(3.236.118.225) 您好!臺灣時間:2021/05/17 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭天豪
研究生(外文):Tian-hao Cheng
論文名稱:銅組織氨酸錯合物與聚二氧乙烯噻吩修飾電極之電化學行為
論文名稱(外文):Electrochemical behaviors of Cu(II)-histidine complexes and PEDOT modified electrodes
指導教授:翁于晴翁于晴引用關係
指導教授(外文):Yu-Ching Weng
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:117
中文關鍵詞:氧氣還原聚二氧乙烯噻吩旋轉電極塔伏曲線銅組織氨酸
外文關鍵詞:4 ethylenedioxythiophenepoly-3Rotating disk electrodeTafel PlotCopper(II)-HistidineOxygen reduction reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
銅組織氨酸錯合物擁有特殊的生物化學和藥理學特性,它在不同pH值環境下具有不同的幾何結構。雖然目前文獻上對銅組織氨酸錯合物的性質和結構已經有相當多的探討,但對於錯合物的氧化還原特性的認識依然有限,影響銅組織氨酸錯合物型態主要的因素包括了銅和組織氨酸的比例、pH值和溫度。本論文主要的目的是利用玻璃碳電極詳細探討銅組織氨酸錯合物在水溶液中之電化學行為,並且配合光學儀器來對不同條件下銅組織氨酸錯合物進行分析。由實驗結果顯示,在高pH值下銅組織氨酸錯合物較低pH值下錯合物更穩定,其還原和氧化電位皆往更負的電位偏移。藉由Tafel Plot分析,可發現若將pH值從9調整到4,錯合物之標準速率常數(k0)值會從0.0314提升到0.14427 cm/s,而電荷轉移阻力(Rct)則會由63.23降低至12.79 歐姆 ,代表在低pH值溶液中之錯合物比起高pH值溶液中之錯合物更容易獲得電子而還原為零價銅,由旋轉電極(RDE)的實驗中也得到銅組織氨酸錯合物還原之電子轉移數接近2。
本論文另一主題為分析聚二氧乙烯�囮h(PEDOT)催化氧氣還原的效能,分別以電鍍法及化學鍍製備PEDOT/Au/Nafion電極,並對其在有氧及無氧狀態下進行電化學行為之測試,結果發現不論是化學鍍或是電鍍之PEDOT/Au/Nafion電極,都無明顯催化氧氣還原之效能。
The copper(II)-histidine complexes have attracted vast interest due to its biochemical and pharmacological properties, as well as its rich coordination geometries. Although extensive research has been carried out to determine the structures and binding ability of copper(II)-histidine complexes, comparatively less attention has been devoted to their redox properties. Different complexes between copper(II) and histidine strongly depend upon the metal ion to ligand concentration ratio, pH value and temperature. The present work concentrates on the electrochemical behaviors of copper(II)-histidine complexes with various coordination environments at a glassy carbon electrode in aqueous solution. The results showed that the copper(II)-histidine complexes were more stable at high pH value than that at low pH value. Both of the oxidative and reductive peaks of copper(II)-histidine complexes shifted to more negative potential at high pH value. The Tafel plot analysis of copper(II)-histidine complexes showed that when pH value decreased from 9 to 4, the rate constant of complexes increased from 0.0314 to 0.14427 cm/s and the charge transfer resistance decreased from 63.23 to 12.79 Ohm . The data indicated that the copper(II)-histidine complexes at low pH value were easier to obtain electrons and reduced to copper metal than that at high pH value. The electron transfer number of the complexes was close to 2 based on the rotating disk electrode (RDE) measurement.
Another topic of the thesis was evaluation of the electrocatalytic activity of poly(3,4-ethylenedioxythiophene) (PEDOT) for oxygen reduction. The PEDOT/Au/Nafion electrodes were prepared by electroplating and chemical deposition methods. These electrodes were tested both in the present and in the absence of oxygen. The results showed that regardless of preparation methds, the PEDOT/Au/Nafion electrodes exhibited poor electrocatalytic activity for oxygen reduction.
