(3.237.178.91) 您好!臺灣時間:2021/03/02 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:尤致翔
研究生(外文):Chih-Shiang Yu
論文名稱:電容式靜電微感測器設計與製作
論文名稱(外文):Design and Fabrication of Capacitive Electrostatic Microsensors
指導教授:張興政
指導教授(外文):Hsing-Cheng Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:靜電量測靜電斥力靜電微感測器電容微感測器
外文關鍵詞:capacitive microsensorelectrostatic microsensorelectrostatic repulsion forceelectrostatic measurement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:906
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
本文研究新型電容式微靜電感測陣列,利用有限元素法模擬分析微結構的變形特性與靜電響應。靜電微感測元件由兩片矽晶圓分別製作上電極封裝結構與下層微靜電感測電容結構,靜電感測微電容之典型尺寸為400 × 400μm2。不對稱的感測薄膜結構藉蝕刻減重窗口和邊緣溝槽達成,有效提高感測變形自由度。當靜電力作用時,薄膜撓曲產生電容變化。微電容量測藉微電容並聯設計,將微弱電容訊號轉換成穩定電壓值輸出,可量測的電容值範圍在1∼100pF,等效輸出電壓範圍介於±5V之間,量測解析度為62.5fF,且誤差小於2%。電容轉換靜電荷之靈敏度隨感測電容變大而增加,最大可達5.918pC/pF。配合即時靜電處理人機介面,直接控制多工器,以擷取多通道陣列訊號,提供待測物表面單點或多點靜電荷分佈之監控與量測。
A novel capacitive electrostatic sensor to measure electrostatic charge by micromechanical variable capacitors has been developed. The implemented variable capacitors are driven by electrostatic repulsion force. The microdevices operate in the environment at room temperature. The characteristics of electrostatic and capacitive devices are analyzed to design and fabricate electrostatic sensing components using MEMS technology in order to improve the sensitivity of electrostatic detection. By analyzing simulation results of micro structures, the variable deflection membrane is designed with different sizes. The typical size of developed microsensor is 400 × 400μm2. The microsensors are fabricated on two separate silicon wafers with electrodes and micro sensing structures that are bonded. A suitable sensing circuit is designed to reduce signal processing error. Measured capacitances from 1pF to 100pF with reference capacitance of 10pF indicate the resolution of 62.5fF in a 1 kHz frequency, and measurement error below 2%. The electrostatic sensitivity increases with the measured capacitance. The best sensitivity of capacitance to electrostatic for the microdevices is 5.918pC/pF.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻探討 4
1.4 研究流程與架構 8
第二章 靜電感測原理與模擬 10
2.1 靜電感測原理 10
2.2 電容感測原理 11
2.3 靜電微感測元件模擬 17
2.3.1 靜電感應模擬 17
2.3.2 微感測元件模擬 20
第三章 微製程設計與規劃 29
3.1 靜電微感測元件設計 29
3.2 光罩設計 31
3.2.1 微結構圖形設計 31
3.2.2 製程對準圖形設計 32
3.3 非等向性蝕刻與夾具保護設計 34
3.4 製程規劃 36
第四章 製程分析與討論 40
4.1 背向蝕刻製程 40
4.2 靜電微感測器之金屬結構製作製程 45
4.2.1 蒸鍍與金屬圖形化 45
4.2.2 電鍍電性傳導結構 47
4.2.3 表面粗糙度討論 52
4.3 靜電微感測器之靜電結構製作製程 57
4.3.1 靜電結構之底層 57
4.3.2 Sol-Gel製程 59
4.3.3 靜電結構之中間絕緣層 62
4.3.4 靜電結構之上層 64
4.4 靜電微感測器之封裝結構製作製程 67
第五章 靜電量測與分析 70
5.1 量測電路 70
5.2 電路屏蔽 76
5.3 靜電響應量測 78
第六章 結論 85
6.1 結論 85
6.2 未來發展 86
參考文獻 87
附錄 A 光罩設計參數 91
附錄 B 製程流程與參數 92
B.1 製程流程之剖面圖 92
B.2 製程步驟 95
B.3 製程參數 98
附錄 C 102
[1]J. N. Chubb, "Calibration of instruments for electrostatic measurements," IEE Colloquium on Significance of Calibration, in X, 1993, pp. 7/1-7/2.
[2]J. N. Chubb, J. Embury, D. Bourne, and S. Southall, "Measurements for the assessment of ignition risks from static electricity," IEE Colloquium on Electrostatic Problems During Material Handling, in X, 1994, pp. 2/1-2/4.
