(3.227.0.150) 您好!臺灣時間:2021/05/08 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉力誌
研究生(外文):Li-Jr Liu
論文名稱:鎳元素對氧化鈰之固態電解質特性影響之研究
論文名稱(外文):Effect of Nickel Addition on Characteristics of Ceria Solid Electrolyte
指導教授:林中魁, 段維新,陳錦毅
指導教授(外文):C.K. Lin, Wen-Hsing Tuan, Chin-Yi Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:122
中文關鍵詞:交流阻抗顆粒形貌電子微探測分析噴霧熱解球磨氧化釔氧化鈰氧化鎳靜電沉積固態電解質陽極
外文關鍵詞:Ball millingyttriaspray pyrolysissolid-state electrolyteelectrostatic depositionnickel oxideceriaAC impedanceparticle morphologyEPMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為探討固態氧化物燃料電池(SOFC)中之陽極端鎳元素於高溫下擴散進入以氧化鈰為基地相之電解質後,對電解質之結構特性及其導電行為的影響,本研究直接於釔添加之氧化鈰(yttria-doped ceria, YDC)中添加鎳元素,以不同的粉末製備方式探討鎳元素的添加對YDC電解質陶瓷的影響。
本研究分別以噴霧熱解法(spray pyrolysis, SP)合成(10YDC)/(NiO)複合陶瓷粉體,以及球磨法(ball milling, BM)製備(20YDC)/(NiO)複合陶瓷粉體,隨後皆以乾壓成形的方式於不同溫度下進行燒結,探討其複合電解質材料的相關特性。由實驗數據顯示,由硝酸鈰、醋酸釔與醋酸鎳之先驅溶液經噴霧熱解後的顆粒為奈米晶空心球(nanocrystalline hollow sphere)結構造成燒結體密度過低,且由於gas-to-particle轉變機制易導致化學計量比的偏差。此外,由晶格常數的計算、XRD繞射分析、EPMA電子探測微分析等,無法證明鎳元素是否固溶於YDC基地中應為低於偵測極限(below detection limit);且氧化鎳傾向偏析於基地相的晶界位置。而交流阻抗與直流電阻量測數據顯示,晶粒導電活化能隨密度下降而增加;氧化鎳於晶界上偏析所形成之晶界障壁層(grain boundary barrier layer,GBBL)效應,則造成晶界之導電活化能隨鎳含量增加而增加,使導複合材料之導電率下降。
為改善電解質之燒結密度,以商用氧化釔與氧化鈰粉體添加醋酸鎳經濕式球磨技術(BM)製備之(20YDC)/(NiO)複合粉體,進行煆燒、成形與燒結探討其固態電解質之相關特性。由晶格常數計算、XRD繞射圖分析與EPMA mapping,鎳元素於基地相中並無明顯固溶發生,且各元素具有可靠的化學計量比。BM製程中鎳元素添加皆有助於燒結體的緻密化與導電率的提高。而交流阻抗分析則發現,當溫度升高時之電極極化影響,使導電機制轉變為離子-電子混合的導體特性。直流電阻量測數據顯示,導電率僅隨鎳添加量有些微提升;而晶粒導電活化能則隨晶粒尺寸變大而增加,與鎳含量較無相關性,而晶界導電活化能隨鎳含量增加而增加,因此當鎳元素於高溫下擴散進入電解質,產生之影響將傾向於晶界上發生。
To investigate the influences of anode material, nickel, on the structural properties and conduction behavior of the ceria-based electrolyte in solid oxide fuel cell (SOFC) during high operation temperature, nickel element was directly introduced into the yttria-doped ceria (YDC). In the present study, different powder preparation processes were carried out for examining the effects of nickel addition on the properties of YDC electrolyte ceramics.
