跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡依敏
研究生(外文):Yi-Min Tsai
論文名稱:反應性濺鍍沉積鈦鎢複合氧化物薄膜之微結構特性
論文名稱(外文):Characterization of Microstructure for Thin Films of Ti-W Composite Oxides Grown by Reactive Sputtering
指導教授:陳錦山
指導教授(外文):Chin-Shang Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:149
中文關鍵詞:氧化鎢Na擴散氧化鈦
外文關鍵詞:WO3TiO2Na diffusion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:497
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用Ar/O2反應性磁控濺鍍,在中毒模式下以共生沉積的方式,配合Ti靶材(射頻)及W靶(直流)濺鍍功率的廣範圍調節,在玻璃基板上生長具有氣體感測及防霧自潔多重功能包含以WO3為主體及TiO2為主體組成分布廣泛的二元及三元(Ti-W-O)功能性複合氧化物薄膜。本研究論文將利用空氣退火處理(500~600℃)以提升薄膜的結晶性,並採用康寧玻璃(不含鈉)與一般的鹼石灰玻璃(含鈉)兩種基材,以探討鈉的存在對這些結晶化薄膜試片之微結構的影響。
X光繞射分析與掃瞄式電子顯微術(SEM)及拉賽福背向散射能譜術(RBS)等證實,生長在未施加外在熱源之康寧玻璃及鹼石灰玻璃的WO3、TiO2及各種組成的Ti-W-O(Ti2W24O74~Ti23W8O69)薄膜均為非晶結構,且會有不同的高溫結晶化傾向。首先,沉積於康寧玻璃的WO3及TiO2二元薄膜於500℃即已分別結晶化為單斜體的WO3及金紅石TiO2(R-TiO2),但Ti含量的添加不但會抑制其結晶化程度,以致550、600℃方能產生結晶轉變,而且會產生TiO2及WO3雙相共存的現象。本論文之XRD分析清楚地整理這些不同組成之二元與三元薄膜的結晶化溫度與相的分布狀況。
另外,沉積於鈉玻璃基材上之WO3、TiO2及各種組成的Ti-W-O薄膜,經500℃熱處理後就均已產生結晶化,且以WO3為主體的薄膜會與來自玻璃基材的Na相互產生熱化學反應為鎢酸鈉,其中,WO3轉變為板塊狀的Na2W4O13,而Ti2W24O74、Ti3W23O74轉變為針葉狀的Na2WO4。然而,以TiO2為主體的薄膜則因W的微量添加而轉變為銳鈦礦TiO2(A-TiO2)。溫度提升至550℃所造成的相分布行為與顯微結構與500℃時相似。
This work employed Ar/O2 reactive sputtering co-deposition, operated under the poisoned mode and a wide range of sputtering powers for Ti (direct current) and W targets (radio frequency), to grow thin films of binary (WO3 and TiO2) and ternary (Ti-W-O) oxides over a wide range of compositions, from Ti2W24O74 to Ti23W8O69, on glass substrates potentially functioned as gas sensing, self-cleaning and anti-fogging. The samples were annealed at ambient air (500 to 600�aC for 30 min) to enhance crystallinity of the films. Two glass types, Corning glasses absent of sodium and soda-lime glasses, were used as substrates for evaluation of the effects of the sodium presence on the microstructure of these crystallized films.
Results of X-ray diffractometry (XRD), scanning electron microscopy (SEM) and Rutherford backscattering spectroscopy (RBS) revealed that WO3, TiO2 and various Ti-W-O (from Ti2W24O74 to Ti23W8O69) films as deposited on glass without external heating are amorphous, but have different crystallization tendency upon annealing. For the Corning glasses, thin films of WO3 and TiO2 are crystallized into monoclinic WO3 and rutile TiO2 (R-TiO2) after annealing at 500�aC. The addition of Ti can inhibit crystallization of the films, and thus an elevated temperature of 550�aC or 600�aC is required for the film to crystallize. Moreover, phase separation of the Ti-W-O films into WO3 and TiO2 occurs for the films with optimum amounts of Ti addition. This thesis also provides a detailed analysis of the distribution of the crystallization temperature and phase(s) of these films from the study of XRD.