[3]J. N. Chubb, "Methods of measurement to assess the suitability of materials for the control of static electricity," IEE Colloquium on ESD (Electrostatic Discharge) and ESD Counter Measures, (Digest No.1995/061), in X, 1995, pp. 6/1-6/6.
[4]N. Gibson, "Static electricity -- an industrial hazard under control?" Journal of Electrostatics, Vol. 40-41, pp. 21-30, 1997.
[5]J. Chubb, R. Gompf, and P. Holdstock, "Electrostatic test methods compared," Electrical Overstress/Electrostatic Discharge Symposium Proceedings 1999, in X, 1999, pp. 49-53.
[6]L. Gang and N. R. Aluru, "A Lagrangian approach for electrostatic analysis of deformable conductors," Journal of Microelectromechanical Systems, Vol. 11, pp. 245-254, 2002.
[7]A. E. Seaver, "Analysis of electrostatic measurements on non-conducting webs," Journal of Electrostatics, Vol. 35, pp. 231-243, 1995.
[8]T. S. Lee, "A dual-sensor instrument for simultaneous measurement of surface charges on the two sides of a dialect layer," Journal of Electrostatics, Vol. 40-41, pp. 463-468, 1997.
[9]D. M. Taylor, "Measuring techniques for electrostatics," Journal of Electrostatics, Vol. 51-52, pp. 502-508, 2001.
[10]H. Zhao, G. S. P. Castle, and I. I. Inculet, "The measurement of bipolar charge in polydisperse powders using a vertical array of Faraday pail sensors," Journal of Electrostatics, Vol. 55, pp. 261-278, 2002.
[11]J. Q. Zhang and Y. Yan, "On-line continuous measurement of particle size using electrostatic sensors," Powder Technology, Vol. 135-136, pp. 164-168, 2003.
[12]C. Xu, S. Wang, G. Tang, D. Yang, and B. Zhou, "Sensing characteristics of electrostatic inductive sensor for flow parameters measurement of pneumatically conveyed particles," Journal of Electrostatics, Vol. 65, pp. 582-592, 2007.
[13]J. Chubb, "Measurement of tribo and corona charging features of materials for assessment of risks from static electricity," IEEE Transactions on Industry Applications, Vol. 36, pp. 1515-1522, 2000.
[14]J. Chubb, "New approaches for electrostatic testing of materials," Journal of Electrostatics, Vol. 54, pp. 233-244, 2002.
[15]J. N. Chubb, "Comments on methods for charge decay measurement," Journal of Electrostatics, Vol. 62, pp. 73-80, 2004.
[16]J. N. Chubb, "Non-contact measurement of the electric field shielding performance and the resistivity of layer materials," Journal of Electrostatics, Vol. 64, pp. 685-689, 2006.
[17]J. N. Chubb, "Measurement of charge transfer in electrostatic discharges," Journal of Electrostatics, Vol. 64, pp. 321-325, 2006.
[18]J. N. Chubb, "A standard proposed for assessing the electrostatic suitability of materials," Journal of Electrostatics, Vol. 65, pp. 607-610, 2007.
[19]M. Habibi, E. Lueder, T. Kallfass and D. Horst, “A Surface Micromachined Capacitive Absolute Pressure Sensor Array on a Glass Substrate,” Sensors and Actuators A, Vol.46-47, pp.125-128, 1995.
[20]Y. Wang and M. Esashi, "The structures for electrostatic servo capacitive vacuum sensors," Sensors and Actuators A: Physical, Vol. 66, pp. 213-217, 1998.
[21]Y. Watanabe, T. Mitsui, T. Mineta, S. Kobayashi, N. Taniguchi, and K. Okada, "Five-axis motion sensor with electrostatic drive and capacitive detection fabricated by silicon bulk micromachining," Sensors and Actuators A: Physical, Vol. 97-98, pp. 109-115, 2002.
[22]M. Sergio, N. Manaresi, M. Tartagni, R. Guerrieri and R. Canegallo, “A Textile Based Capacitive Pressure Sensor,” Proceedings of IEEE on Sensors, Vol. 2, pp.1625-1630, June, 2002.
[23]P. S. Riehl, K. L. Scott, R. S. Muller, R. T. Howe, and J. A. Yasaitis, "Electrostatic charge and field sensors based on micromechanical resonators," Journal of Microelectromechanical Systems, Vol. 12, pp. 577-589, 2003.
