(3.236.222.124) 您好!臺灣時間:2021/05/08 07:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳盈儒
研究生(外文):Ying-Ju Chen
論文名稱:鈀銀合金膜反應器進行水煤氣轉化反應之研究
論文名稱(外文):The Study of Water Gas Shift Reaction in a Palladium-Silver Alloy Membrane Reactor
指導教授:張新福張新福引用關係
指導教授(外文):Hsin-Fu Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:水煤氣轉化反應鈀銀合金膜CO轉化率
外文關鍵詞:Pd/Ag alloy membraneCO conversionwater gas shift reaction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
當燃料電池技術備受重視時,氫氣的生產在過去的幾十年裡為重要的,研究的趨勢是以改善現有的技術和開發新的程序,以提高氫氣產率及生成高純度氫氣。
本研究是以無電鍍法析鍍鈀和銀在多孔性不鏽鋼管上,製備緻密性鈀銀合金膜,並將鈀銀合金膜反應器置於反應系統中,填充自行製備之(Ni/CeO2/Al2O3)觸媒,進行水煤氣轉化反應產生高純度氫氣,在不同的操作溫度( 350-425 oC)和壓力( 1.5-7 atm)下,膜反應器優于傳統填充床反應器。
經由實驗結果顯示鈀合金膜反應器進行水煤氣轉化反應,能有效提高氫氣產率得到高純度氫氣,改善CO轉化率高于平衡CO轉化率,在溫度為425℃、壓力為5 atm及H2O/CO進料比為3時,有最佳之CO轉化率99.73% ,氫氣產率為96.37%,最大氫氣滲透通量15.08 mol/m2•h。
Hydrogen production has become an important issue over the past decades, but nowadays it is of greater interest because of the rapid progress of the fuel-cell technology . This situation has intensified the research tending both to improve the existing technologies and to develop new processes to generate and purify H2.
A dense Pd-Ag alloy membrane prepared by electroless plating of Pd and Ag on porous stainless steel tube was used as the reactor, in which the Ni/CeO2/Al2O3 catalyst was packed for producing high purity hydrogen via the water gas shift reaction. The reaction was performed under different operating temperatures (350 - 425 oC) and pressures (1.5 - 7 atm) to conclude the advantage of the membrane reactor when compared to the traditional packed – bed reactor.
The experimental results show that in the palladium alloy membrane reactor conducting the water gas shift reaction, high-purity hydrogen yield can be effectively enhanced and the CO conversion can exceed the equilibrium value. When the reaction temperature is 425 �窢, pressure of 5 atm and H2O/CO ratio of 3, we can get the best conversion rate of 99.73 %, hydrogen production rate of 96.37% and hydrogen permeation amount of 15.08 mol/m2 h.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究目的 4
第二章 原理及文獻回顧 5
2-1 無機薄膜 5
2-1-1 無機薄膜機制 5
2-1-2 無機薄膜分離程序 6
2-2 鈀金屬特性 7
2-2-1 鈀合金膜載體 7
2-2-2 鈀合金膜製備方法 8
2-2-3 鈀膜中氫氣的擴散機制 12
2-3 無機薄膜反應器 17
2-4 鈀膜反應器的應用 19
2-5 雜質對鈀膜中氫氣滲透行為的影響 22
2-5-1 惰性氣體共存引起氫分壓下降 24
2-5-2 非氫組分在鈀膜表面的競爭吸附 25
2-5-3 積碳的影響 27
2-5-4 硫的影響 28
2-6 觸媒的應用 28
第三章 實驗方法 30
3-1 實驗藥品和儀器 30
3-1-1 實驗藥品 30
3-1-2 實驗氣體 31
3-1-3 實驗管材 31
3-1-4 實驗儀器 32
3-2 實驗流程 33
3-2-1 鈀合金膜製備程序[49] 33
3-2-2 鈀銀合金膜管滲透分析 34
3-2-3 觸媒的製備 36
3-2-4 水煤氣轉化反應(Water gas shift reaction) 38
3-2-5 水煤氣轉化反應產物分析 40
3-3 特性分析 42
第四章 結果與討論 44
4-1 鈀銀膜氣體滲透行為 44
4-1-1 鈀銀膜滲透測試 44
4-1-2 氫氣滲透行為 44