For the soda-lime glasses, the WO3, TiO2 and various Ti-W-O (also from Ti2W24O74 to Ti23W8O69) films are all crystallized after annealing at 500℃. However, the films dominated by the WO3 phase will mutually react with the sodium originated from the glass substrates into Na2W4O13 or Na2WO4: films comprising merely WO3 are transformed into plated-like Na2W4O13; the WO3-dominated films with minor amounts of Ti addition (Ti2W24O74 and Ti3W23O74) are both transform into needle-like Na2WO4. However, after annealing; whereas the TiO2 dominated films doped by some amounts of W (8~22 at%) are crystallized into anatase TiO2 (A-TiO2) phase, instead of the R-TiO2 as observed in the counterparts on the Corning glasses. The films annealed at 550�aC exhibit phase transformation behaviors similar to those at 500�aC.
總目錄
中文摘要..................................................................................................I
英文摘要.................................................................................................II
總目錄.................................................................................................. IV
表目錄..................................................................................................VII
圖目錄............................................................................................... VIII
第一章、研究動機與背景....................................................................1
第二章、研究背景與文獻回顧............................................................5
2.1 金屬氧化物氣體感測原理...........................................5
2.1.1 氣體感測基本原理...............................................................5
2.1.2 三氧化鎢的基本結構與特性..........................................6
2.2 金屬半導體氧化物之自潔防霧機制...........................................7
2.2.1 光觸媒材料簡介...............................................................7
2.2.2 光誘發自潔超親水機制.......................................................8
2.2.3 自潔與超親水性...........................................................10
2.2.4 二氧化鈦的基本結構與特.................................................12
2.3 光觸媒及超親水性TiO2薄膜之應用.......................................12
2.4 WO3-TiO2複合薄膜之自潔防霧............................................14
2.5 鈉-鹼玻璃之鈉元素擴散行為..................................................17
第三章、實驗方法與步驟.......................................................................31
3.1 實驗流程(Procedures)指引.........................................................31
3.2 濺鍍系統設備............................................................................31
3.3 薄膜製備與薄膜沉積原理說明.................................................34
3.4 薄膜特性分析與設備簡介.........................................................36
3.4.1 拉賽福背向散射能譜儀(RBS).......................................36
3.4.2 表面輪廓儀(薄膜厚度量測).............................................38
3.4.3 冷場發射式電子顯微鏡(FESEM;薄膜表面結構分析)..38
3.4.4 掠角X光繞射儀(GIXRD;薄膜晶體結構分析)...............39
第四章、康寧玻璃之薄膜生長行為特性............................51