The composite powders, (10YDC)/(NiO) and (20YDC)/(NiO), were respectively prepared using spray pyrolysis (SP) and ball milling (BM) processes. Both the powders were formed by die pressing and sintered at various temperatures for the investigation of the related properties of the composite electrolytes. The experimental data revealed that the particles spray pyrolyzed from cerium nitrate, yttrium acetate and nickel acetate were nanocrystalline and in a hollow spherical structure resulting in lower density of the sintered compacts. The gas-to-particle conversion mechanism caused the bias of the stoichiometry of the resulting powders. The evaluation of lattice constant, analyses of XRD and EPMA suggested that instead of dissolution of the nickel oxide, it tended to segregate on the grain boundaries of the YDC matrices. Furthermore, the impedance and dc resistivity data showed that the conductivity activation energy of the grain increased with the decrease of the sintered density. The effect of grain boundary barrier layer (GBBL) for the nickel oxide segregating on the grain boundary leaded the conductivity activation energy of the grain boundary to increase with increasing the nickel addition reducing the conductivity of the composite ceramics.
To improve the sintered density of the electrolyte, commercialized yttria and ceria powders were wet-ball-milled with the addition of nickel acetate to produce the (20YDC)/(NiO) composite powders. After calcining, compacting and sintering, the related properties of the solid electrolytes were further studied. The evaluation of lattice constant, XRD and EPMA analyses revealed that no observable dissolution of the nickel was found in YDC the matrices. Relatively good stoichiometry of each element was gained. The nickel addition improved the sintering densification and conductivity of the YDC electrolyte in BM process. The impedance data showed that the electrode polarization converted the conducting behavior into a mixed ionic-electronic one at the elevated temperature. The dc resistivity results showed that the conductivity increased slightly with increasing the nickel addition; whereas, the conductivity activation energy of grain increased with increasing the grain size showing no influences of the nickel addition. Moreover, the conductivity activation energy of grain boundary increased with the increase of nickel addition suggesting that the effect of nickel introduction tended to occur on the grain boundary in electrolyte matrices during the high operation temperature.