4-1-3 H2/N2滲透選擇率和活化能 45
4-2 觸媒之性質 48
4-2-1 觸媒之熱重分析 48
4-2-2 觸媒表面性質 50
4-2-3 觸媒晶相分析 50
4-2-4 觸媒之比表面積分析 55
4-3 水煤氣轉化反應 56
4-3-1 水煤氣轉化平衡反應式 56
4-3-2 不同條件參數之水煤氣轉化反應 57
4-3-2-1 反應壓力之影響 58
4-3-2-2 H2O/CO進料比之影響 60
4-3-2-3 操作溫度之影響 62
4-3-3 氫氣產率 64
4-3-4 氫氣移出率 64
第五章 結論 67
第六章 附錄 68
6-1 水煤氣轉化反應分析 68
第七章 參考文獻 74
1.Wieland, I.S., I.T. Melin, and I.A. Lamm, Membrane reactors for hydrogen production. Chemical Engineering Science, 2002. 57(9): p. 1571-1576.
2.Cheryan, M., Ultrafiltration and microfiltration handbook. 1998.
3.Soria, R., Overview on industrial membranes. Catalysis Today, 1995. 25(3-4): p. 285-290.
4.Shu, J., B.P.A. Grandjean, and S. Kaliaguine, Methane steam reforming in asymmetric Pd- and Pd-Ag/porous SS membrane reactors. Applied Catalysis A: General, 1994. 119(2): p. 305-325.
5.Uemiya, S., et al., Steam reforming of methane in a hydrogen-permeable membrane reactor. Applied Catalysis, 1990. 67(1): p. 223-230.
6.Uemiya, S., et al., The water gas shift reaction assisted by a palladium membrane reactor. Industrial & Engineering Chemistry Research, 1991. 30(3): p. 585-589.
7.Xomeritakis, G. and Y.S. Lin, Fabrication of thin metallic membranes by MOCVD and sputtering. Journal of Membrane Science, 1997. 133(2): p. 217-230.
8.Nam, S.E. and K.H. Lee, Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier. Journal of Membrane Science, 2001. 192(1-2): p. 177-185.
9.Bryden, K.J. and J.Y. Ying, Electrodeposition synthesis and hydrogen absorption properties of nanostructured palladium-iron alloys. Nanostructured Materials, 1997. 9(1-8): p. 485-488.
10.Athayde, A.L., R.W. Baker, and P. Nguyen, Metal composite membranes for hydrogen separation. Journal of Membrane Science, 1994. 94(1): p. 299-311.
11.Kikuchi, E., Membrane reactor application to hydrogen production. Catalysis Today, 2000. 56(1-3): p. 97-101.
12.Ma, D. and C.R.F. Lund, Assessing High-Temperature Water-Gas Shift Membrane Reactors. Industrial & Engineering Chemistry Research, 2003. 42(4): p. 711-717.
13.Leon, A., (ed.), Hydrogen Technology, Springer 2008.
14.Lin, Y.M., G.L. Lee, and M.H. Rei, An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor. Catalysis Today, 1998. 44(1-4): p. 343-349.
15.Lin, Y.M. and M.H. Rei, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. International Journal of Hydrogen Energy, 2000. 25(3): p. 211-219.
16.Deng, J., Z. Cao, and B. Zhou, Catalytic dehydrogenation of ethanol in a metal-modified alumina membrane reactor. Applied Catalysis A: General, 1995. 132(1): p. 9-20.
17.Cao, Y., B. Liu, and J. Deng, Catalytic dehydrogenation of ethanol in Pd_M/γ-Al2O3 composite membrane reactors. Applied Catalysis A: General, 1997. 154(1-2): p. 129-138.