4.1 組成分析.....................................................................................51
4.1.1 沉積速率之影響........................................................51
4.1.2 RBS組成分析..................................................................54
4.2 XRD繞射分析及相分布探討...................................................56
4.3 SEM表面型態.......................................................................62
第五章、鈉玻璃之薄膜生長行為特性............................94
5.1 XRD繞射分析及相分布探討...................................................94
5.2 SEM表面型態.......................................................................100
第六章、結論.........................................................................................118
參考文獻.................................................................................................120
附錄A、康寧玻璃與鈉玻璃基本特性............................................129
1、 康寧玻璃.................................................................................129
2、 鈉玻璃...............................................................................130
附錄B、Ti-W-O三元相圖............................................131
附錄C、JCPDS Card.......................................................132
1、 R-TiO2(21-1276)...................................................................132
2、 A-TiO2(21-1272)...................................................................132
3、 Na2WO4(53-0678)...................................................................133
4、 Na2W4O13(27-1425)...................................................................133


表目錄
表2.1 WO3薄膜多型態同素異形體及其穩定相之存在溫度範...…………19
表2.2 A-TiO2及R-TiO2多形態結構之相關物性比較………...…………20
表2.3 光觸媒材料之特殊應用.........................................................................21
表2.4 光觸媒材料應用與產品.........................................................................22
表4.1 依據RBS組成分析(圖4.4)所得到的各種功率比之薄膜試片的組成分佈及W金屬之氧化數預估值,其中,*為內差值。......................69
表4.2 高溫熱處理(500、550、600℃)之WO3薄膜的繞射波峰對應JCPDS(83-0950)之比較................................................................70
表4.3 高溫熱處理後,假設Ti、W相對含量與剛沉積試片相同,而計算薄膜試片達到最高價電數之Ti、W與O計量比。...................................71
表4.4 穩定化熱處理圖4.9~4.11之試片組成分別為 WO3、Ti2W24O74及T i3W23O74之XRD繞射圖偏移量。....................................................72
表4.5 依據不同溫度之XRD繞射圖譜(圖4.6~4.11),所統整之各種組分及成分薄膜試片之相結構分布情況。..................................................................73
表4.6康寧玻璃及WO3、TiO2的線膨脹係數..............................................................74
表4.7 由SEM上視及截面影像分析(圖4.14~4.16)之綜合整理,所獲得的500、550、600℃熱處理WO3、Ti-W-O系列、TiO2薄膜試片(A∼H)的表面型態與微結構情況。....................................................75
圖目錄
圖2.1 電子傳導於晶界之電位阻障模型………………………………….23
圖2.2 典型ReO3結構:Re可座落在立方體單位晶包之(a)落位置或(b)中心位置………………………………………………………….24
圖2.3 光催化反應示意圖………………………………………………….25
圖2.4 二氧化鈦的親水性與疏水性機制………………………………….26
圖2.5 金紅石型(Rutile)與銳鈦礦型(Anatase)二氧化鈦晶體結構..27
圖2.6 光觸媒自潔機制……………………………………………...……..28
圖2.7 (a)傳統與(b)TiO2光觸媒暨超親水性薄膜披覆之汽車防霧側視鏡之性能比較,後者之清晰度明顯優於前者。……………….29
圖2.8 太陽光波長分布圖……………..……………...……………………30
