1.Wieland, I.S., I.T. Melin, and I.A. Lamm, Membrane reactors for hydrogen production. Chemical Engineering Science, 2002. 57(9): p. 1571-1576.
2.Cheryan, M., Ultrafiltration and microfiltration handbook. 1998.
3.Soria, R., Overview on industrial membranes. Catalysis Today, 1995. 25(3-4): p. 285-290.
4.Shu, J., B.P.A. Grandjean, and S. Kaliaguine, Methane steam reforming in asymmetric Pd- and Pd-Ag/porous SS membrane reactors. Applied Catalysis A: General, 1994. 119(2): p. 305-325.
5.Uemiya, S., et al., Steam reforming of methane in a hydrogen-permeable membrane reactor. Applied Catalysis, 1990. 67(1): p. 223-230.
6.Uemiya, S., et al., The water gas shift reaction assisted by a palladium membrane reactor. Industrial & Engineering Chemistry Research, 1991. 30(3): p. 585-589.
7.Xomeritakis, G. and Y.S. Lin, Fabrication of thin metallic membranes by MOCVD and sputtering. Journal of Membrane Science, 1997. 133(2): p. 217-230.
8.Nam, S.E. and K.H. Lee, Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier. Journal of Membrane Science, 2001. 192(1-2): p. 177-185.
9.Bryden, K.J. and J.Y. Ying, Electrodeposition synthesis and hydrogen absorption properties of nanostructured palladium-iron alloys. Nanostructured Materials, 1997. 9(1-8): p. 485-488.
10.Athayde, A.L., R.W. Baker, and P. Nguyen, Metal composite membranes for hydrogen separation. Journal of Membrane Science, 1994. 94(1): p. 299-311.
11.Kikuchi, E., Membrane reactor application to hydrogen production. Catalysis Today, 2000. 56(1-3): p. 97-101.
12.Ma, D. and C.R.F. Lund, Assessing High-Temperature Water-Gas Shift Membrane Reactors. Industrial & Engineering Chemistry Research, 2003. 42(4): p. 711-717.
13.Leon, A., (ed.), Hydrogen Technology, Springer 2008.
14.Lin, Y.M., G.L. Lee, and M.H. Rei, An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor. Catalysis Today, 1998. 44(1-4): p. 343-349.
15.Lin, Y.M. and M.H. Rei, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. International Journal of Hydrogen Energy, 2000. 25(3): p. 211-219.
16.Deng, J., Z. Cao, and B. Zhou, Catalytic dehydrogenation of ethanol in a metal-modified alumina membrane reactor. Applied Catalysis A: General, 1995. 132(1): p. 9-20.
17.Cao, Y., B. Liu, and J. Deng, Catalytic dehydrogenation of ethanol in Pd_M/γ-Al2O3 composite membrane reactors. Applied Catalysis A: General, 1997. 154(1-2): p. 129-138.
18.Lin, Y.M. and M.H. Rei, Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catalysis Today, 2001. 67(1-3): p. 77-84.
19.Hong, J.C., T. L., Lin, Chao, C. W., Hydrogen Permeation and Yield in a Catalytic Membrane Reactor for Production of Pure Hydrogen. Annual Meeting of Chinese Institute of Chemical Engineer, 2005.
20.Fu, C.H. and J.C.S. Wu, Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor. International Journal of Hydrogen Energy, 2007. 32(18): p. 4830-4839.
21.Fu, C.H. and J.C.S. Wu, A transient study of double-jacketed membrane reactor via methanol steam reforming. International Journal of Hydrogen Energy, 2008. 33(24): p. 7435-7443.
22.Barbieri, G., et al., Engineering Evaluations of a Catalytic Membrane Reactor for the Water Gas Shift Reaction. Industrial & Engineering Chemistry Research, 2005. 44(20): p. 7676-7683.
23.Marigliano, G., G. Barbieri, and E. Drioli, Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure. Chemical Engineering and Processing, 2003. 42(3): p. 231-236.
24.Barbieri, G., et al., An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen: Experimental analysis of water gas shift. Journal of Power Sources, 2008. 182(1): p. 160-167.
25.Barbieri, G., et al., A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes. Separation and Purification Technology, 2008. 61(2): p. 217-224.
26.Barbieri, G. and F.P. Di Maio, Simulation of the methane steam re-forming process in a catalytic Pd-membrane reactor. Industrial and Engineering Chemistry Research ; VOL. 36 ; ISSUE: 6 ; PBD: Jun 1997, 1997: p. pp. 2121-2127 ; PL:.
27.Barbieri, G., et al., WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chemical Engineering and Processing, 2007, 46, (2), 119-126
28.Criscuoli, A., A. Basile, and E. Drioli, An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures. Catalysis Today, 2000. 56(1-3): p. 53-64.
29.Tosti, S., et al., Design and process study of Pd membrane reactors. International Journal of Hydrogen Energy, 2008. 33(19): p. 5098-5105.
30.Criscuoli, A., et al., An economic feasibility study for water gas shift membrane reactor. Journal of Membrane Science, 2001. 181(1): p. 21-27.
31.Basile, A., et al., Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Separation and Purification Technology, 2001. 25(1-3): p. 549-571.
32.Gallucci, F., et al., Experimental Study of the Methane Steam Reforming Reaction in a Dense Pd/Ag Membrane Reactor. Industrial & Engineering Chemistry Research, 2004. 43(4): p. 928-933.