總目錄
中文摘要 Ⅰ
Abstract Ⅲ
總目錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅸ
第一章、前言 1
第二章、文獻回顧 4
2.1固態氧化物燃料電池簡介 4
2.1.1 固態氧化物燃料電池之特點 4
2.1.2 固態氧化物燃料電池之發電機制 5
2.1.3 固態氧化物燃料電池分類 9
2.1.4 固態氧化物燃料電池主要元件 10
2.1.5 固態氧化物燃料電池結構設計 15
2.1.6 固態氧化物燃料電池之發展 18
2.2 固態電解質材料之理論觀點 18
2.2.1 二氧化鈰CeO2之性質 19
2.2.1.1 物性及晶體結構 19
2.2.1.2 化學性質 20
2.2.2 電解質材料之導電行為 21
2.2.2.1 溫度之影響效應 21
2.2.2.2 缺陷之影響效應 23
2.2.2.3 電荷載體傳導機構與氧分壓效應 24
2.2.2.4 氧分壓理論基礎 26
2.2.2.5 電子導電與離子導電 28
2.3 電性量測交流阻抗分析簡介 29
2.4 噴霧熱解法 34
2.5 濕式球磨分散技術 34
2.5.1 濕式球磨法簡介 34
2.5.2 濕式球磨分散的原理 35
第三章、實驗目的與方法 37
3.1 實驗設計與目的 37
3.2 試片之製備 39
3.2.1 粉體之製備與收集 39
3.2.2 煆燒 41
3.2.3 壓胚與燒結成型 41
3.3 粉體與電解質塊材之特性檢測 42
3.3.1 熱重分析 42
3.3.2 X-ray繞射分析 42
3.3.3 冷場發射掃描式電子顯微鏡表面型態與粒徑分析 43
3.3.4 電子探測微分析 44
3.3.5 燒結試片密度量測 45
3.4 電解質之交流阻抗量測 45
3.4.1活化能分析 46
第四章、結果與討論 48
4.1 先驅物粉體之特性分析 48
4.1.1 TGA熱重分析 48
4.2 噴霧熱解粉體之特性分析 49
4.2.1 FESEM表面型態分析 49
4.2.2 XRD結晶結構分析 54
4.3 煆燒粉體之特性分析 59
4.3.1 XRD結晶結構分析 59
4.3.2 FESEM表面與型態分析 62
4.4 燒結體之特性分析 63
4.4.1 XRD結晶結構分析 63
4.4.2 燒結體密度量測 65
4.4.3 FE-SEM表面分析 66
4.4.4 FE-SEM之二次電子與背向電子成像 68
4.4.5 EPMA元素分析 70
4.5 電解質之交流阻抗分析 74
4.6 球磨粉體之特性分析 85
4.6.1 FESEM表面與型態分析 85
4.6.2 XRD結晶結構分析 88
4.7 煆燒粉體之特性分析 89
4.7.1 XRD結晶結構分析 89
4.8 燒結體之特性分析 90
4.8.1 XRD結晶結構分析 90
4.8.2燒結體密度量測 94
4.8.3 FESEM表面分析 95
4.8.4 FESEM之二次電子與背向電子成像 99
4.8.5 EPMA元素分析 101
4.9 電解質之交流阻抗分析 103
第五章、結論 115
參考文獻 118

表目錄
表2-1 使用甲烷為燃料氣體時SOFC之可能反應 5
表2-2 各種燃料電池的種類與特性 9
表2-3 二氧化鈰之重要物理性質列於上表 19
表4-1 影響噴霧熱解粉體形貌之參數 51
表4-2 不同金屬離子在八配位環境的離子半徑 56
表4-3 鎳離子於不同配位環境的離子半徑 56
表4-4組成(10YDC)100-X(NiO)X之晶格常數大小 58
表4-5 組成(10YDC)100-X(NiO)X,(x=5,10,15)燒結體中各元素之化學計量比 72
表4-6 組成(10YDC)100-X(NiO)X之活化能大小 82
表4-7 純CeO2與各組成(20YDC)100-X(NiO)X之晶格常數變化 91
表4-8組成(20YDC)100-X(NiO)X,(x=5,10,15)燒結體中各元素之化學計量比 102
表4-9 組成(20YDC)100-X(NiO)X燒結體於700℃之導電率 111

圖目錄
圖1-1 立方螢石結構 2
圖2-1 (a)(b)分別為氧離子導體及氫離子導體 8
圖2-2 氧氣在電極上的反應步驟 7
圖2-3 固態氧化物燃料電池示意圖 8
圖2-4 SOFC常用電解質材料導電率對溫度之關係 10
圖2-5 氧化鈰立方螢石結構 11
圖2-6 各類螢石結構氧化物之導電率 12
圖2-7 鈣鈦礦結構 13
圖2-8 SOFC設計構造圓柱管型 16
圖2-9 SOFC設計構造環節連接型 16
圖2-10 SOFC設計構造蜂窩結構型 17
圖2-11 SOFC設計構造平板型 18
圖2-12 氧氣偵測器之裝置圖 27
圖2-13 以複數平面Nyquist plot表示之阻抗 30
圖2-14 單一電阻之交流阻抗圖譜 31
圖2-15 單一電容之交流阻抗圖譜 31
圖2-16 電阻與電容串聯之交流阻抗圖譜 32
圖2-17 電阻與電容並聯之交流阻抗圖譜 32
圖2-18 模擬陶瓷氧化物之理想等效電路圖 33
圖2-19 球磨(Ball mill)示意圖 34
圖2-20 粒子分散力量示意圖 35