圖2.9 TiO2與WO3之多層膜(a)為SEM影像,(b)為能帶關係圖形,TiO2與WO3電子電荷傳遞情況。.............................................................31
圖3.1 本研究之實驗流程圖……………………………………………....41
圖3.2 本研究所使用之超高真空多靶源磁控濺鍍系統實體照片。…....42
圖3.3 本研究所使用之超高真空多靶源磁控濺鍍系統示意圖。...........43
圖3.4熱傳導型真空計與電容式真空計之壓力對應……………..…..44
圖3.5 TiO2薄膜使用(a)DC直流和(b)RF射頻磁控濺鍍之光學顯微鏡平面圖。…..…………………………………………..…...…..45
圖3.6 拉賽福背向散射分析儀(RBS)的構造示意圖…………….……..46
圖3.7 表面輪廓儀之量測膜膜厚度的示意圖。........................................47
圖3.8 逢甲大學共同貴重儀器中心-冷場發射掃瞄式墊子顯微鏡(Cold Field Emission Scanning Electron Microscope)實體圖...48
圖 3.9 逢甲大學共同貴重儀器中心-多功能薄膜X 光繞射(Multipurpose Thin-film X-ray Diffractometer)實體圖。....……49
圖3.10 掠角X光繞射(GIXRD)量測示意….........……………….50
圖 4.1 WO3薄膜之沉積速率對應直流濺鍍功率(Wdc)的變化.....76
圖4.2 TiO2薄膜之沉積速率對應直流濺鍍功率(Wrf)的變化..76
圖 4.3 由WO3(a,見圖1)及TiO2(450 Wrf)單獨生長之沉積速率數據所預測之Ti-W-O薄膜沉積速率曲線(b)及實際共生濺鍍之曲線(c),其中TiO2(450 Wrf)之沉積速率為0.7 nm/min(如圖內之×所示)。.................................................................77
圖 4.4 不同功率比例所生長之薄膜的RBS組成分佈實驗與模擬能譜圖,其(a)~(g)依照Ti含量由低至高的順序排列(即由WO3、Ti-W-O至TiO2),且化學式列於圖內。............................................78
圖4.5 Ti-W-O薄膜沉積濺鍍功率對應各成分原子比變化曲線,(a)Ti原子百分比、(b)W原子百分比及(c)O原子百分比相對於功率比變化曲線圖。依據RBS組成分析(圖4.4)及表4.1之薄膜組成及W之氧化數數據所得到的(a)Ti、(b)W、(c)O三種成分的組成分佈及W氧化數變化曲線。..........................................79
圖4.6 剛沉積於康寧玻璃(7059)的(a)WO3、(b) Ti1.7W24.6O73.7、(c) Ti3.7W24O72.3、(d) Ti4.5W23.8O71.4、(e) Ti15W21O64、(f) Ti21W11O68、(g) Ti23W8O69、(h)TiO2薄膜試片的XRD圖(入射角1)。.......................80
圖4.7 (a)剛沉積康寧玻璃(7059)於WO3薄膜經(b)500、(c)550、(d)600℃之空氣退火30分鐘後之XRD圖繞射圖,其波峰編號(1~17)之繞射資料見表4.2。......................................................…81
圖4.8 兩組JCPDS資料庫局部數據(05-0388及83-0950)...............82
圖4.9 沉積於康寧玻璃(7059),經空氣中500℃熱處理30分鐘下的(a)WO3、(b) Ti2W24O74、(c) Ti3.3W22.5O74.2、(d) Ti4..3W21.7O74、(e) Ti11.3W16.5O72.2、(f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2薄膜試片的XRD圖(入射角1)。其中,(a)WO3波峰之繞射資料見表4.2。.................................................................................83
圖4.10 沉積於康寧玻璃(7059),經空氣中550℃熱處理30分鐘下的(a)WO3、(b) Ti2W24O74、(c) Ti3.3W22.5O74.2、(d) Ti4..3W21.7O74、(e) Ti11.3W16.5O72.2、(f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2薄膜試片的XRD圖(入射角1)。其中,(a)WO3波峰之繞射資料見表4.2。..........................................................................84
圖4.11 沉積於康寧玻璃(7059),經空氣中600℃熱處理30分鐘下的(a)WO3、(b) Ti2W24O74、(c) Ti3.3W22.5O74.2、(d) Ti4..3W21.7O74、(e) Ti11.3W16.5O72.2、(f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2薄膜試片的XRD圖(入射角1)。其中,(a)WO3波峰之繞射資料見表4.2。..........................................................................85
圖4.12 為圖4.11(f)~(h)放大部分之XRD繞射圖,其薄膜試片為(f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2。........................................86
圖4.13 為圖4.9~11(d)~(h)放大部分之XRD繞射圖。.............................87
圖4.14 沉積於康寧玻璃(7059)的(a)WO3、(b) Ti2W24O74、(c) Ti3W23O74、(d) Ti4W22O74、(e) Ti11 W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2八種薄膜試片(編號分別為A∼H)經500℃空氣退火30分鐘以後所呈現的SEM上視(左側)與截面(右側)微結構影像。..........................................................................88