33.Amelio, M., et al., Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis. Energy Conversion and Management, 2007. 48(10): p. 2680-2693.
34.Basile, A., et al., Membrane reactor for water gas shift reaction. Gas Separation & Purification, 1996. 10(4): p. 243-254.
35.Paturzo, L. and A. Basile, Methane Conversion to Syngas in a Composite Palladium Membrane Reactor with Increasing Number of Pd Layers. Industrial & Engineering Chemistry Research, 2002. 41(7): p. 1703-1710.
36.Basile, A., L. Paturzo, and F. Lagan, The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies. Catalysis Today, 2001. 67(1-3): p. 65-75.
37.Tosti, S., et al., Pd-Ag membrane reactors for water gas shift reaction. Chemical Engineering Journal, 2003. 93(1): p. 23-30.
38.Basile, A., et al., A study on catalytic membrane reactors for water gas shift reaction. Gas Separation & Purification, 1996. 10(1): p. 53-61.
39.Bustamante, F., et al., Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics. AIChE Journal, 2005. 51(5): p. 1440-1454.
40.Hou, K. and R. Hughes, The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. Journal of Membrane Science, 2002. 206(1-2): p. 119-130.
41.Li, Y., Q. Fu, and M., Flytzani-Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental, 2000. 27(3): p. 179-191.
42.Hölein, V., et al., Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors. Catalysis Today, 2001. 67(1-3): p. 33-42.
43.Lee, D.W., et al., Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature. Journal of Membrane Science, 2003. 220(1-2): p. 137-153.
44.Sakamoto, F., et al., Hydrogen permeation through palladium alloy membranes in mixture gases of 10% nitrogen and ammonia in the hydrogen. International Journal of Hydrogen Energy, 1997. 22(4): p. 369-375.
45.Chen, F.L., et al., Hydrogen permeation through palladium-based alloy membranes in mixtures of 10% methane and ethylene in the hydrogen. International Journal of Hydrogen Energy, 1996. 21(7): p. 555-561.
46.Li, A., W. Liang, and R. Hughes, The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. Journal of Membrane Science, 2000. 165(1): p. 135-141.
47.Morreale, B.D., et al., Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. Journal of Membrane Science, 2004. 241(2): p. 219-224.
48.吳和生, 製氫觸媒介紹. 化工, 2006. 53(5): p. 3-19.
49.林志忠, 鈀複合膜之製備及特性分析,逢甲大學化學工程學系碩士論文. 2003.50.Twigg, M.V., (ed.), Catalyst Handbook, Manson. 1996.
51.Galvita, V., et al., Deactivation of Modified Iron Oxide Materials in the Cyclic Water Gas Shift Process for CO-Free Hydrogen Production. Industrial & Engineering Chemistry Research, 2008. 47(2): p. 303-310.
52.Shirasaki, Y., et al., Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy, 2009. 34(10): p. 4482-4487.
53.Lin, W.H., C.S. Hsiao, and H.F. Chang, Effect of oxygen addition on the hydrogen production from ethanol steam reforming in a Pd-Ag membrane reactor. Journal of Membrane Science, 2008. 322(2): p. 360-367.
54.Nishida, K., et al., Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction: Catalyst preparation by adopting "memory effect" of hydrotalcite. Applied Catalysis A: General, 2008. 337(1): p. 48-57.
55.Ayturk, M.E. and Y.H. Ma, Electroless Pd and Ag deposition kinetics of the composite Pd and Pd/Ag membranes synthesized from agitated plating baths. Journal of Membrane Science, 2009. 330(1-2): p. 233-245.
56.Peters, T.A., et al., High pressure performance of thin Pd-23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux. Journal of Membrane Science, 2008. 316(1-2): p. 119-127.
57.Lin, W.H., Y.C. Liu, and H.F. Chang, Hydrogen production from oxidative steam reforming of ethanol in a palladium-silver alloy composite membrane reactor. Journal of the Chinese Institute of Chemical Engineers, 2008. 39(5): p. 435-440.
58.Kumar, P., et al., Kinetics and Reactor Modeling of a High Temperature Water-Gas Shift Reaction (WGSR) for Hydrogen Production in a Packed Bed Tubular Reactor (PBTR). Industrial & Engineering Chemistry Research, 2008. 47(12): p. 4086-4097.
59.Kumakiri, I., et al., Membrane characterisation by a novel defect detection technique. Microporous and Mesoporous Materials, 2008. 115(1-2): p. 33-39.
60.Barba, D., et al., Membrane reforming in converting natural gas to hydrogen (part one). International Journal of Hydrogen Energy, 2008. 33(14): p. 3700-3709.
61.Nishikawa, J., et al., Promoting effect of Pt addition to Ni/CeO2/Al2O3 catalyst for steam gasification of biomass. Catalysis Communications, 2008. 9(2): p. 195-201.
62.Haryanto, A., et al., Hydrogen Production through the Water-Gas Shift Reaction: Thermodynamic Equilibrium versus Experimental Results over Supported Ni Catalysts. Energy & Fuels, 2009. 23(6): p. 3097-3102.
63.Nakamura, K., et al., Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass. Applied Catalysis B: Environmental, 2009. 86(1-2): p. 36-44.
64.Brunetti, A., G. Barbieri, and E. Drioli, Upgrading of a syngas mixture for pure hydrogen production in a Pd-Ag membrane reactor. Chemical Engineering Science, 2009. 64(15): p. 3448-3454.