(3.226.72.118) 您好!臺灣時間:2021/05/13 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:廖曼鈞
研究生(外文):Man-Chun Liao
論文名稱:脈衝直流反應性磁控濺鍍二氧化鈦基薄膜的光誘發超親水性研究
論文名稱(外文):Investigation of photo-induced superhydrophilicity of TiO2-based thin films deposited by pulsed-DC reactive magnetron sputtering
指導教授:陳錦山
指導教授(外文):Giin-Shan Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:光誘發親水性質TiO2薄膜脈衝直流反應性濺鍍
外文關鍵詞:photo-induced hydrophilitypulsed-DC reactive magnetron sputteringTiO2 thin films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文旨在採用傳統直流及脈衝直流二種反應性(Ar/O2)磁控濺鍍製程,並利用(1)靶陰極電壓/電流與(2)氧分壓對應氧流率之濺鍍特徵曲線臨場監控,對照光釋放能譜臨場分析,期獲取最佳化之製程參數(反應性氣氛條件、基板溫度、偏壓值及直流電漿激發型態)以生長具有光誘發親水防霧、自潔效果之TiO2薄膜。
首先,使用單純的傳統直流電漿激發源,在不同的基板溫度(250℃~400℃)與基板偏壓(-100 V~+100 V)下沉積TiO2薄膜,並利用X光繞射術(XRD)及掃瞄電子顯微術(SEM)觀察薄膜之微結構差異。這些分析證實基板溫度及偏壓值必須控制在300℃與-50 V(或0 V)方能利於具有高度親水防霧潛力之A-TiO2結晶相的生長。
採用這些濺鍍參數結合脈衝直流電漿激發型態,雖然能進一步提升TiO2薄膜的結晶性,但X光射線光電子能譜術(XPS)證實其表面會受到來自鈉玻璃基板內部的鈉所污染,導致光照及循環測試以後之水接觸角高達10~40�a以上。然而,使用「鈉玻璃/TiNx(阻障層)/TiO2」之雙層薄膜結構不但可以有效抑制鈉的擴散,且能促進薄膜結晶,致使經過循環測試以後,仍能呈現低達7~9�a的水接觸角以及良好持續的防霧親水特性。最後,本論文將從(1)XRD、XPS等實驗數據分析及(2)既有學術理論發現之觀點,綜合說明這種防霧親水特性的大幅改善機理。
This dissertation employs conventional- and pulsed-DC reactive (Ar/O2) sputtering deposition processes, in conjunction with in-situ monitors of (a) cathode voltage/current, (b) partial oxygen pressure, and (c) optical emission as a function of the value of oxygen flow rate, to obtain the optimal processing parameters (reactive atmosphere, substrate temperature and bias, and plasma-excitation type) for the fabrication of TiO2 thin films exhibiting photo-induced hydrophilicity, anti-fogging and self-cleaning properties.
First, TiO2 films were deposited by conventional-DC reactive sputtering deposition under various substrate temperatures (250-400℃) and biases (from-100 V to +100 V). X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to observe differences in films’ microstructure. These analyses confirmed that controlling the temperature and bias at 300℃ and -50 V (or 0 V) favors the formation of anatase TiO2 (A-TiO2), deemed as high potential for hydrophilicity and anti-fogging applications.
While the crystallinity of the TiO2 films can be further improved by employing the above mentioned processing parameters in conjunction with pulsed-DC magnetron sputtering, X-ray photoelectron spectroscopy (XPS) revealed that the surfaces of the TiO2 films can be contaminated by the sodium originated from the soda-lime glass substrates. This contamination renders the sample films after photon irradiation and cycling test to give high values of water contact angle ranging from 10 to 40�a. Nonetheless, using the soda-lime glass/TiNx/TiO2 dual-layered structure not only can effectively inhibit the outward diffusion of sodium, but also promote the crystallization of the film. These improvements result in a TiO2 films having long-last hydrophilicity of water contact angles as small as 7-9�a. Mechanisms behind the hydrophilicity improvement will be elucidated based on (a) experimental results of XRD, XPS, etc. and (b) previous literature findings.