圖2-21 研磨介質粒徑效應 36
圖3-1 噴霧熱解(SP)製程之實驗流程圖 37
圖3-2 濕式球磨(BM)製程實驗流程圖 38
圖3-3 噴霧熱解與靜電沉積示意圖 39
圖3-4 真空減壓乾燥機示意圖 40
圖3-5 電性測試夾具示意圖 46
圖4-1 先驅物CeAH、YAH與NiAH之熱重分析曲線 48
圖4-2 噴霧熱解於650°C所得粉體之FESEM微結構照片 49
圖4-3 噴霧熱解製程之氧化鈰顆粒於不同路徑析出行為示意圖 52
圖4-4 噴霧熱解於不同組成之顆粒尺寸收集分佈圖 53
圖4-5 噴霧熱解所得(10YDC)100-X(NiO)X粉體之X光繞射圖 54
圖4-6 噴霧熱解粉體之氧化鈰晶粒尺寸與鎳元素添加量之關係圖 56
圖4-7 (a)組成(10YDC)經Linear Fitting計算之晶格常數 57
圖4-7 (b)噴霧熱解粉體之氧化鈰晶格常數與鎳元素添加量之關係圖 58
圖4-8 煆燒熱處理後之(10YDC)100-X(NiO)X粉體之X光繞射圖 59
圖4-9 煆燒粉體晶粒尺寸與氧化鎳含量之關係圖 60
圖4-10 煆燒粉體晶格常數與氧化鎳含量之關係圖 61
圖4-11 煆燒950℃粉體於不同組成之FE-SEM微結構照片 62
圖4-12 燒結處理後之(10YDC)100-X(NiO)X燒結體之XRD繞射圖 63
圖4-13 燒結體晶格常數與氧化鎳含量之關係圖 64
圖4-14 各組成燒結體之相對密度與氧化鎳含量之關係圖 65
圖4-15 不同組成燒結體之FESEM微結構照片 66
圖4-16 (10YDC)100-x(NiO)x晶界析出氧化鎳之FESEM顯微影像(A,B,C)二次電子成像,(a,b,c)背向電子成像 68
圖4-17 燒結體組成(10YDC)85(NiO)15於晶界析出氧化鎳之EDS分析 69
圖4-18 (a)Y0.19Ce0.855Ni0.05O2.405燒結體之EPMA與Line scan結果 70
圖4-18 (b)Y0.18Ce0.81Ni0.1O1.99燒結體之EPMA與Line scan結果 71
圖4-18 (c)Y0.17Ce0.765Ni0.15O1.935燒結體之EPMA與Line scan結果 71
圖4-19 包埋實驗設計示意圖 73
圖4-20 組成(10YDC),(10YDC)85(NiO)15之EPMA mapping與微結構圖 73
圖4-21 (10YDC)燒結體之交流阻抗分析結果 75
圖4-22 (10YDC)95(NiO)5燒結體之交流阻抗分析結果 75
圖4-23 (10YDC)90(NiO)10燒結體之交流阻抗分析結果 76
圖4-24 (10YDC)85(NiO)15燒結體之交流阻抗分析結果 76
圖4-25 (10YDC)100-X(NiO)X燒結體於450°C之交流阻抗分析比較 77
圖4-26 (10YDC)100-X(NiO)X燒結體於500°C之交流阻抗分析比較 78
圖4-27 (10YDC)100-X(NiO)X燒結體於600°C之交流阻抗分析比較 78
圖4-28 (10YDC)100-X(NiO)X燒結體於700°C之交流阻抗分析比較 79
圖4-29交流阻抗之Nyquist polt 79
圖4-30分別為本系統(a)高溫(b)低溫時之等效電路圖 80
圖4-31 (10YDC)100-X(NiO)X燒結體之晶粒導電率 81
圖4-32 (10YDC)100-X(NiO)X燒結體直流電量測之導電率 82
圖4-33組成(10YDC)100-X(NiO)X,(X=0,5,10,15)於450℃~700℃之活化能 83
圖4-34 (10YDC)100-X(NiO)X晶粒導電活化能與氧化鎳含量之關係圖 83
圖4-35 (10YDC)100-X(NiO)X晶界導電活化能與氧化鎳含量之關係圖 85
圖4-36 球磨後複合粉體於不同組成之FE-SEM微結構照片 86
圖4-37 球磨法於不同組成之顆粒尺寸分佈圖 87
圖4-38 球磨之商業用粉XRD繞射圖 88
圖4-39 煆燒600℃熱處理後之(20YDC)100-X(NiO)X粉體XRD繞射圖 89
圖4-40 燒結1600℃處理後之(20YDC)100-X(NiO)X粉體XRD繞射圖 90
圖4-41 組成CeO2燒結體經Linear Fitting計算之晶格常數 91
圖4-42 組成(20YDC)100-X(NiO)X燒結體晶粒尺寸與氧化鎳含量之關係圖 92
圖4-43 (a),(b)分別為組成CeO2與20YDC於1600℃燒結體之表面形貌 92
圖4-44 (a)收縮的YDC結構示意圖;(b)組成Ce1-xMxO2-0.5x之晶格常數 93
圖4-45 各組成燒結體之相對密度與氧化鎳含量之關係圖 94
圖4-46 不同組成燒結體之FESEM微結構照片 95
圖4-47 不同組成燒結體之晶粒分佈圖 97
圖4-48 不同組成燒結體之EDS成分分析 98
圖4-49 分別為組成(20YDC)100-X(NiO)X,X=5,10,15之(A,B,C)二次電子,與(a,b,c)背向電子成像 99
圖4-50 (a)(20YDC)95(NiO)5燒結體之EPMA mapping與Line scan結果 101
圖4-51 (b)(20YDC)90(NiO)10燒結體之EPMA mapping與Line scan結果 101
圖4-52 (c)(20YDC)85(NiO)15燒結體之EPMA mapping與Line scan結果 102
圖4-53 (20YDC)燒結體之交流阻抗分析結果 104
