernfeld P. 1955. Amylases alpha and beta. In: Colowick, S.P. and Kaplan, O.N., Editors, Methods in Enzymology, Academic Press, New York, 140–146.
Biely P. 1985. Microbial xylanolytic systems. Trends. Biotechnol 3:286-290.
Boopathy R, Bokang H, Daniels L. 1993. Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol 11:147-150.
Bouveng HO. 1961. Phenylisocyanate derivatives of carbohydrates. II. Location of O-acetyl groups in brich xylan. Acta. Chem. Scand 15:96-100.
Bustos G, Ramírez JA, Garrote G, Vázquez M. 2003. Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid. Appl Biochem biotech. 104:51-68.
Chandel AK, Kapoor RK, Singh A, Kuhad RC. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technol. 98:1947-1950.
Chiang Y, Chiang P, and Huang C. 2001. Effects of pore structure and temperature on voc adsorption on activated carbon. Carbon 39:523-534.
Christov LP, Prior BA. 1993. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microbiol Technol 15: 460-475.
Cohen A, Gemert JM, Zoetemeyer RJ, Breure AM. 1984. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters. Proc Biochem 19:228-232.
Converti A, Perego P, Dominguez JM. 1992. Xylitol production from hardwood hemiccellulose hydrolysates by Pachysolen tannophilus, Debaryomyces hansenii and Candida guilliermondii. Appl Biochem Biotechnol 82:141-151.
Cosgrove DJ. 1998. Cell Walls: Structures, Biogenesis, and Expansion. Plant Physiolog 409-443.
Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13-28.
Datar R, Huang J, Maness PC, Mohagheghi A, Czernik S, Chornet E. 2007. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 32:932-939.
Delgenes J, Moletta R, and Navarro JM. 1996. Effect of lignocellulose degradation products on ethanol fermentation of glucose and xylose by Saccharomyces cerevisiage, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme Microb Technol 19:220-225.
Endo G, Noike T, and Matsumoto J. 1982. Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic disgestion. Proc Soc Civ Engrs 325:61-68.
Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ. 2006. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technol 97:500-505.
Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M. 2006. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74: 78-88.
Gottschalk G. 1986. Bacterial Metabolism. Spring-Verlag New York. 1-11. 208-282.
Gurgel PV, Mancillha IM, Pecanha RP. 1995. Xylitol recovery from fermented sugarcane bagasse hydrolysate. Bioresource Technol. 52:219-223.
Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. 2002. Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27:1339-1347.
Hazlewood GP, Gilbert HJ. 1993. Molecular biology of hemicellulases. Hemicelluloses and Hemicellulases 103.
Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR. 2009. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresource Technol 100:1238-1245.
Jonsson LJ, Palmqvist E, and Nilverbrant NO. 1998. Detoxicifation of wood hydrolysates with laccase and peroxidase from white-rot fungus Trametes versicolor. Appl Microbiol. Biotechnol 49:691-697.
Kadam KL, Forrest LH, Jacobson WA. 2000. Rice straws lignocellulosic resource : collection, processing, transportation, and environmental aspects. Biomass and Bioeng 18:369-389.
Karimi K, Kheradmandinia S, Taherzadeh MJ. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenerg 30: 247-253.
Kim KH, Tucker M, Nguyen Q. 2005. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresource Technol 96:1249-1255.
Kim KH. 2005. Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable bt ethanologenic microorganisms. J Sci Food Agric 85:2461-2467.
Kitchaiya P, Intanakul P, Krairish M. 2003. Enhance of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Wood Chem Technol 23(2):217-225.
Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC. 1995. Increased Hydrogen Production by Immobilized Microorganisms. World J Microbiol Biotechnol 11: 156-159.
La-Grange DC, Claeyssens M, Pretorius IS, Van-Zyl WH. 2000. Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta-xylanase-2 (xyn2) gene in the yeast Saccharomyces cerevisae. Appl Microbiol. Bitechnol 54:195-200.
