(3.238.99.243) 您好!臺灣時間:2021/05/15 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳祥玄
研究生(外文):Siang-Syuan Wu
論文名稱:常壓電漿聚合可撓式電致色變氧化鎢薄膜於光學,電化學及其電致色變性質之研究
論文名稱(外文):A Study on the Optical , Electrochemical and Electrochromic Properties of Flexible WOx Electrochromic Thin Films Polymerized by Atmospheric Pressure Plasmas
指導教授:林永森林永森引用關係
指導教授(外文):Yung-Sen Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:175
中文關鍵詞:電致色變常壓電漿可撓式氧化鎢
外文關鍵詞:Atmospheric-pressure plasmaFlexibleTungsten oxideelectrochromic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著能源危機的來臨,地球暖化現象日趨嚴重,世界各國無不爭相投入於新能源開發新能源材料及尋求有效節能之方法,其中電致變色薄膜材料便是目前相當受到矚目的材料之一,且在市場的技術的推力之下,朝輕薄化、輕量化及可撓曲使用更是極具研發性,而且塑膠導電基材具有輕、薄、耐衝擊及可撓曲等優勢,故本研究以此為目標。著眼於可撓式電致色變薄膜的研究。
本研究是利用常壓電漿製備電致色變氧化鎢薄膜,常壓電漿的優點是較以往其他製程要快速便利,它不需要昂貴的真空設備,也不需要真空腔體,製程方面不需要等待抽真空的時間,基板也不需要受限於腔體的大小和形狀,而且鍍膜速率極快,符合工業上量產和製程row to row的需求。
而我們所製備的氧化鎢(tungsten oxide, WO3) ,本身在作為電致色變(electrochromism)之主要變色層(primary electrochrome)時,對比度高,材料本身也較低廉且易取得;製備電致色變材料之方法很多,舉凡工業上製備金屬鍍層的製程皆可使用,但要達商業化大規模且低成本生產,卻是電致色變材料蓬勃利用的關鍵。
故而本論文研究是使用以常壓電漿製備可撓式電致色變元件PET/ITO/WO3, 探討其光學性質、電化學性質、電致色變特性為將來元件的製備做準備。此常壓電漿之操作參數為電漿火炬高度的變化、藥品噴口角度變化、和基板移動速度變化。薄膜光學特性量測使用紫外-可見光穿透光譜。製備的薄膜以冷場發射掃描式電子顯微鏡( Field Emission Scanning Electron Microscope,FESEM) 分析薄膜厚度在以FE-SEM分析薄膜表面形貌,再利用循環伏安儀與紫外可見光光譜儀測試薄膜的電致色變特性、光學性質, 進而計算出薄膜的光學密度變化、變色效率與離子遷出/遷入的x值。
本研究成功的以常壓電漿製程,在常溫下鍍出有良好變色效果的氧化鎢薄膜於可撓式PET塑膠基板上,並在CV循環伏安法中,有63%的穿透率變化,並且能承受200cycle的循環伏安法測試的穩定性,大幅縮短鍍膜時間在50秒以內,具有發展和量產潛力。
By the energy crisis and the warm of world-wide get worse, the topic of energy consumptions are follow. And in these methods, electrochromic thin film materials are in focus. Owing to the driving markets, lightweights, thin are so development and plastic substrates have advantageous like lightweight, thin, flexible, and high impact resistance. So the motive study is about the flexible electrochromic devices.
The motive of study is about using the Atmospheric pressure plasma to preparing electrochromic Tungsten oxide thin film, which the advantages are faster than the others process, and don’t require high cost on vacuum equipment, vacuum chamber, or time to wait for vacuuming. Substrate have no limitation to fit the vacuum chamber. Fast thin film coating process to fit in with industry row to row process.
The study discusses about the preparing of flexible electrochromic devices, PET/ITO/WO3, produced with atmospheric-pressure plasma and probing into the optics properties, electrochemistry, electrocomics for the future production preparation. Many experiment operation parameters are manufactured by torch height difference, angle difference for nozzle, and substrates move velocity. UV-visible spectrum and envelope method are for checking thickness. Used Field Emission Scanning Electron Microscope to analyses the film thickness, and the surface morphology. Then use the cyclic-voltammetry method and UV-visible spectrum check the electrochromic properties, optics properties then calculate the optical density difference, efficiency and ionic in-mobility/ out-mobility x.
The advantages of tungsten oxide as an electrochormic material has good contrast of transmittance, fewer costs, and suitable be used. The methods of preparing of electrochromic device are so many. So many process for metal coating in industries can be used, but the key point for electrochromic devices are the preparation that would be easy to scale up and low cost.
This study is successfully to coating a fine electrochromic properties Tungsten oxide thin film on PET plastic substrate under room temperature with Atmospheric pressure plasma process. In cyclic-voltammetry method, which have 63% transmittance under 550 nm and 200cycles stability. Shorting to 50 seconds coating process which is highly developed and mass production.
總目錄
中文摘要………………………………………………I
英文摘要…………………………………………………III
表目錄…………………………………………………X
圖目錄…………………………………………………XI
符號說明………………………………………………XXI