圖4-54 (20YDC)95(NiO)5燒結體之交流阻抗分析結果 104
圖4-55 (20YDC)90(NiO)10燒結體之交流阻抗分析結果 105
圖4-56 (20YDC)85(NiO)15燒結體之交流阻抗分析結果 105
圖4-57 (20YDC)100-X(NiO)X燒結體於450°C之交流阻抗分析比較 106
圖4-58 (20YDC)100-X(NiO)X燒結體於500°C之交流阻抗分析比較 107
圖4-59 (20YDC)100-X(NiO)X燒結體於600°C之交流阻抗分析比較 107
圖4-60 (20YDC)100-X(NiO)X燒結體於700°C之交流阻抗分析比較 108
圖4-61 (20YDC)100-X(NiO)X燒結體之晶粒導電率 110
圖4-62 (a),(b)分別為組成(20YDC)100-X(NiO)X,(X= 0,5)於450℃~700℃之活化能 111
圖4-62 (c),(d)分別為組成(20YDC)100-X(NiO)X,(X=10,15)於450℃~700℃之活化能 112
圖4-63 (20YDC)100-X(NiO)X晶粒導電活化能與氧化鎳含量之關係圖 112
圖4-64 (20YDC)100-X(NiO)X晶界導電活化能與氧化鎳含量之關係圖 113
圖4-65 (20YDC)100-X(NiO)X燒結體直流電量測之導電率 114
1.C. J. Kevane, E. L. Holverson, and Robert D. Watson, “Electrolytic Conduction in Calcium-Doped Solid Cerium Oxide”, J. Appl. Phys. 34 (1963) 2083.
2.R. N. Blumenthal and B. A. Pinz, “Nature of the electrical conduction transients observed in CeO2 and Ca-Doped CeO2”, J. Appl. Phys. 38 (1967) 2376.
3.T.Takahashi and H.Iwahara, Denki Kagaku oyobi Kogyo Butsuri Kagaku, 34 (1966) 254.
4.H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) 1-16.
5.X. L. Song, G. Z. Qiu and P. Qu, “Advances in Research on Applications and Synthesis Methods of CeO2 Nanoparticles,” Rare Metal Mater. Eng., 33, (2004) 29-34.
6.P.Patsalas, S.Logothetidis, L.Sygellou and S. Kennou,“Structure-dependent Electronic Properties of Nanocrystalline Cerium Oxide Films”, Phys. Rev. B, 68, (2003) 035104.
7.D. Simwonis,F. Tietz, D. Stover,“Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”,Solid State Ionics 132, (2000) 241.
8.Marcun Nurdin(Editor),”The Fuel Cell Word”, proceedings of the international conference with exhibition, Published and distributed by European Fell Cell Forum, 1-5 July 2002, Lucerne, Switzerland,2002.
9.黃鎮江,“燃料電池”,全華科技圖書股份有限公司 (2004)。
10.N.Q. Minh, “Ceramic Fuel Cell”, J. Am. Ceram. Soc., 76[3] (1993) 563.
11.Teruhisa Horita, Katsuhiko Yamaji, Natsuko Sakai, Harumi Yokokawa, Andre´ Weber, Ellen Ivers-Tiffe´e, “Oxygen reduction mechanism at porous La1-xSrxCoO3-d cathodes/La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface for solid oxide fuel cells”, Electrochimica Acta 46 (2001) 1837–1845.
12.R.J.Gorte, J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons” J. of Catalysis, 216 (2003) 477-486
13.Fuel Cell Handbook,fifth edition,2000年;左峻德,燃料電池之特性與運用,2001年。
14.B.C. Steele, “Ceramic ion conducting membrnce”, Solid State & Materials Science 1 (1996) 684.