Larsson S, Reimann A, Nilvebrant N. 1999. Comparison of different methods for the detoxification of lignocellulose hydrolysate of spruce. Appl Biochem Biotech 77-79, 91-103.
Lawford HG, Rousseau JD. 1998. Improving fermentatipn performance of Recombinant Zymomonas in acetic acid-containing media. Appl Biochem Biotech 70-72, 161-172.
Lee RL, Charles EW, Tillman UG. 1999. Biocommodity engineering. Biotechnol Prog 15:777-793.
Leonard RH, Hajny GJ. 1945. Fermentation of wood sugars to ethyl alcohol. Ind Eng Chem, 37:390-395.
Levin DB, Pitt L, Love M. 2004. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173-185.
Lindberg B, Rosell KG, Svensson S. 1973. Position of O-acetyl groups in birch xylan. Svensk Papperstid 76:30-32.
Lo YC, Bai MD, Chen WM, Chang JS. 2008. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresource Technol 99:8299-8303.
Lo YC, Saratale GD, Chen WM, Bai MD, Chang JS. 2009. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb Tech 44:417-425.
Lu X, Zhang Y, Angelidaki I. 2009. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresource Technol 100:3048-3053.
Martinez A, Rodriguez ME, York SW. 2001. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress 17:193-287.
Martinez A, Rodriguez ME, and York SW. 2000. Effect of Ca(OH)2 treatments(“overliming”)on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol and Bioeng 69:526-536.
McCarty PL. 1964. Anaerobic waste treatment fundamentals- part three: Toxic materials and their control. Public Works 95:91-94.
Morales P, Sendra JM, Perez-Gonzalez JA. 1995. Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis. Appl Microbiol Biotechnol 44:112-117.
Mussatto SI, and Roberto IC. 2004. Alternative for detoxification of diluted-acid lignocellulosic hydrolysates for use in fermentative processes:a review. Bioresource Technol 93:1-10.
Neas ED, Collins MJ. 1988. Microwave heating theoretical concepts and equipment design, Introduction to microwave sample preparation, 7-32.
Nguyen TD, Han SJ, Kim JP, Kim MS, Oh YK, Sim SJ. 2008. Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int J Hydrogen Energy 33:5161-5168.
Nigam JN. 2001a. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17-27.
Nigam JN. 2001b. Development of xylose-fermenting yeast Pichia stioitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208-215.
Nigam JN. 2002. Bioconversion of water-hyacinth (Eichhorniacrassipes) Hemicellulose acid hydrolysate to motor fuel ethanol by xylose-Fementing yeast. J Biotechnol. 97:107-116.
Olsson L, Hahn-Hagerdal B. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Tech 18: 312-331.
Ooshima H, Aso K, Harano Y. 1984. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol Lett 6(5):289-294.
Ooshima H, Burns UF, Converse AO. 1990. Adsorption of cellulose from Trichoderma ressei on cellulose and lignaceous residue in wood pretreatment by dilute sulfuric acid with explosive decompression. Biotechnol Bioeng 36:446-452.
Orozco A, Ahmad M, Rooney D, Walker G. 2007. Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf Environ 85:446-449.
Palmqvist E, Hahn-Hagerdal B. 2000a. Fermentation of lignocellulosic hydrolysates. I:Inhibition and detoxification. Bioresource Technol 74:17-24.
Palmqvist E, Hahn-Hagerdal B. 2000b. Fermentation of lignocellulosic hydrolysates. II:Inhibitors and mechanisms of inhibition. Bioresource Technol. 74: 25-33.
Parajo JC, Dominguez H, Dominguez JM. 1996. Charcoal adsorption of wood hydrolysates for improvin their fermentability:Influence of the operational conditions. Bioresource Technol 57:179-185.
Pattra S, Sangyoka S, Boonmee M. 2008. Reungsang. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridum butyicum. Int J Hydrogen Energ. 33:5256-5265.