18.Lin, Y.M. and M.H. Rei, Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catalysis Today, 2001. 67(1-3): p. 77-84.
19.Hong, J.C., T. L., Lin, Chao, C. W., Hydrogen Permeation and Yield in a Catalytic Membrane Reactor for Production of Pure Hydrogen. Annual Meeting of Chinese Institute of Chemical Engineer, 2005.
20.Fu, C.H. and J.C.S. Wu, Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor. International Journal of Hydrogen Energy, 2007. 32(18): p. 4830-4839.
21.Fu, C.H. and J.C.S. Wu, A transient study of double-jacketed membrane reactor via methanol steam reforming. International Journal of Hydrogen Energy, 2008. 33(24): p. 7435-7443.
22.Barbieri, G., et al., Engineering Evaluations of a Catalytic Membrane Reactor for the Water Gas Shift Reaction. Industrial & Engineering Chemistry Research, 2005. 44(20): p. 7676-7683.
23.Marigliano, G., G. Barbieri, and E. Drioli, Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure. Chemical Engineering and Processing, 2003. 42(3): p. 231-236.
24.Barbieri, G., et al., An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen: Experimental analysis of water gas shift. Journal of Power Sources, 2008. 182(1): p. 160-167.
25.Barbieri, G., et al., A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes. Separation and Purification Technology, 2008. 61(2): p. 217-224.
26.Barbieri, G. and F.P. Di Maio, Simulation of the methane steam re-forming process in a catalytic Pd-membrane reactor. Industrial and Engineering Chemistry Research ; VOL. 36 ; ISSUE: 6 ; PBD: Jun 1997, 1997: p. pp. 2121-2127 ; PL:.
27.Barbieri, G., et al., WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chemical Engineering and Processing, 2007, 46, (2), 119-126
28.Criscuoli, A., A. Basile, and E. Drioli, An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures. Catalysis Today, 2000. 56(1-3): p. 53-64.
29.Tosti, S., et al., Design and process study of Pd membrane reactors. International Journal of Hydrogen Energy, 2008. 33(19): p. 5098-5105.
30.Criscuoli, A., et al., An economic feasibility study for water gas shift membrane reactor. Journal of Membrane Science, 2001. 181(1): p. 21-27.
31.Basile, A., et al., Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Separation and Purification Technology, 2001. 25(1-3): p. 549-571.
32.Gallucci, F., et al., Experimental Study of the Methane Steam Reforming Reaction in a Dense Pd/Ag Membrane Reactor. Industrial & Engineering Chemistry Research, 2004. 43(4): p. 928-933.
33.Amelio, M., et al., Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis. Energy Conversion and Management, 2007. 48(10): p. 2680-2693.
34.Basile, A., et al., Membrane reactor for water gas shift reaction. Gas Separation & Purification, 1996. 10(4): p. 243-254.
35.Paturzo, L. and A. Basile, Methane Conversion to Syngas in a Composite Palladium Membrane Reactor with Increasing Number of Pd Layers. Industrial & Engineering Chemistry Research, 2002. 41(7): p. 1703-1710.
36.Basile, A., L. Paturzo, and F. Lagan, The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies. Catalysis Today, 2001. 67(1-3): p. 65-75.
37.Tosti, S., et al., Pd-Ag membrane reactors for water gas shift reaction. Chemical Engineering Journal, 2003. 93(1): p. 23-30.
38.Basile, A., et al., A study on catalytic membrane reactors for water gas shift reaction. Gas Separation & Purification, 1996. 10(1): p. 53-61.
39.Bustamante, F., et al., Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics. AIChE Journal, 2005. 51(5): p. 1440-1454.
40.Hou, K. and R. Hughes, The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. Journal of Membrane Science, 2002. 206(1-2): p. 119-130.
41.Li, Y., Q. Fu, and M., Flytzani-Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental, 2000. 27(3): p. 179-191.
42.Hölein, V., et al., Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors. Catalysis Today, 2001. 67(1-3): p. 33-42.
43.Lee, D.W., et al., Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature. Journal of Membrane Science, 2003. 220(1-2): p. 137-153.