15.Y.Arachi, H.Sakai, O.Yamamoto, Y.Takeda, N. Imanishai, “Electrical conductivity of the ZrO2-Ln2O3(Ln=lanthanides system)”, Solid State Ionics 121 (1999) 133.
16.S.P.S. Badwal, J .Drennan,“Yttria-zirconia: effect of microstructure on conductivity”, Journal of Materials Science 22 (1987) 3231.
17.B.C.H. Steele, in: High Conductivity Solid Ionic Conductors, ed. T. Takahashi. (World Scientific, Singapore, 1989).
18.F.M.B. Marques, L.M. Navarro, “Performance of double layer electrolyte cells PartⅠ:Model behavior”, Solid State Ionics 90 (1996) 183.
19.J. Kimpton, T.H. Randle, J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the system Zr0.75Ce0.85M0.17O1.92 (M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc)”, Solid State Ionics 149 (2002) 89.
20.T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, T. Inagaki, “Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film”, Journal of Power Sources 106 (2002) 142.
21.T. Inagaki, K. Miura, H. Yoshida, R. Maric, S. Ohara, X. Zhang, K. Mukai, T. Fukui, “High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte”, Journal of Power Sources 86 (2000) 347.
22.S.Wang,X.Lu,M.Liu, “Electrocatylytic properties of an Sr0.25Bi0.5FeO3-δ/LSGM interface”, Solid State Electrochem 5 (2001) 375.
23.S. Tanasescu, N.D. Totir, D.I. Marchidan, “Thermodynamic properties of some perovskite type oxide used as SOFC cathode materials”, Solid State Ionics 119 (1999) 311.
24.D. Simwonis, F. Tietz, D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”, Solid State Ionics 132 (2000) 241.
25.J.H. Lee, H. Moon, H.W. Lee, J. Kim, J.D. Kim, J.H. Yoon, ”Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet”, Solid State Ionics 148 (2002) 15.
26.W. Hu, H. Guan, X. Sun, S. Li, M. Fukumoto, I. Okane, “Electrical and Thermal Conductivities of Nickel-Zirconia Cermets”, J. Am. Ceram. Soc. 81[8] (1998) 2209.
27.Osamu Yamamoto, Electrochimica Acta 45 (2000) 2423–2435
28.T,Takeuchi, Sensors and Actuators,14 (1988) 109-124.
29.林書橋,汽車感測器原理,全華科技圖書股份有限公司,1988
30.H.Yanagida, R.J.Brook and F.A.Kroger, J.Electrochem.Soc.,117,5,593(1970).
31.F. S. Galasso, “Structure and Properties of Inorganic Solids,” Pergamon, Oxford (1970).
32.H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, “Encyclopedia of Chemical Technology,” vol. 5, John Wiley & Sons, New York (1970).
33.L. A. D. Faria and S. Trasatti, “The Point of Zero Charge of CeO2,” J. Colloid Interf. Sci., 167, (1994), 352-357.
34.K. A. Gschneidner, Jr. and L. R. Eyring, “Handbook on the Physics and Chemistry of Rare Earths,” vol. 3, North-Holland, New York (1984).
35.X. L. Song, G. Z. Qiu and P. Qu, “Advances in Research on Applications and Synthesis Methods of CeO2 Nanoparticles,” Rare Metal Mater. Eng., 33, 29-34(2004).
36.P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou,“Structure-dependent Electronic Properties of Nanocrystalline Cerium Oxide Films”, Phys. Rev. B, 68,(2003), 035-104.
37.M. Sugiura, “Oxygen Storage Materials for Automotive Catalysts: Ceria-zirconia Solid Solutions”, Catal. Surv. Asia, 7, (2003), 77-87.
38.J. Campserveux and P. Gerdanian, “Etude Thermodynamique de l''oxyde CeO2−x Pour 1.5 39.J.A. Kilner and B.C.H. Steele, in: Nonstoichiometric Oxides, cd. O.T. Sorensen (Academic Press, New York, 1981).
40.J.A. Kilner and CD. Walters, Solid State lonics 6 (1982) 253.
41.R. Dieckmann, Solid State Reaction: class notes, Cornell University,1994.