Puls J, Poutanen K. 1989. Mechanisms of enzymic hydrolysis of hemicelluloses (Xylans) and procedures fordetermination of enzyme activities involved. In : Enzyme systems for Lignocellulose Degradation. 151-165.
Ren NQ, Chen XL, Zhao D. 2001. Control of fermentation types in continuous-flow acidogenic reactors: effects of pH and redox potential. Journal of Harbin Institute of Technology (New Series) 8(2):116-119.
Ren NQ, Wang BZ, Huang JC. 1997. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54(5):428-433.
Ren NQ, Xu JF, Gao LF, Xin L, Qiu J, Su DX. 2009. Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int J Hydrogen Energy. XXX:1-5.
Roberto IC, Lacis LC, Barbosa MFS. 1991. Utilization of sugarcane bagasse hemicellulosic hydrolysate by Pichia stipitis, for the production of ethanol. Process Biochem 26:15-21.
Rodrigues RCLB, Felipe MGA, Almerida E, Silva JB. 2001. The influence of pH, temperature and hydrolysate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolysate treated with activated charcoal before and after vacuum evaporation. Brazil Journal of Chemistry Engineering. 18:299-311.
Rodríguez-Chong A, Ramírez JA, Garrote G, Vázquez M. 2004. Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J Food Eng. 61:143-152.
Sanchez B, Bautista J. 1998. Effect of furfural and 5-hydroxymethyfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme Microb Tech 10:315-318.
Sanchez G, Pilcher L, Roslander C, Modig T, Galbe M, Liden G. 2004. Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. Bioresource Technol. 93:249-256.
Sawyer CN, McCarty PL, Parkin GF. 1994. Chemistry For Environmental Engineering 4th ed. McGraw-Hill, New York.
Speece RE. 1964. Nutrient requirements and biological solids accumulation in anaerobic igestion. Advances in Water Pollution Research. 2:305-322.
Sunna A, Prowe SG, Stoffregen T, Antranikian G. 1997. Characterization of the xylanses from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol. Lett 148:209-216.
Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic Materials for ethanol production: a review. Biores Technol 83:1-11.
Thomas D, Michael T, John M, Jack P. 1994. Biology of Microorganisms 77-80.
Timell TE. 1964. Wood hemicelluloses. I Adv Carbohydr Chem 19:247-302.
Van DMI, McCarthy AJ. 2002. Molecular Biological Detection and Characterization of Clostridium Populations in Municipal Landfill Sites. Appl. Environ. Microbiol 68:2049-2053.
Van GS, Sung S, Lay JJ. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol. 35:4726-4730.
Van NEWJ, Claassen PAM, Stams AJM. 2002. Substrate and product inhibition of hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng. 81:255-262.
Van ZC, Prior BA, Du Preez JC. 1991. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis. Enzyme Microb Techn 13:82-86
Vavilin VA, Rytow SV, Lokshina LY. 1995. Modelling hydrogen partial pressure change as a result of competition between the butyricand propionicgroups of acidogenicbac teria. Bioresource Technol. 54:171-177.
Van ZC, Prior BA, Preez JC. 1998. Production of ethanol from sugarcane bagasse hemicellulose hydrolysate by Pichia stipitis. Applied Biochem Biotech. 17: 357-369.
Vázquez M, Oliva M, Téllez-Luis SJ, Ramírez JA. 2007. Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresource Technol 98:3053-3060.
Wang A, Ren N, Shi Y, Lee DJ. 2008. Bioaugmented hydrogen production from microcrystalline cellulose using co-culture Clostridum acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrogen Energy. 33:912-917.
Wang B, Wan W, Wang J. 2008. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int J Hydrogen Energy. 33:7013-7019.
Wang SD. 1980. Kinetics of rice hull hemicellulose hydrolysis and potential of using uts hydrolysate for acetic production. J.Chinese Agr. Soc 18:66-79.