中文摘要………………………………………………………………i
英文摘要………………………………………………………………iii
誌謝……………………………………………………………………v
論文目錄................................... ............vii
圖目錄................................. ................xii
表目錄................................................xviii
符號說明................................................xix
第一章 緒論
1-1 前言………………………………………………………………1
1-1-1 背景介紹……………………………………………………1
1-1-2 含銅酵素之簡介……………………………………………2
1-2 研究動機………………………………………………………….7
1-3 銅組織氨酸錯合物之介紹………………………………………8
1-3-1 組織氨酸之介紹…………………………………8
1-3-2 銅組織氨酸之錯合物結構…………………………………9
1-3-3 銅組織氨酸錯合物之電化學行為…………………………14
1-4 導電高分子聚二氧乙烯�囮h(PEDOT)之介紹…………………17
1-4-1 PEDOT之簡介………………………………………………17
1-4-2 PEDOT之應用………………………………………………18
1-4-3 PEDOT之電化學行為………………………………………19
第二章 實驗原理
2-1 電化學分析方法之原理………………………………………21
2-1-1 循環伏安分析法……………………………………………21
2-1-2 塔伏曲線原理………………….……………………………23
2-1-3 旋轉電極原理……………………………….………………25
2-2 光學分析原理…………………………………………………29
2-2-1 紫外光分光光度計原理……………………………………29
2-2-2 圓二色光譜儀測量原理……………………………………31
第三章 實驗設備及步驟
3-1 實驗儀器………………………………………………………33
3-2 實驗藥品………………………………………………………34
3-3銅組織氨酸錯合物之製備與電化學分析系統之架設…………36
3-3-1 工作電極之前處理…………………………………………36
3-3-2磷酸鹽緩衝液之配置………………………………………36
3-3-3銅組織氨酸錯合物之配置…………………………………36
3-3-4銅組織氨酸電化學行為之測試系統……………………36
3-3-5 旋轉電極之測試系統………………………………………37
3-3-6 光學儀器之檢測……………………………………………37
3-4 PEDOT電極製備與電化學測試………………………………38
3-4-1 Nafion薄膜之前處理步驟…………………………………38
3-4-2黃金之濺鍍……………..……………………………………38
3-4-3 PEDOT/Au/ITO電極製備與測試…………………………38
3-4-3-1 PEDOT/Au/ITO電極之聚合……………………………38
3-4-3-2 PEDOT/Au/ITO電極之電化學行為測試………………38
3-4-4 PEDOT/Au/Nafion電極之製備與測試……………………..39
3-4-4-1 T-T法製備PEDOT/Au/Nafion電極……………………39
3-4-4-2 使用電聚合法製備PEDOT/Au/Nafion電極………39
3-4-4-3 PEDOT/Au/Nafion電極之電化學行為測試…………41
第四章 結果與討論
4-1 銅組織氨酸錯合物之電化學行為……………………………...42
4-1-1 銅組織氨酸錯合物的光學特性…………………………….42
4-1-1-1 紫外光分光光度計之分析…………………..…………42
4-1-1-2 圓二色光譜儀之分析……………………………..……43
4-1-2 銅離子和組織氨酸之電化學行為…………………………47
4-1-2-1 銅離子在溶液中之電化學行為………………………47
4-1-2-2 組織氨酸在溶液中之電化學行為……………………47
4-1-3 在不同pH值下銅組氨酸(Cu2+-His)錯合物之
電化學行為…………………………………………50
4-1-3-1 低pH值範圍下Cu2+-his之電化學行為..........................50
4-1-3-2 中pH值範圍下Cu2+-his之電化學行為………………..56
4-1-3-3 高pH值範圍下Cu2+-his之電化學行為………………..60
4-1-3-4 改變掃描速率對銅組織氨酸之影響…………………62
4-1-4 在不同莫耳比例下銅組氨酸錯合物之電化學行為………68
4-1-5 銅組織氨酸之動力學參數探討…………………………….74
4-1-5-1 塔伏曲線之分析………………………………………..74
4-1-5-2 旋轉電極之分析……………………..………………..82
4-2 PEDOT修飾薄膜電極之電化學行為……………………...90
4-2-1電鍍PEDOT/Au/ITO電極在有無氧氣存在下之電
化學行為…………………………………………………….90
4-2-2 化學鍍PEDOT/Au/Nafion電極在有無氧氣存在下
之電化學行為……………………………………….………95
4-2-3電鍍PEDOT/Au/Nafion電極在有無氧氣存在下之
電化學行為........................................101
第五章 結論............................................103
參考文獻...............................................105
論文附錄...............................................108
自述...................................................117
1.Sarkar, B., Treatment of Wilson and Menkes Diseases, Chem. Rev., 99, 2535-2544, 1999.