圖4.15沉積於康寧玻璃(7059)的(a)WO3、(b) Ti2W24O74、(c) Ti3W23O74、(d) Ti4W22O74、(e) Ti11 W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2八種薄膜試片(編號分別為A∼H)經550℃空氣退火30分鐘以後所呈現的SEM上視(左側)與截面(右側)微結構影像。..........................................................................90
圖4.16沉積於康寧玻璃(7059)的(a)WO3、(b) Ti2W24O74、(c) Ti3W23O74、(d) Ti4W22O74、(e) Ti11 W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2八種薄膜試片(編號分別為A∼H)經600℃空氣退火30分鐘以後所呈現的SEM上視(左側)與截面(右側)微結構影像。..........................................................................92
圖5.1 沉積於鈉玻璃的Ti-W-O薄膜經500℃空氣退火30分鐘後之XRD圖。((a)WO3、(b) Ti2W24O74、(c) Ti3W23O74、(d) Ti4W22O74、(e) Ti11W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2)。.....................105
圖5.2 為圖5.1(d)~(h)放大部分之XRD繞射圖,其薄膜試片為(d) Ti4W22O74、(g) Ti11W8O72 (f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2。...............................................................................106
圖5.3 鈉玻璃晶體結構鍵結示意圖...........................................................107
圖5.4 為圖5.1(d)~(h)放大部分之XRD繞射圖,其薄膜試片為(d) Ti4W22O74、(g) Ti11W8O72 (f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2。................................................................108
圖5.5 沉積於鈉玻璃的Ti-W-O薄膜經550℃空氣退火30分鐘後之XRD圖。((a)WO3、(b) Ti2W24O74、(c) Ti3W22O74、(d) Ti4W22O74、(e) Ti11W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2)。......................................................................109
圖5.6 為圖5.5(a)~(c)放大部分之XRD繞射圖,其薄膜試片為(d) Ti4W22O74、(g) Ti11W8O72 (f) Ti20W10O70、(g) Ti23W7.8O69.2,、(h)TiO2。為了利於比較,特將這康寧玻璃與鈉玻璃圖譜繪於此。(a1、b1、c1為鈉玻璃鍍層,而a2、b2、c2為康寧玻璃鍍層)。....................................................................…110
圖5.7 為圖5.5(d)~(h)放大部分之XRD繞射圖,其薄膜試片為(d) Ti4W22O74、(g) Ti11W8O72 (f) Ti20W10O70、(g) Ti23W7.8O69.2、(h)TiO2。.........………………………………………………..111
圖5.8沉積於Na玻璃的(a)WO3、(b) Ti2W24O74、(c) Ti3W23O74、(d) Ti4W22O74、(e) Ti11 W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2八種薄膜試片(編號分別為A∼H)經500℃空氣退火30分鐘以後所呈現的SEM上視(左側)與截面(右側)微結構影像。....................…………………………………………………112
圖5.9為圖5.8(a)、(b)、(c)為較低倍率(放大一萬倍)之SEM上視影像。..................................................................…114
圖5.10沉積於Na玻璃的(a)WO3、(b) Ti2W24O74、(c) Ti3W23O74、(d) Ti4W22O74、(e) Ti11 W17O72、(f) Ti20W10O70、(g) Ti23W8O69、(h)TiO2八種薄膜試片(編號分別為A∼H)經550℃空氣退火30分鐘以後所呈現的SEM上視(左側)與截面(右側)微結構影像。...................................................................…115
圖5.11 為圖5.10(a)、(b)、(c)為較低倍率(放大一萬倍)之SEM上視影像。.....................................................................................…117
參考文獻
1. N. Taguchi, Japanese Patent S45-38200 (1962).
2. A. Garg, J. A. Leake, and Z. H. Barber, Epitaxial growth of WO3 films on SrTiO3 and sapphire, J. Phys. D: Appl. Phys., 33, p. 1048 (2000).
3. Y. Zhao, Z. C. Feng, and Y. Liang, Pulsed laser deposition of WO3-base film for NO2 gas sensor application, Sens. and Actuators B, 66, p. 171 (2000).
4. M. Penza, C. Martucci, and G. Cassano, NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, Sens. and Actuators B, 50, p. 52 (1998).