44.Sakamoto, F., et al., Hydrogen permeation through palladium alloy membranes in mixture gases of 10% nitrogen and ammonia in the hydrogen. International Journal of Hydrogen Energy, 1997. 22(4): p. 369-375.
45.Chen, F.L., et al., Hydrogen permeation through palladium-based alloy membranes in mixtures of 10% methane and ethylene in the hydrogen. International Journal of Hydrogen Energy, 1996. 21(7): p. 555-561.
46.Li, A., W. Liang, and R. Hughes, The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. Journal of Membrane Science, 2000. 165(1): p. 135-141.
47.Morreale, B.D., et al., Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. Journal of Membrane Science, 2004. 241(2): p. 219-224.
48.吳和生, 製氫觸媒介紹. 化工, 2006. 53(5): p. 3-19.
49.林志忠, 鈀複合膜之製備及特性分析,逢甲大學化學工程學系碩士論文. 2003.
50.Twigg, M.V., (ed.), Catalyst Handbook, Manson. 1996.
51.Galvita, V., et al., Deactivation of Modified Iron Oxide Materials in the Cyclic Water Gas Shift Process for CO-Free Hydrogen Production. Industrial & Engineering Chemistry Research, 2008. 47(2): p. 303-310.
52.Shirasaki, Y., et al., Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy, 2009. 34(10): p. 4482-4487.
53.Lin, W.H., C.S. Hsiao, and H.F. Chang, Effect of oxygen addition on the hydrogen production from ethanol steam reforming in a Pd-Ag membrane reactor. Journal of Membrane Science, 2008. 322(2): p. 360-367.
54.Nishida, K., et al., Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction: Catalyst preparation by adopting "memory effect" of hydrotalcite. Applied Catalysis A: General, 2008. 337(1): p. 48-57.
55.Ayturk, M.E. and Y.H. Ma, Electroless Pd and Ag deposition kinetics of the composite Pd and Pd/Ag membranes synthesized from agitated plating baths. Journal of Membrane Science, 2009. 330(1-2): p. 233-245.
56.Peters, T.A., et al., High pressure performance of thin Pd-23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux. Journal of Membrane Science, 2008. 316(1-2): p. 119-127.
57.Lin, W.H., Y.C. Liu, and H.F. Chang, Hydrogen production from oxidative steam reforming of ethanol in a palladium-silver alloy composite membrane reactor. Journal of the Chinese Institute of Chemical Engineers, 2008. 39(5): p. 435-440.
58.Kumar, P., et al., Kinetics and Reactor Modeling of a High Temperature Water-Gas Shift Reaction (WGSR) for Hydrogen Production in a Packed Bed Tubular Reactor (PBTR). Industrial & Engineering Chemistry Research, 2008. 47(12): p. 4086-4097.
59.Kumakiri, I., et al., Membrane characterisation by a novel defect detection technique. Microporous and Mesoporous Materials, 2008. 115(1-2): p. 33-39.
60.Barba, D., et al., Membrane reforming in converting natural gas to hydrogen (part one). International Journal of Hydrogen Energy, 2008. 33(14): p. 3700-3709.
61.Nishikawa, J., et al., Promoting effect of Pt addition to Ni/CeO2/Al2O3 catalyst for steam gasification of biomass. Catalysis Communications, 2008. 9(2): p. 195-201.
62.Haryanto, A., et al., Hydrogen Production through the Water-Gas Shift Reaction: Thermodynamic Equilibrium versus Experimental Results over Supported Ni Catalysts. Energy & Fuels, 2009. 23(6): p. 3097-3102.
63.Nakamura, K., et al., Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass. Applied Catalysis B: Environmental, 2009. 86(1-2): p. 36-44.
64.Brunetti, A., G. Barbieri, and E. Drioli, Upgrading of a syngas mixture for pure hydrogen production in a Pd-Ag membrane reactor. Chemical Engineering Science, 2009. 64(15): p. 3448-3454.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