2.Munakata, M., Sakamotoa, O., Kitamura, T., Ishitobia, M., The effects of copper-histidine therapy on brain metabolism in a patient with Menkes disease: a proton magnetic resonance spectroscopic study, Brain Dev.,27, 297-300,2005.
3.Deschamps, P., Kulkarni, P.P., Gautam-Basak, M., Sarkar, B., The saga of copper(II)–l-histidine, Coord Chem Rev., 249, 895–909, 2005.
4.Wilson, E.W., Kasperian, M.H., Martin, R.B., Binding of Copper(II) to Potentially Tridentate Amino Acid Ligands'', J. Am. Chem. Sot., 92, 5365, 1970.
5.Sundberg, R.J., Martin, R.B., Interactions of Histidine and Other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological Systems, Chem. Rev., 74, 481, 1974.
6.Altun1, Y., Koseoglu, F., Stability of Copper(II), Nickel(II) and Zinc(II)Binary and Ternary Complexes of Histidine, Histamine and Glycine in Aqueous Solution., J. Sol. Chem, 34, 213-231, 2005.
7.Jeuken, L.J.C., Vliet, P.V., Verbeet, M.P., Camba, R., McEvoy, J.P., Armstrong, F.A., Canters, G.W., Role of the Surface-Exposed and Copper-Coordinating Histidine in Blue Copper Proteins: The Electron-Transfer and Redox-Coupled Ligand Binding Properties of His117Gly Azurin, Abstr Pap Am Chem Soc., 122, 12186-12194, 2009.
8.王思達編撰,氨基酸工業,正言出版公司出版(1977)。
9.Daniele, S., Penat, M.J., Cyclic Voltammetric Investigation of The Cu-Histidine System At Platinum Conventional And Microelectrodes, Electrochim Acta., 38, 165-174, 1994.
10.Bilewicz, R., The reduction of Cu(II) complexes of histidine and histidyl peptides at mercury electrodes, J. Electroanal. Chem., 267, 231-241, 1989.
11.Perez, A.S., Conde, F.L., Polarographic Determination of Phenylalanine Tyrosine Methionine Glutamic Acid And Histidine With a Dropping Copper Amalgam Electrode, J. Electroanal. Chem., 74, 339-346, 1976.
12.Williams, A.N., Williams, S.R., Heeger., A.J., Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate), Synth Met., 94, 173-177, 1998.
13.Xing, K.Z., ahlman, M.F., Chen, X.W., Ingana, O., Salaneck, The electronic and geometric structures of neutral and potassium-doped poly [3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy, Synth Met., 76, 263-267, 1996.
14.Ho, K.C., Chen, C.Y., Hsu, H.C., Chen, L.C., Shieh, S.C., Lin, X.Z., “Amperometric Detection of Morphine at a Prussian Blue-Modified Indium Tin Oxide Electrode, Biosens Bioelectron., 20, 328, 2004.