5. F. M. Liu and T. M. Wang, Surface and optical properties of nanocrystalline anatase titania films grown by radio frequency reactive magnetron sputtering, Appl. Surf. Sci., 195, p.284 (2002).
6. P. Lobl, M. Huppertz and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films, 251,p. 72 (1994).
7. M. Radecka, K. Z. Akrzewska, H. Czternastek, T. Stapinski and S. Debrus, The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films, Appl. Surf. Sci., 65-66, p. 227 (1993).
8. O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke and D. Glöß, Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering, Surf. Coat. Tech., 180-181, p. 538 (2004).
9. R. Levinson, P. Berdahl and H. Akbari, Solar spectral optical properties of pigments-part II: survey of common colorants, Sol. Energy Mater. Sol. Cells, 89, p. 351 (2005).
10. L. Shivalingappa, J. Sheng and T. Fukami, Photocatalytic effect in platinum doped titanium dioxide films, Vacuum, 48, p. 413 (1997).
11. W. Choi, S. J. Hong, Y. S. Chang and Y. Cho, Environ. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Sci. Technol. 34, p. 4810 (2000).
12. O. Heintz, D. Robert and J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol. A:Chem., 135, p. 77 (2000).
13. A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 Photocatalysis-Fundamentals and Applications, BKC, Tokyo, (1999)
14. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light-induced amphiphilic surfaces, Nature, 388, p. 431(1997).
15. A. Mills, A. Lepre, N. Elliot, S. Bhopal, O. P. Parkin and S. A. O’Neill, Characterisation of the photocatalyst Pilkington Activ™: a reference film photocatalyst?, J. Photochem. Photobiol. A:Chem., 160, p. 213 (2003)
16. K. Takagi, T. Makimoto, H. Hiraiwa and T. Negishi, Photocatalytic, antifogging mirror, J. Vac. Sci. Technol. A, 19, p. 2931 (2001)
17 G. Williams and G. S. V. Coles, Gas-Sensing potential of nanocrystalline tin dioxied produced by a laser ablation technique, MRS. Bulletin, June, 21, p. 25-29(1999).
18. A. Diegues, A. Romano-Rodriguez, J. R. Morante, U. Weimar, M. Schweizerr-Berberich, W. Gopel, Morphological analysis of nanocrystalline SnO2 for gas sensor applications, Sensors and Actuators B, 31, p. 1 (1996).
19. 林智汶,有機材料氣體感測器之應用,化工技術,第8 期, pp. 136-143 (2000).
20. S. M. Sze, Semiconductor sensors, John Wiley & Sons, New York, chap. 8, p. 383- (1994)..
21. A Fujishima, Tata N. Rao and Donald A. Tryk , Titanium dioxidephotocatalysis, Journal of Photochemistry & Photobiology C :Photochemistry Reviews 1, p. 1 (2000).
22. J. M. White, J. Szanyi and M. A. Henderson, The photon-driven hydrophilicity of titania: a model study using TiO2 (110) and adsorbed trimethyl acetate, J. Phys. Chem. B, 107, p. 9029 (2003).
23. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 2, p. 135 (1998).
24. R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces, J. Phys. Chem. B ,103, p. 2188 (1999).
25. M. Schiavello, Photoelectrochemistry, Photocatalysis and Photoreactors (Fundamentals and Developments), NATO ASI Series, (1984).
26. H. Sakai, R. X. Cai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Purification and Treatment of Water and Air, p. 651 (1993).
27. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 20, p. 69 (1995).
28. 高濂、鄭珊、張青紅,奈米光觸媒,五南圖書出版公司,(2004)。
29. Fisher P, Maksimov O and Du H, Growth, structure, and morphology of TiO2 films deposited by molecular beam epitaxy in pure ozone ambients, Microchem. J., 37, p. 1493 (2006).
30. C. C. Ting, S. Y. Chen and D. M. Liu, Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered Ti films, Thin Solid Films, 402, p. 290 (2002).