42.次世代自動化技術趨勢與應用, 中華民國自動化協會 研討會, Feb. 1997
43.Hideaki Inaba , Hiroaki Tagawa “Ceria-based solid electrolytes” Solid State Ionics 83 (1996) 1- 16
44.呂泱儒,“以噴霧熱解法製備氧化釔添加氧化鈰/氧化鎳複合粉體於固態電解質之研究”,私立逢甲大學材料系(2007)。
45.Bishop, J.F. and Czekai , D.A. US Patent NO 5679, (1997), 138.
46.魏碧玉、賴明雄、賴宏仁,奈米技術之合成技術,工業材料,PP.33-44
47.Christie G. M.,Van Berkel F. P. F, “Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes”, Solid State Ionics, 83,17~27. (1996)
48.T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials, Wiley-Vch, New York (1999).
49.Ferry Iskandar, Leon Gradon, and Kikuo Okuyama, “Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol” Journal of Colloid and Interface Science 265 (2003) 296–303
50.G.L.Messing, S.C.Zhang,and G.V.Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolysis” J.Am.Ceram.soc.,76 (1993) 2707-2726
51.Ulrich P. Muecke, Norman Luechinger, Lukas Schlagenhauf, Ludwig J. Gauckler, “Initial stages of deposition and film formation during spray pyrolysis — Nickel oxide, cerium gadolinium oxide and mixtures thereof”, Thin Solid Films 517 (2009) 1522–1529.
52.M. Lackowski, K. Adamiak, A. Jaworek, A. Krupa “Electrostatic charging of particulates by ionic current in alternating electric field” Powder Technology 135–136 (2003) 243– 249
53.Robert B.Barat, Victor L.Callahan, Donna J.Cedio-Fengya, John G.Stevens “The effect of particle size distribution on the deposition of charged particles in tubes” Advances in Environmental Research 7 (2002) 105–115
54.Hideko Hayashi, Rie Sagawa, Hideaki Inaba, Katsuyuki Kawamura “Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants” Solid State Ionics 131 (2000) 281–290.
55.WebElements, http://www.webelements.com/
56.Shaowu Zha, Changrong Xia, Guangyao Meng “Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells” Journal of Power Sources 115 (2003) 44–48.
57.Mogens Mogensen, Nigel M. Sammes, Geoff A. Tompsett “Physical, chemical and electrochemical properties of pure and doped ceria” Solid State Ionics 129 (2000) 63–94.
58.Smith J. P. and Messing G. L., “Sintering of Bimodally Distributed Alumina Powders”, J. Am. Ceram. Soc., 67 [4], 238~242. (1984)
59.YAN Kai, ZHEN Qiangl, and Song Xiwen, “Study on rare eartwalkaline earth oxide-doped CeO2 solid electrolyte”, Rare Metals 26 (2007) 311.
60.N. Matsui, “Complex-Impedance Analysis for the Development of Zirconia Oxygen Sensors,” Solid State Ionics, 3/4, (1981) 525-529.
61.T. Van Dijk and A. J. Burggraaf, “Grain boundary effects on ionic conductivity in ceramic GdxZr1-xO2-x/2 solid solutions,” Phy. Stat. Sol. (a), 63, (1981) 229-240.
62.H.B. Wang, H.Z. Song, C.R. Xia, D.K. Peng, G.Y. Meng, “Aerosol-assisted MOCVD deposition of YDC thin films on (NiO+YDC) substrates”, Materials Research Bulletin 35 (2000) 2363–2370.
63.Xin Guo, Rainer Waser, “Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria”, Progress in Materials Science 51 (2006) 151–210.
64.D. Simwonis,F. Tietz, D. Stover,“Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”,Solid State Ionics 132(2000)241.
65.D.W.Stricker and W.G.Carlson, J.Am. Ceram. Soc. ,48,6, (1965),286-289.
66.F.K.Moghadam and D.A.Stevenson, J.Am. Ceram. Soc. ,65,4, (1982),213-216.
67.Jan Van herle, Teruhisa Horita, Tatsuya Kawada, Natsuko Sakai, Harumi Yokokawa & Masayuki Dokiya, “Sintering Behaviour and Ionic Conductivity of Yttria-Doped Ceria”, Journal of the European Ceramic Society 16 (1996) 961-973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