15.Li, L., Drillet, J.F., Dittmeyer, R., Juttner, K., Formation and characterization of PEDOT-modified Nafion 117 membranes, J Solid State Electrochem., 10, 708–713,2006.
16.Jensen, B.W., Jensen, O.W., Forsyth, M., High Rates of Oxygen Reduction over a Vapor Phase-Polymerized, Science., 321, 671-674, 2008.
17.Lock, J.P., Lutkenhaus, J.L., Zacharia, N.S., Im, S.G., Hammond, P.G., Gleason, K.K., Electrochemical investigation of PEDOT films deposited via CVD for electrochromic applications, Synth Met., 157, 894–898, 2007.
18.Bhandari, S., Deepa, M., Singh, S., Gupta, G., Kant, R., Redox behavior and optical response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in a camphorsulfonic acid based micellar solution, Electrochimica Acta., 53, 3189–3199, 2008.
19.Higgins, S.J., Lovell, K.V., Rajapakse, R.M.G., Grafting and electrochemical characterisation of poly-(3,4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces, J Mater Chem., 13, 2485-2489, 2003.
20.胡啟章編撰,電化學原理與方法,五南圖書出版公司出版(2002)。
21.Bard Allen J., Faulkner Larry R., “Electrochemical Methods: Fundamentals and Applications”, John Wiley&Sons, New York, 1980.
22.吳浩�~編撰,電化學動力學,科技出版公司出版(2001)。
23.柯以侃編撰,儀器分析,新文京開發出版有限公司出版(2003)。
24.Rodger, A., and Nord�聲, B.,“Circular dichroism and linear dichroism.” Oxford, 1997.
25.Lightner, D. A., Gurst, J. E.,“Organic conformational analysis and stereochemistry from circular dichroism spectroscopy” John Wiley& Sons, Inc., 2000.
26.Velluz, L., Legrand, M., Grosjean, M.,“Optical circular dichroism. “Academic Press, Inc., 1965.
27.Barton, S.C., Kim, H.H., Binyamin, G., Zhang, Y., The “Wired” Laccase Cathode: High Current Density Electroreduction of O2 to Water at +0.7 V(NHE) at pH 5, J. Am. Chem. Soc., 123, 5802-5803, 2001.
28.Barton, S.C., Kim, H.H., Binyamin, G., Zhang, Y., Electroreduction of O2 to Water on the “Wired” Laccase Cathode, J. Phys. Chem. B., 105, 11917-11921, 2001.
29.Mano, N., Soukharev, V., Heller, A., A Laccase-Wiring Redox Hydrogel for Efficient Catalysis of O2 Electroreduction, J. Phys. Chem. B., 110, 11180-11187, 2006.
30.Weng, Y.C., Fan, F.R.F., Bard, A.J., Combinatorial Biomimetics. Optimization of a Composition of Copper(II)Poly-L-Histidine Complex as an Electrocatalyst for O2 Reduction by Scanning Electrochemical Microscopy, J. Am. Chem. Soc., 127, 17576-17577, 2005.
31.Kitajima, N., Synthetic approach to the structure and function of copper proteins. Adv Inorg Chem., 39, 1-77, 1992.
32.Louwet, F., Groenendaal, L., Dhaen, J., Manca, J., PEDOT/PSS: synthesis, characterization, properties and applications, Synth Met., 135-136, 115-117, 2003.
33.Patra, S., Munichandraiah, N., Supercapacitor Studies of Electrochemically Deposited PEDOT on Stainless Steel Substrate., 106, 1160-1171, 2007.
34.Xia, C., Advincula, R, C., Baba, A., Knoll, W., In Situ Investigations of the Electrodeposition and Electrochromic Properties of Poly(3,4-ethylenedioxythiophene) Ultrathin Films by Electrochemical-Surface Plasmon Spectroscopy, Langmuir., 18, 3555-3566, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top