(3.235.245.219) 您好!臺灣時間:2021/05/10 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃琬雯
研究生(外文):Wan-wen Huang
論文名稱:以潛在群體一般化巢式羅吉特模式探討航空客運公司選擇
論文名稱(外文):A Latent Class Generalized Nested Logit Model of Passenger Airline Choice
指導教授:溫傑華溫傑華引用關係
指導教授(外文):Chieh hua Wen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:交通工程與管理所
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:53
中文關鍵詞:航空客運公司選擇在群體一般化巢式羅吉特模式
外文關鍵詞:Latent Class Generalized Nested Logit ModelPassenger Airline Choice
相關次數:
  • 被引用被引用:2
  • 點閱點閱:734
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:184
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合潛在群體模式與一般化巢式羅吉特模式,發展出潛在群體一般化巢式羅吉特模式,並應用於台北-東京線航空公司選擇行為之探討。潛在群體一般化巢式羅吉特模式考量旅客偏好的異質性,以及航空公司的相似性,模式解釋能力優於一般化巢式羅吉特模式。潛在群體一般化巢式羅吉特模式結合市場區隔理論,可了解不同區隔的旅客對航空公司的偏好。研究結果產生兩個區隔,區隔1的乘客對預期起飛時間、準點性和報到服務(非常親切有禮)較為敏感,區隔2的乘客較重視票價及班次。
過去的研究較常使用及群分析及判別分析進行市場區隔,但此兩種方法只考慮外生變數,但潛在群體一般化巢式羅吉特模式可同時利用外生變數及內生變數將乘客分群藉以找出目標市場;此外,本模式較為具有彈性,舉例而言若乘客認為華航與長榮較為相似且長榮與全日空相似,但全日空與華航並不相似的情況,因此就模式意涵而言潛在群體一般化巢式羅吉特模式優於潛在群體多項羅吉特模式。
藉由服務屬性願付價格的計算,得知乘客皆願意付出較多的金錢以取得更好的服務品質。本研究結果可作為航空公司研擬行銷及營運策略之參考。

關鍵詞:航空公司、潛在群體模式、一般化巢式羅吉特模式、服務品質
This research focuses on development of the latent class model with the generalized nested logit formulation. The latent class generalized nested logit model was used to identify airline passengers’ potential segments and preferences toward international air carriers. Empirical data was collected from Taiwanese passengers who have flown from Taipei to Tokyo. The latent class generalized nested logit model accommodating preference heterogeneity outperforms the standard generalized nested logit model as indication of a better approach to analyze airline choice behavior. The results of the latent class generalized nested logit models confirm that passengers in Segment 1 are sensitive to preferred departure time, punctuality and check-in service (very friendly). The coefficients of airfare and flight frequency are the largest compared to Segment 1. The values of willingness-to-pay for service attribute improvements vary across segments. Passengers are willing to pay more for better service quality. In order to develop effective marketing and operational strategies for the international air travel market, this study highlights the importance of exploring airline choice behaviors by segments.

Keywords: Airline; Latent class model; Generalized nested logit model; Service quality
CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH BACKGROUND AND MOTIVATION 1
1.2 RESEARCH OBJECTIVES 3
1.3 RESEARCH METHODOLOGY 3
1.4 FLOW CHART 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 AIRLINE CHOICE MODEL 5
2.2 MARKET SEGMENTATION FOR AIR TRAVEL 7
2.3 SERVICE QUALITY OF AIRLINES 8
2.4 DISCRETE CHOICE MODEL 9
2.5 LATENT CLASS MODEL 10
CHAPTER 3 METHODOLOGICAL FRAMEWORK 13
3.1 MNL MODEL 13
3.2 NL MODEL 14
3.3 GNL MODEL 15
3.4 LC-MNL MODEL 17
3.5 LC-NL MODEL 18
3.6 LC-GNL MODEL 19
CHAPTER 4 EMPIRICAL DATA 21
4.1 THE DATA 21
4.2 RESULTS OF MNL MODEL 21
4.3 RESULTS OF NL MODEL 23
4.4 RESULTS OF GNL MODEL 26
4.5 RESULTS OF LC-MNL MODEL 28
4.6 RESULTS OF LC-NL MODEL 30
4.7 RESULTS OF LC-GNL MODEL 33
4.8 RESULTS OF WILLINGNESS-TO-PAY 36
4.9 DISCUSSIONS AND MANAGERIAL IMPLICATIONS 37
CHAPTER 5 CONCLUSIONS 39
5.1 STUDY RESULTS 39
5.2 CONTRIBUTIONS 39
5.3 LIMITATIONS AND FUTURE RESEARCH 40
REFERENCES 42
Adler, T., Falzarano, S.C., and Spitz, G., (2006) “Modeling Service Trade-Offs in Air Itinerary Choices,” Transportation Research Record, Vol.1915, pp.20-26.
Bruning, E.R., Kovacic, M.L., and Oberdick, L.E., (1985) “Segmentation analysis of domestic airline passenger markets,” Journal of the Academy of Marketing Science, Vol. 13, pp. 17-31.
Ben-Akiva, M., and Lerman, S.R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. Cambridge, MA: MIT Press.
Boxall, P.C. and Adamowicz, W.L., (2002) “Understanding heterogeneous preferences in random utility models: A latent class approach,” Environmental and Resource Economics, Vol.23, No.4, pp.421-446.
Balcombe, K., Fraser, I., and Harris, L., (2009) “Consumer willing to pay for in-flight service and comfort level: A choice experiment,” Journal of Transport Management.