[24]M. Hanf, W. Dotzel, "Micromechanical electrostatic field sensor for the characterization of charges in MEMS devices," Sensors and Actuators A: Physical, Vol. 115, pp. 280-285, 2004.
[25]A. Roncin, C. Shafai, and D. R. Swatek, "Electric field sensor using electrostatic force deflection of a micro-spring supported membrane," Sensors and Actuators A: Physical, Vol. 123-124, pp. 179-184, 2005.
[26]M. Kanno, “Measurements and Applications of Small Capacitance,” Oyo Butury, Japan, Vol. 49, No. 9, pp. 905-912, 1980.
[27]徐泰然,微機電系統技術與微系統設計與製造,普林斯頓國際有限公司代理出版,2003年9月。
[28]P. M. Osterberg and S. D. Senturia, "M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures," Journal of Microelectromechanical Systems, Vol. 6, pp. 107-118, 1997.
[29]劉君華,智慧感測器系統,西安電子科技大學出版社,2000。
[30]張震中,許佩佩,鄒國益,材料力學,全華科技圖書股份有限公司,1997。
[31]Minhang Bao and Weiyuan Wang, “Future of Microelectromechanical Systems (MEMS),” Sensors and Actuators A, Vol.55, pp.135-141, 1996.
[32]R. Puers, “Capacitive Sensors: When and How to Use Them,” Sensors and Actuators A, Vol.37-38, pp.93-105, 1993.
[33]X. Yao, L. Zhang and S. Wang, "Pore size and pore-size distribution control of porous silica," Sensors and Actuators B, Vol.24-25, pp.347-352, 1995.
[34]U. Kunzelmann and H. Bottcher, "Biosensor Properties of Glucose Oxidase Immobilized within SiO2 Gels," Sensors and Actuators B, Vol.38-39, pp.222-228, 1997.
[35]陳慧英,黃定加與朱秦億,溶膠凝膠法在薄膜製備上之應用,化工技術第七卷,第十一期,第152-167頁,1999。
[36]董永貴,傳感技術與系統,清華大學出版社,北京,2006年6月。
[37]張琛,陳文元,陳佳品,微執行器,交通大學出版社,上海,2005年12月。
[38]Ferran Reverter, Xiujun Li and Gerard C. M. Meijer, "Stability and accuracy of active shielding for grounded capacitive sensors," Meas. Sci. Technol., Vol. 17, pp. 2884-2890, 2006.
[39]ANALOG DEVICES, AD620 Data sheet.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林耀盛、吳英璋(1999)。慢性病的個人控制觀:自主與依賴之間.應用心理研究, 3,105-128。
2. 胡文郁、曾春典、戴玉慈、余玉眉(1996).高血壓患者服藥遵從行為及其相關因素之探討.中華公共衛生雜誌,15(4),319-332。
3. 胡文郁、戴玉慈、于博芮、余玉眉、曾春典(1999).老年高血壓患者服藥遵從行為及其影響因素之研究.慈濟醫學雜誌,11(3),227-235。
4. 張苙雲(1998).「逛醫師」的邏輯:求醫歷程的分析.臺灣社會學刊,21,59-87。
5. 許文耀(1997).因應資源、因應副作用、控制與醫遵循的關係.中華心理學刊, 39(1),37-46。
6. 陳秀蓉、呂碧鴻(1999).高血壓患者注意焦點的型態與個人生病行為的關係. 應用心理研究,3(3),163-190。
7. 黃淑貞、余萬能 (2001).社區藥局與取藥病人遵醫囑行為研究.公共衛生, 27(4), 245-261.
8. 彭莉琴、鄭惠美(2001).某醫學中心中風高血壓病人遵從醫囑服藥行為階段及相關因素之探討.衛生教育學報,15, 81-97。
9. 劉淑娟(1999).罹患慢性病老人服藥遵從行爲及其相關因素之探討.護理研究, 7(6),581-593。
10. 蔣欣欣、盧孳艷(1996).健康與疾病的文化觀及現象分析.護理雜誌,43(4), 42-48。
11. 顧乃平(1978).醫院門診高血壓病人的研究.護理雜誌,25(3),35-44。
12. [35] 陳慧英,黃定加與朱秦億,溶膠凝膠法在薄膜製備上之應用,化工技術第七卷,第十一期,第152-167頁,1999。
 
系統版面圖檔 系統版面圖檔