中文摘要..................................................I
英文摘要.................................................II
總目錄...................................................IV
表目錄......................................................VII
圖目錄.....................................................VIII
第一章、緒論........................................................1
1.1 前言..................................................1
1.2 研究動機與目的........................................2
第二章、文獻回顧..........................................4
2.1 二氧化鈦的基本結構與光誘發超親水性行為................4
2.1.1 二氧化鈦薄膜特性........................................................4
2.1.2 光觸媒之氧化還原原理................................5
2.1.3 光誘發超親水性行為..................................7
2.2 反應性濺鍍之遲滯行為..................................9
2.3 鈉-鹼玻璃之鈉元素擴散行為...........................11
第三章、實驗方法與步驟...................................19
3.1 實驗流程(Procedures)指引...........................19
3.2 濺鍍系統設備與薄膜沉積原理說明.......................20
3.3 薄膜特性檢測與分析...................................22
3.3.1 表面輪廓儀(薄膜厚度量測).........................22
3.3.2 掠角X光繞射儀(GIXRD;薄膜晶體結構分析)...........22
3.3.3 冷場發射式電子顯微鏡(FESEM;薄膜表面結構分析)....23
3.3.4 接觸角分析(Contact-Angle Analysis)...............23
3.4.5 化學分析電子能譜儀(ESCA;表面元素鍵結分析).......25
第四章、結果與討論.......................................39
4.1 直流磁控反應性濺鍍參數調變與薄膜特性之關係...........39
4.1.1 氧流量及基板溫度變化衍生之濺鍍特徵曲線.............39
4.1.2 TiO2薄膜之微結構分析...............................43
4.1.3 最適化濺鍍參數獲取及親水性初步探討.................48
4.2 脈衝直流反應性磁控濺鍍TiO2單層薄膜...................50
4.2.1 脈衝工作週率調變衍生之濺鍍特徵曲線.................50
4.2.2 TiO2單層薄膜之微結構分析...........................52
4.2.3 TiO2單層薄膜之親水性探討...........................54
4.3 脈衝直流反應性磁控濺鍍之TiO2複層薄膜.................56
4.3.1 TiO2複層薄膜之微結構分析...........................56
4.3.2 TiO2複層薄膜之親水性質探討.........................57
4.3.3 TiO2複層薄膜之表面狀態分析.........................58
第五章、結論.............................................89
參考文獻.................................................90
1. A. Fujishima, K. Honda, K. Univ and Yokohama, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, p. 378 (1972)
2. 宋大崙、洪長春、蔡旻樺、洪文琪、梁家榮、黃獻鋒,奈米二氧化鈦製品之台灣市場研究,行政院國家科學委員會科學技術資料中心,(2004)。
3.O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke and D. Glöß, Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering, Surf. Coat. Tech., 180-181, p. 538-543 (2004)
4.L. Shivalingappa, J. Sheng and T. Fukami, Photocatalytic effect in platinum doped titanium dioxide films, Vacuum, 48, p. 413 (1997)
5.W. Choi, S. J. Hong, Y. S. Chang and Y. Cho, Environ. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Sci. Technol. 34, p. 4810 (2000)
6.O. Heintz, D. Robert and J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol. A:Chem., 135, p. 77 (2000)
7.R. Levinson, P. Berdahl and H. Akbari, Solar spectral optical properties of pigments-part II: survey of common colorants, Solar Energy Materials and Solar Cells, 89, p. 351 (2005)
8.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light-induced amphiphilic surfaces, Nature, 388, p. 431(1997)
9.A. Mills, A. Lepre, N. Elliot, S. Bhopal, O. P. Parkin and S. A. O’Neill, Characterisation of the photocatalyst Pilkington Activ™: a reference film photocatalyst?, J. Photochem. Photobiol. A:Chem., 160, p. 213 (2003)
10.K. Takagi, T. Makimoto, H. Hiraiwa and T. Negishi, Photocatalytic, antifogging mirror, J. Vac. Sci. Technol. A, 19, p. 2931 (2001)
11.A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 Photocatalysis-Fundamentals and Applications, BKC, Tokyo, (1999)
12. 垰田博史,光觸媒圖解,商周出版社,(2003)。
13. Phase Diagrams for Ceramists Figure, The American Ceramic Society Inc., 76 (1975)
14. Y. Li and T. Ishigaki, Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt, J. Cryst. Growth, 242, p. 511 (2002)
15. C. Suresh, V. Biju, P. Mukundan and K. G. K. Warrier, Anatase to rutile transformation in sol-gel titania by modification of precursor , Polyhedron, 17, p. 3131 (1998)
16. S. Schiller, G. Beister, W. Sieber, G. Schirmer and E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive D.C. Plasmatron Sputtering, Thin Solid Films, 83, p. 239 (1981)
17. S. Miyake, K. Honda, T. Kohno, Y. Setsuhara, M. Satou and A. Chayahara, Rutile-Type TiO2 Formation by Ion Beam Dynamic Mixing, J. Vac. Sci. Technol. A, 10, p. 3253 (1992)