第一章 前 言……………………………………………1
1-1概述……………………………………………………1
1-2研究緣起及目的………………………………………3
第二章 文獻回顧……………………………………………7
2-1變色材料分類…………………………………………7
2-1-1電致色變(Electrochromic)……………………7
2-2電致色變原理…………………………………………9
2-2-1價電電荷遷移理論………………………………9
2-2-2色心理論………………………………………10
2-3電致色變發展史……………………………………10
2-4電致色變材料種類……………………………………11
2-5互補式電致色變原件………………………………13
2-6電致色變氧化鎢薄膜………………………………16
2-7電致色變氧化鎢薄膜製備方法……………………19
第三章 實驗步驟與方法……………………………………24
3-1 實驗材料及基板前處理……………………………24
3-2常壓電漿系統………………………………………27
3-3致色變薄膜性質探討…………………………………28
3-3-1可見-紫外光光譜儀測量………………………28
3-3-2循環伏安法……………………………………28
3-3-3交流阻抗分析…………………………………32
3-3-4階梯電為響應時間分析………………………38
3-3-5光學密度計算…………………………………40
3-3-6 著色效益計算…………………………………40
3-3-7 Li+之植入係數計算…………………………41
3-3-8 薄膜厚度量測………………………………42
3-3-9 薄膜沉積速率分析…………………………42
3-3-10化學影像能譜儀量測…………………………43
第四章 結果與討論…………………………………………44
4-1 製備參數對可撓式電致色變薄膜氧化鎢光學性質之影響………………………………………………………44
4-1-1 常壓電漿火炬(Torch)高度之影響……………44
4-1-2 藥品噴口角度之影響…………………………45
4-1-3 基板移動速率之影響…………………………46
4-2 製備參數對可撓式電致色變薄膜氧化鎢電化學性質之響…………………………………………………………48
4-2-1 火炬距離基板高度之影響……………………48
4-2-1-1循環伏安法於Li+離子電解質之影響…48
4-2-1-2循環伏安曲線分析……………………48
4-2-1-3交流阻抗於Li+離子電解質之影響……56
4-2-2 藥品噴口角度變化之影響……………………59
4-2-2-1循環伏安法於Li+離子電解質之影響…59
4-2-2-2循環伏安曲線分析……………………59
4-2-2-3交流阻抗於Li+離子電解質之影響……66
4-2-3 基板移動速度變化之影響……………………69
4-2-3-1循環伏安法於Li+離子電解質之影響…69
4-2-3-2循環伏安曲線分析……………………69
4-2-3-3交流阻抗於Li+離子電解質之影響……76
4-3 製備參數對可撓式電致色變薄膜氧化鎢電致色變之影響 …………………………………………………79
4-3-1電漿火炬高度變化之影響……………………79
4-3-1-1 Li+離子電解質之影響…………………79
4-3-1-2階梯電位應時間分析探討………………79
4-3-1-3可見光穿透率變化之分析………………82
4-3-1-4光學密度變化及著色效益計算…………86
4-3-1-5 Li+質子之植入係數計算……………89
4-3-2 鍍膜藥品噴口角度變化之影響………………92
4-3-2-1 Li+離子電解質之影響…………………92
4-3-2-2 階梯電位應時間分析探討……………92
4-3-2-3 可見光穿透率變化之分析……………96
4-3-2-4 光學密度變化及著色效益計算………99
4-3-2-5 Li+質子之植入係數計算……………102
4-3-3 基板移動速度變化之影響…………………104
4-3-3-1 Li+離子電解質之影響………………104
4-3-3-2階梯電位響應時間分析探討…………104
4-3-3-3可見光穿透率變化之分析……………107
4-3-3-4光學密度變化及著色效益計算………110
4-3-3-5 Li+質子之植入係數計算……………113
4-4 製程參數對可撓式電致色變薄膜PET/ITO/WOx薄膜物性之影響…………………………………………115
4-4-1薄膜厚度與成長速率…………………………115
4-4-1-1 電漿火炬高度之影響………………116
4-4-1-2 藥品噴口角度之影響………………117
4-4-2 薄膜表面型態分析………………………….118
4-4-2-1電漿火炬高度之影響……………………118
4-4-2-2藥品噴口角度之影響…………………...120
4-4-2-3基板移動速度之影響………………122
4-5表面元素與化學態分析……………………………124
4-5-1 電漿火炬高度之影響………………………124
第五章 總結論……………………………………………127
參考文獻………………………………………………….129
1.Elin Hammarberg, A.R.,reflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance. Thin Solid Films ,(2003) vol.422: p. p.222-226.