Chang, Y.H. and Yeh, E.H., (2002) “A Survey Analysis of Service Quality for Domestic Airlines,” European Journal of Operational Research, Vol. 139, No.1, pp.166-177.
Coldren, G.M. and Koppelman, F.S., (2005) “Modeling the competition among air-travel itinerary shares GEV model development,” Transportation Research Part A, Vol. 39, pp. 345-365.
Espino, R., Martin, J.C. And Roman, C., (2007) “Analyzing the effect of preference heterogeneity on willingness to pay for improving service quality in an airline choice context,” Transportation Research Part E.
Greene, W.H. and Hensher, D.A., (2003) “A latent class model for discrete choice analysis: contrasts with mixed logit,” Transportation Research Part B, Vol. 37, pp. 681-698.
Heckman, J. and Singer, B., (1984) “Econometric duration analysis,” Journal of Econometrics, Vol.24, pp.63-132.
Hess, S., (2007) “Posterior analysis of random taste coefficients in air travel choice behavior modeling,” Journal of Air Transport Management, Vol. 13, pp. 203-212.
McFadden, D. (1978), “The General Linear Profit Function”, M. Fuss and D. McFadden eds., Production Economics: A Dual Approach to Theory and Applications, Vol. 1,. Armsterdam: North-Holland, pp. 409-453.
Mason, K.J. and Gray, R., (1995) “Short Haul Business Travel in the European Union: a Segmentation Profile,” Journal of Air Transport Management, Vol.2, pp. 197-205.
Oh, M.-S., Choi J. W. and Kim D.-G., (2003) “Bayesian inference and model selection in latent class logit models with parameter constraints: an application to market segmentation,” Journal of applied statistics, Vol. 30, No.2, pp.191-204.
Outwater, M.L., Castleberry, S., Shiftan, Y., Ben-Akiva, M., Zhou, Y.S., Kuppam, A., (2003) “Attitudinal Market Segmentation Approach to Mode Choice and Ridership Forecasting - Structural Equation Modeling,” Transportation Research Record, No.1854, pp. 32-42.
Outwater, M.L., Modugula, V., Castleberry, S., and Hatia, P., (2004) “Market Segmentation Approach to Mode Choice and Ferry Ridership Forecasting,” Transportation Research Record, No. 1872, pp. 71-79.
Proussaloglou, K. and Koppelman, F.S., (1999) “The choice of air carrier, flight, and fare class,” Journal of Air Transport Management, Vol. 5, pp. 193-201.
Park, J.W., Robertson, R. and Wu, C.-L., (2006) “Modeling the impact of airline service quality and marketing variables on passengers’ future behavioral intentions,” Transportation Planning and Technology, Vol. 29, pp. 359-381.
Robledo, M.A., (2001) “Measuring and managing service quality integrating customer expectations,” Managing Service Quality, Vol. 11, pp. 22-31.
Rose, J.M., Hensher, D.A. and Greene, W.H., (2005) “Recovering costs through price and service differentiation: accounting for exogenous information on attribute processing strategies in airline choice,” Journal of Air Transport Management, Vol. 11, pp. 400-407.
Swait, J. and Sweeney, J.C., (2000) “Perceived value and its impact on choice behaviour in a retail setting,” Journal of Business and Economics Statistics, Vol. 21, pp.80-87.
Toh, R.S. and Hu, M.Y., (1990) “A multiple discriminant approach to identifying frequent fliers in airline travel: some implications for market segmentation, target marketing, and product differentiation,” Logistics and Transportation Review, Vol. 26, pp. 179-97.
Tsaur, S.-H., Chang, T.-Y. and Yen, C.-H., (2002) “The evaluation of airline service quality by fuzzy MCDM,” Tourism Management, Vol.23, pp.107-115.
Teichert, T., Shehu, E., von Wartburg, I. (2008) “Customer Segmentation Revisited: The Case of the Airline Industry,” Transportation Research Part A: Policy and Practice, Vol.42, No.1, pp.227-242.
Voshva, P., (1999). E-Mail to the lead author describing the FNL model, October
Wedel, M. and Kamakura, W.A., (1998), Market Segmentation: Conceptual and Methodlogical Fundations (2nd ed.), Boston: Kluwer Academic Publishers.
Warburg, V., Bhat, C. and Adler, T., (2006) “Modeling demographic and unobserved heterogeneity in air passengers’ sensitivity to service attributes in itinerary choice,” The 85th Annual Meeting of Transportation Research Board, Washington, D.C.
Wen, C.H and Koppelman, F.S., (2001) “The Generalized Nested Logit Model,” Transportation Research B, 35, PP.627-641.
Wen, C.H and Lai, S.C., (2008) “Latent Class Models of International Air Carrier Choice,” The 2008 Annual Meeting of Air Transport Research Society.
Yoo, K.E. and Ashford, N., (1996) “Carrier choices for air passengers in Pacific Rim: using comparative analysis and complementary interpretation of revealed preference and stated preference data,” Transportation Research Record, No. 1562, pp. 1-7.
Yankelovich, D. and Meer, D., (2006) “Rediscovering market segmentation,” Harvard Business Review, Vol.84, pp.122–131.
Zhou, Y.S., Viswanathan, K., Popuri, Y., Proussaloglou, K.E., (2004) “Transit District Customers in San Mateo County, California - Who, Why, Where, and How,” Transportation Research Record, No. 1887, pp. 183-192.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