31. M. P. Moret, R. Zallen, D. P. Vijay and S. B. Desu, Brookite-rich titania films made by pulsed laser deposition, Thin Solid Films, 366, pp. 8 (2000).
32. V. Vancoppenolle, P. Y. Jouan, M. Wautelet, J. P. Dauchot and M. Hecq, Glow discharge mass spectrometry study of the deposition of TiO2 thin films by direct current reactive magnetron sputtering of a Ti target, J. Vac. Sci. Technol. A17, p. 3317 (1999).
33. Y. Takata, S. Hidaka, M. Masuda and T. Ito, Pool boiling on a superhydrophilic surface, Int. J. Energy Res., 27, p. 111 (2003).
34. S. Schiller, G. Beister, W. Sieber, G. Schirmer and E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive D.C. Plasmatron Sputtering, Thin Solid Films, 83, p. 239 (1981).
35. S. Miyake, K. Honda, T. Kohno, Y. Setsuhara, M. Satou and A. Chayahara, rutile-type TiO2 formation by ion beam dynamic mixing, J. Vac. Sci. Technol. A, 10, p. 3253 (1992).
36. M. Gilo and N. Croitoru, properties of TiO2 films prepared by ion-assisted deposition using a gridless end-hall ion source, Thin Solid Films, 283, p. 84 (1996).
37. M. D. Wiggins, M. C. Nelson and C. R. Aita, Phase development in sputter deposited titanium dioxide, J. Vac. Sci. Technol., A14, p. 772 (1996).
38. 簡國明,奈米二氧化鈦專利地圖及分析,臺北市:行政院國家科學委員會科學技術資料中心,(2003)。
39. 垰田博史,光觸媒圖解,商周出版社,(2003)。
40. Bjorn O. Mysen, Phase Diagrams for Ceramists Figure, The American Ceramic Society Inc., 76 , p. 4455 (1975).
41. Y. Li and T. Ishigaki, Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt, J. Cryst. Growth, 242, p. 511 (2002).
42. C. Suresh, V. Biju, P. Mukundan and K. G. K. Warrier, Anatase to rutile transformation in sol-gel titania by modification of precursor , Polyhedron, 17, p. 3131 (1998).
43. R. W. Mattews, J. Phys. Chem. 91, p.3328 (1987).
44. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photoch. Photobio. A: Chem, 106, p. 51 (1997).
45. H. Sakai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation, Chem. Lett., 24, p. 185 (1995).
46. A. Rampaul, I. P. Parkin, Shane A. O. Neill, J. DeSouza, A. Mills and N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron, 22, p. 35 (2003).
47. G. H. Li, L. Yang, Y. X. Jin, L. D. Zhang, Structural and optical properties of TiO2 thin film and TiO2 + 2wt.% ZnFe2O4 composite film prepared by r.f. sputtering, Thin solid film, 368, p. 163 (2000).
48. R. Norma, de Tacconi , C. R. Chenthamarakshan , K. Rajeshwar ,T. Pauport, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films, Electrochem. Commun., 4, p.220 (2003).
49. Donia Beydoun, Rose Amal and Stephen McEvoy, Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, J. Phys. Chem. B, 104, p. 4387 (2000).
50. 宮內雅浩, 中島章, TiO2 /WO3 複合高感度光誘起親水性材料,工業材料2000 年6 月號V0l. 48,No.6。
51. M. Miyauchi, A. Nakajima, K. Hashimoto and T. Watanabe, A highly hydrophilic thin film under 1 μW/cm2UV llumination, Adv. Mater. 12, p. 24 (2000).
52. X. Z. Li, F. B. Li, C.L. Yang and W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol., A.,141, p. 209 (2001).
53. H. Irie, H.Mori, K. Hashimoto, Interacial structure dependence of layered TiO2/WO3 thin films on photoinduced hydrophilic property. Vacuum.,74, p.625 (2004).