2. T. P. Niesen and M. R. De Guire, “Review: deposition of
ceramic thin films at low temperatures from aqueous solutions” Solid State Ionics,(2002) Vol.151, p.61-68.

3.P-C. Yen, “Improved ABS plastic activating treatment for
electroless copper plating”, Polymer Communications,(1995)
Vol.36,No.17, p.3399-3400.

4. C-Y. Huang and J-F Pai, “Optimum of electroless nickel
plating on carbon fibers for EMI shielding effectiveness of
ENCF/ABS composites”, European Polymer Journal,(1998), Vol.34, No.2,p.261-267.

5. M. S. Wu, C. M. Huang, Y. Y. Wang and C. C. Wan, “Effects of surface modification of nickel hydroxide powder on the electrode performance of nickel/metal hydride batteries”, Electrochimica Acta(1999) Vol.44, p.4007-4016.
6林桂如, 高密度電漿對塑膠基材之表面處理及其對鍍膜附著特性之影響. 2004.
7鄭培毓, 可撓式塑膠基板拓展新應用領域. 光連雙月刊, 2002. 第3 7 期: p. p. 52-55.
8.何國川, 化學與無窗簾時代. 化工, 1990. 第 3 7 卷 第 3 期(32)
9楊明長, 電致色變系統簡介. 化工, 1993. 第 40 卷 第 2 期(64).
10 C. G. Granqvist,A.A., A. Hjelm, L. Kullman, G. A. Niklasson,D.Rönnow, M. Stromme Mattsson, M. Veszelei and G. Vaivars,, Recent advances in electrochromics for smart windows applications. Solar Energy, 1998. Vol.63(No.4): p. p.199-216.