Whistler RL, Richards EL. 1970. Hemicelluloses. In: The Carbohydrates. 2a: 447-469.
Woodword J. 1984. Xylanases : functions, properties and applications. Biotechnol 8: 9-30.
Yu HQ, Mu Y. 2006. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnol Bioeng. 94(5):988-995.
Yu HQ, Zhu ZH, Hu WR, Zhang HS. 2002. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27: 1359-1365.
Zhu S, Wu Y, Yu Z,Chen Q,Wu G, Yu F, Wang C, Jin S. 2006. Microwave-assisted alkali Pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng. 94(3): 437-442.
Zwietering MH, Jongenburger I, Rombouts FM, Van’s Riet K. 1990. Modeling of the bacterial growth curve. Appl Environ Microbiol. 56:1875-1881.
尹浚任,2008,多醣類物質醱酵產氫之研究,逢甲大學化學工程系碩士論文
白明德,1999,厭氧生物產氫機制與程序操作策略之研究,國立成功大學環境工程系碩士論文
吳建忠,2005,溫度對木糖醱酵產氫之影響,逢甲大學,土木與水利工程系碩士論文
李國興,張嘉修,林屏杰,林秋裕,吳石乙,洪俊雄,2007,厭氧生物產氫的研究發展,化工期刊
李國鏞,1992,普通微生物學,九州圖書文物有限公司,304
林明正,2000,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學土木及水利工程系碩士論文
林秋裕,1984,衛工微生物,國彰出版社,114
林秋裕,1997,環境工程微生物學,二版,國彰出版社
林凱隆,1991,重金屬對厭氧消化法酸生成相之影響,逢甲大學土木及水利工程系碩士論文.
夏立新,2000,微波輻射技術在高分子降解反應中的研究,中國科學院大連化學物理研究所碩士論文
高肇藩,1994,水污染防治,二版,科技圖書股份有限公司
陳文恆、郭家倫、黃文松、王嘉寶,2007,纖維酒精技術之發展,農業生技產業季刊,9:62-69
陳芃,2008,以纖維素產製生質燃料,經濟部能源局能源報導月刊,5:12-14
陳欣微,2005,完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析,中興大學環境工程系碩士論文
陳威廷,2004,纖維素水解菌之培養策略與纖維素水解酵素之鑑定,國立成功大學化學工程系碩士論文
許淳鈞,2001,利用混合特定菌種生產氫氣之研究,國立中央大學化學工程系碩士論文
黃正怡,2001,營養鹽濃度對於含梭狀芽孢桿菌之植種材料利用有機廢棄物產氫之影響,國立高雄第一科技大學環境與安全衛生工程系碩士論文
黃文宣,2002,微波定量木材熱水抽出物及Klason木質素法之初探,國立中興大學森林系碩士班碩士論文
黃祖新,陳由強,陳如凱,2004,甘蔗渣的酶降解研究進展。甘蔗,11(4):52-57
黃啟裕,2008,纖維素產氫技術再生質能源之發展,農業生技產業季刊,13:54-60
趙國評,2007,淺談生質酒精,林業研究專訓,14(3):14-17
楊肇政,鄭阿全,1994,污染防治,高立出版社
廖珮瑜,2007,以澱粉為基質之醱酵產氫系統菌群結構分析,國立中興大學環境工程系碩士論文

熊犍,葉君,2000,微波對纖維素I超分子結構的影響。華南理工大學學報,28(3):84-89
歐陽嶠暉,蕭慶忠,1986,毒性物質對旋轉生物接觸法處理影響限值之研究,第十一届廢水處理技術研討會論文集,135-149
蔣聞,2007,微波技術應用于玉米芯水解過程的研究,中國農業大學環境工程研究所碩士論文
謝哲松,1995,微生物生物學下冊,國立編譯館,1245-1252
簡宣裕,張眀暉,劉禎祺,2007,木質纖維素產生能源方法之探討,綠色油田在農業永續發展扮演的角色研討會專刊,103-114
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