54. Y. C. Lee, Y. P. Hong, H. Y. Lee and H. Kim, Photocatalysis and hydrophiliccity of doped TiO2 thin film. J. Colloid Interface Sci., 267, p.127 (2003).
55. M. Ohring, The Materials Science of Thin Films (1991).
56. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Photoinduced hydrophilic converseon of TiO2/WO3 Layered Thin Films, Chem Mater.,14 (11), p. 4714 (2002).
57. A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J. M. Herrmann, H. Tahiri and Y. Ait-Ichou, Preparation and characterization of TiO2 Photocatalysts supported on various rigid supports(glass, quartz and stainless steel). Comparative studies of photocatalytic activeity in water purifyication. Appl. Catal., B, 7, p. 49 (1995).
58. Y. Paz, A. heller, Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J. Mar. Res. 12, p.2759 (1997).
59. Jiaguo Yu and Xiujian Zhao, Effect of substrates on the photocatalytic activeity of nanometer TiO2 thin films. Mater. Res. Bull., 35, p.1293 (2000).
60. E. Aubry, M. N. Ghazzal, V. Demange, N. Chaoui, D. Robert and A. Billard, Poisoning preven tion of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of SiNx diffusion barriers. Surf. Coat. Technol., 201, p.7706 (2007).
61. W. K. Chu, J. W. Mayer and M. A. Nicolet, Backscattering Spectrometry, New York: Academic Press (1978)
62. 汪建民,材料分析,中國材料科學學會出版。
63. K. Takamura, Y. Abe and K. Sasaki, Influence of Oxygen Flow Ratio on the Oxidation of Ti Target and the Formation Process of TiO2 Films by Reactive Sputtering, Vacuum, 74, p. 397 (2004).
64. Joint Committee for Powder Diffraction Standards (JCPDS), Card No.5-1272【A-TiO2】, 21-1276【R-TiO2】
65. Akira Shibata, Kunio Okimura, Yukio Yamamoto and Kakuei Matubara, Effect of Heating Probe on Reactively Sputtered TiO2 Film Growth, 32, p. 5666 (1993).
66. W. Choi, A. Termin and M. R. Hoffmann, The role of metallic dopants in quantum-sized TiO2: correlation between photocareactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, p. 13669 (1994).
67. 陳力俊等編著,材料電子顯微鏡學,儀科中心出版。
68. Y. Huaming, S, Rongrong, Z. Ke, H. Yuehua, T. Aidong and Li. Xianwei, Synthesis of WO3/TiO2 nanocomposites via sol–gel method. , J. Alloys Compd., 389, p. 200 (2005)
69. S. Roth, R. Dennis, Phase Diagrams for Ceramists., Fig.2202 (1981).
70. H.Y. Wang, T.M. Wang and P. Xu, Effects of Substrate Temperature on the Microstructure and Photocatalytic Reactivity of TiO2 Films, J. Mater. Sci. Mater. Electron., 9, p. 327 (1998).
71. B. Karunagaran, R. T. Rajendra Kunar, D. Mangalaraj, S. K. Narayandass and G. M. Rao, Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Cryst. Res. Technol., 37, p. 1285 (2002).
72. H. Shinya, S. Makoto and A. Masashi, Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior, Thin solid films, 503, p. 201 (2006).
73. S.Y Chai , Y. J Kim and W. I. Lee , Photocatalytic WO3/TiO2 nanoparticles working under visible light, J. Electroceram., 17, p. 909 (2006).
74. Donald L, Smith, Thin-Film Deposition, McGraw-Hill, New York, p. 183 (1995).
75. S. Chatterjee, P. K. Mahapatra and A. K. Singh. et al., Structural, electrical and dielectric properties of Na2W4O13 ceramic, J. Mater. Sci. Lett., 22 (2), p.99 (2003).
76. A. Kudo, H. Kato, Photocatalytic activities of Na2W4O13 with layered structure, Chem. Lett., 5, P. 421 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top