11.田曜瑋,以電漿濺鍍技術製備電致色變薄膜及其性能之研究. 私立中國文化大學材料科學與製造研究所, 2002.
12 Donnadieu, Material Science and Engineering, B3, (1989) 185-195

13 Reichman,A.J.Bard,J.Electrochem.Soc.126(1979)583

14 T. Yoshino, N. Baba, H. Masuda and K. Arai, The Electrochemical
Society Softbound Proceedings Series, Pennington, M. K. Carpenter D. A. Corrigan, Editors,NJ, PV 90-2(1990)89-98

15 C.Bechinger,M.S.Burdis and J.G.Zhang,Solid State ommunications,Vol.101,No.10,PP.753-756(1997)

16 K.C.Huang,J.C.Chou,K.Z.Chang and S.K.Hsiung,Chinese Journal of Materials Science,Vol.31,No.2,PP.71-77(1999)

17 S.K.Deb,Philos.Mag. ,27(1973)801

18 J.R.Platt,J.Chem.Phys.34(1961)862

19 B.W.Faughnan,R.S.Crandall and P.M.Heyman,R.C.A.Rev. , 36(1975)177

20 Svensson, J.a.C.G.G., In “Optical materials technology for energy efficiency and solar energy conversion III”. Edited by CM Lampert. The Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington. 1984: p. 30.
21 邱明傑, 以射頻磁控濺鍍法製備三氧化鎢的電致色變性質之研究. 逢甲大學材料科學系碩士論文,1999.

22 謝育忠,〝電漿濺鍍電致色變氧化鎳薄膜特性研究與節能評估〞, 91年中原大學碩士論文。
23 鄭惟元 博士電致色變月刊 11月號 淺談玻璃表面處理之技術發展(續)

24 C.E.Tracy and D.K.Benson,J.Vac.Sci.Technol.A4(1986)2377-2383

25 D.Davazoglou and A.Donnadieu,Solar Energy Materials 16(1987)55-65

26 Ferrolo,M.A.B.C.A. , Development and characterisation of electrochromic devices on polymeric substrates. Solar energy Material and Solar Cells 1995. 39: p. 271-287.


27 Masetti, S.P.B.S.M.B.B.C.E. , Electrochromic windows based
on polyaniline, tungsten oxide and gel electrolytes. Solar
energy Material and Solar Cells, 1995. 39: p. 239-246.

28 F.Michalak,P.Aldebert, A flexible electrochromic device
based on colloidal tungsten oxide and polyaniline. Solid
State Ionics, 1996. 86: p. 265-272.

29 R. Lechner, L.K.T. ,All solid state electrochromic devices
on glass andpolymeric foils. Solar Energy Materials and
Solar Cells, 1998. 54: p. 139-146.

30 C. Marcel, J.-M.T. , An all-plastic WO3。H2Orpolyaniline
electrochromic device. Solid State Ionics, 2001. 143: p.89–101.

31 A. Azens, G.G. , R. Karmhag , C.G. Granqvist Electrochromic devices on polyester foil. Solid State Ionics, 2003, 165: p. 1-5

32 Granqvist, C.G, Electrochromic devices. Journal of the European Ceramic Society, 2005. 25: p. 2907–2912.

33 電漿源原理與應用之介紹 文/張家豪,魏鴻文,翁政輝,柳克強李安平,寇崇善 吳敏文,曾錦清,蔡文發,鄭國川
34 Yuri P. Raizer, “Gas Discharge Physics,”Springer-Verlag (1991).

35 C. C. Tzeng etc., ”Treatment of radioactive wastes by plasma incineration and vitrification for final disposal,” Journal of Hazardous Materials 58(1998)207-220.

36 Masao Ushio, “Plasma applications in the steel industry in Japan,” Pure & Appl. Chem., Vol. 64, No. 5 (1992) 677-683.

37. Seung-Min Oh and Dong-Wha Park, “Production of ultrafine titanium dioxide by DC plasma jet,” Thin Solid Films 386 (2001) 233-238.

38 J. Bisquert, ,G.G.-B,G. Bueno, P. Longo, E and Bulhões,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