18. M. Gilo and N. Croitoru, Properties of TiO2 Films Prepared by Ion-Assisted Deposition Using a Gridless End-Hall Ion Source, Thin Solid Films, 283, p. 84 (1996)
19. C.C. Ting, S.Y. Chen and D.M. Liu, Preferential Growth of Thin Rutile TiO2 Films Upon Thermal Oxidation of Sputtered Ti Films, Thin Solid Films, 402, p. 290 (2002)
20. 簡國明, 奈米二氧化鈦專利地圖及分析, 臺北市 : 行政院國家科學委員會科學技術資料中心, (2003)
21. 51. M. Schiavello, Heterogeneous Photocatalysis, Willey, p. 103-117 (1997)
22. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 95, p. 69 (1995)
23. 化學資訊月刊14卷第8期。
24. A. Heller, Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films, Acc. Chem. Res. 28, p. 503 (1995)
25. R. Cai, Y. Hashimoto, K. Itoh, Y. Kubota and A. Fujishima, Photokilling of malignant cells with ultrafine TiO2 powder. Chem. Soc. Jap. 64, p. 1268 (1991)
26. H. Kazuhito and F. Akira, TiO2 Photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys., 44, p. 8269 (2005)
27. K. Takamura, Y. Abe and K. Sasaki, Influence of Oxygen Flow Ratio on the Oxidation of Ti Target and the Formation Process of TiO Films by Reactive Sputtering2, Vacuum, 74, p. 397 (2004)
28. S. Maniv and W.D. Westeood, Oxidation of an Aluminum Magnetron Sputtering Target in Ar/O2 Mixtures. J. Appl. Phys., 51, p. 718 (1980)
29. M. Ohring, The Materials Science of Thin Film, Academic Press (1992)
30. A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, Preparation and characterization of TiO2 Photocatalysts supported on various rigid supports(glass, quartz and stainless steel). Comparative studies of photocatalytic activeity in water purifyication. Appl. Catal., B, 7, p. 49 (1995)
31. Y. Paz, A. heller, Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J. Mar. Res. 12, p.2759 (1997)
32. Jiaguo Yu and Xiujian Zhao, Effect of substrates on the photocatalytic activeity of nanometer TiO2 thin films. Mater. Res. Bull., 35, p. 1293(2000)
33. E. Aubry, M. N. Ghazzal, V. Demange, N. Chaoui, D. Robert, A. Billard, Poisoning preven tion of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of SiNx diffusion barriers. Surf. Coat. Technol., 201, p. 7706 (2007)
34. Joint Committee for Powder Diffraction Standards (JCPDS), Card No. 02-0406【A-TiO2】, 02-0494【R-TiO2】
35. Akira Shibata, Kunio Okimura, Yukio Yamamoto and Kakuei Matubara, Effect of Heating Probe on Reactively Sputtered TiO2 Film Growth, 32, pp. 5666-5670 (1993).
36. W. Choi, A. Termin, M. R. Hoffmann, The role of metallic dopants in quantum-sized TiO2: correlation between photocareactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, p. 13669 (1994)
37. G. Mohan Rao and S. Mohan, Studies on glow-discharge during dc reactive magnetron sputtering. J.Appl. Phys., 69, p.6652 (1991)
38. A. Kinbara, E. Kusano, S. Baba, TiOx film formation process by reactive sputtering. J. Vac. Sci. Tech. A, 10(4), p.1483 (1991)
39. A. Belkind,W. Zhu, J. Lopez and K. Becker, Time-resolved Optical Emission Spectroscopy During Pulsed dc Magnetron Sputter Deposition of Ti and TiO2 Thin Films, Plasma Sourc. Sci. Tech., 15, p. S17 (2006)
40. M. Neuhauser, S. Barwulf and H. Hilgers, Optical Emission Spectroscopy Studies of Titanium Nitride Sputtering on Thermoplastic Polymers, Surf. Coat. Technol., 116, p. 981 (1999)
41. O. Tamiko, N. Shouta, U. Tsuyoshi, K. Hiroharu, S. Yoshiaki and E. Kenji,Laser Ablated Plasma Plume Characteristics for Photocatalyst TiO2 Thin Films Preparation, Thin Solid Films, 506, p. 106 (2006)
42. B. Karunagaran, R. T. Rajendra Kunar, D. Mangalaraj, S. K. Narayandass and G. Mohan Rao, Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Cryst. Res. Technol., 37, p. 1285 (2002)
43. 行政院國家科學委員會,真空技術與應用(2001)
44. K. Okimura and A. Shibata, Mass and Energy Analyses of Substrate-incident Ions TiO2 Deposition by RF Magnetron Sputtering. Jpn. J. Appl. Phys., 36, p.313 (1997)
45. B. R. Stoner, G. -H. M. Ma, S. D. Wolter, W. Zhu, Y.-C. Wang, R. F.Davis and J. T. Glass, Epitaxial Nucleation of Diamond on Beta-Sic via Bias-Enhanced Microwave Plasma Chemical-Vapor-Deposition., Diam., Relat. Mater. 2, p.142 (1993)
46. Donald Leonard Smith, Thin-film deposition, McGraw-Hill Professional (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