參考文獻
1. N. Taguchi, Japanese Patent S45-38200 (1962).
2. A. Garg, J. A. Leake, and Z. H. Barber, Epitaxial growth of WO3 films on SrTiO3 and sapphire, J. Phys. D: Appl. Phys., 33, p. 1048 (2000).
3. Y. Zhao, Z. C. Feng, and Y. Liang, Pulsed laser deposition of WO3-base film for NO2 gas sensor application, Sens. and Actuators B, 66, p. 171 (2000).
4. M. Penza, C. Martucci, and G. Cassano, NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, Sens. and Actuators B, 50, p. 52 (1998).
5. F. M. Liu and T. M. Wang, Surface and optical properties of nanocrystalline anatase titania films grown by radio frequency reactive magnetron sputtering, Appl. Surf. Sci., 195, p.284 (2002).
6. P. Lobl, M. Huppertz and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films, 251,p. 72 (1994).
7. M. Radecka, K. Z. Akrzewska, H. Czternastek, T. Stapinski and S. Debrus, The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films, Appl. Surf. Sci., 65-66, p. 227 (1993).
8. O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke and D. Glöß, Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering, Surf. Coat. Tech., 180-181, p. 538 (2004).
9. R. Levinson, P. Berdahl and H. Akbari, Solar spectral optical properties of pigments-part II: survey of common colorants, Sol. Energy Mater. Sol. Cells, 89, p. 351 (2005).
10. L. Shivalingappa, J. Sheng and T. Fukami, Photocatalytic effect in platinum doped titanium dioxide films, Vacuum, 48, p. 413 (1997).
11. W. Choi, S. J. Hong, Y. S. Chang and Y. Cho, Environ. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Sci. Technol. 34, p. 4810 (2000).
12. O. Heintz, D. Robert and J. V. Weber, Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol. A:Chem., 135, p. 77 (2000).
13. A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 Photocatalysis-Fundamentals and Applications, BKC, Tokyo, (1999)
14. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light-induced amphiphilic surfaces, Nature, 388, p. 431(1997).
15. A. Mills, A. Lepre, N. Elliot, S. Bhopal, O. P. Parkin and S. A. O’Neill, Characterisation of the photocatalyst Pilkington Activ™: a reference film photocatalyst?, J. Photochem. Photobiol. A:Chem., 160, p. 213 (2003)
16. K. Takagi, T. Makimoto, H. Hiraiwa and T. Negishi, Photocatalytic, antifogging mirror, J. Vac. Sci. Technol. A, 19, p. 2931 (2001)
17 G. Williams and G. S. V. Coles, Gas-Sensing potential of nanocrystalline tin dioxied produced by a laser ablation technique, MRS. Bulletin, June, 21, p. 25-29(1999).
18. A. Diegues, A. Romano-Rodriguez, J. R. Morante, U. Weimar, M. Schweizerr-Berberich, W. Gopel, Morphological analysis of nanocrystalline SnO2 for gas sensor applications, Sensors and Actuators B, 31, p. 1 (1996).
19. 林智汶,有機材料氣體感測器之應用,化工技術,第8 期, pp. 136-143 (2000).20. S. M. Sze, Semiconductor sensors, John Wiley & Sons, New York, chap. 8, p. 383- (1994)..
21. A Fujishima, Tata N. Rao and Donald A. Tryk , Titanium dioxidephotocatalysis, Journal of Photochemistry & Photobiology C :Photochemistry Reviews 1, p. 1 (2000).
22. J. M. White, J. Szanyi and M. A. Henderson, The photon-driven hydrophilicity of titania: a model study using TiO2 (110) and adsorbed trimethyl acetate, J. Phys. Chem. B, 107, p. 9029 (2003).
23. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 2, p. 135 (1998).
24. R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces, J. Phys. Chem. B ,103, p. 2188 (1999).
25. M. Schiavello, Photoelectrochemistry, Photocatalysis and Photoreactors (Fundamentals and Developments), NATO ASI Series, (1984).
26. H. Sakai, R. X. Cai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Purification and Treatment of Water and Air, p. 651 (1993).
27. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 20, p. 69 (1995).
28. 高濂、鄭珊、張青紅,奈米光觸媒,五南圖書出版公司,(2004)。
29. Fisher P, Maksimov O and Du H, Growth, structure, and morphology of TiO2 films deposited by molecular beam epitaxy in pure ozone ambients, Microchem. J., 37, p. 1493 (2006).
30. C. C. Ting, S. Y. Chen and D. M. Liu, Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered Ti films, Thin Solid Films, 402, p. 290 (2002).
31. M. P. Moret, R. Zallen, D. P. Vijay and S. B. Desu, Brookite-rich titania films made by pulsed laser deposition, Thin Solid Films, 366, pp. 8 (2000).
32. V. Vancoppenolle, P. Y. Jouan, M. Wautelet, J. P. Dauchot and M. Hecq, Glow discharge mass spectrometry study of the deposition of TiO2 thin films by direct current reactive magnetron sputtering of a Ti target, J. Vac. Sci. Technol. A17, p. 3317 (1999).
33. Y. Takata, S. Hidaka, M. Masuda and T. Ito, Pool boiling on a superhydrophilic surface, Int. J. Energy Res., 27, p. 111 (2003).
34. S. Schiller, G. Beister, W. Sieber, G. Schirmer and E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive D.C. Plasmatron Sputtering, Thin Solid Films, 83, p. 239 (1981).
35. S. Miyake, K. Honda, T. Kohno, Y. Setsuhara, M. Satou and A. Chayahara, rutile-type TiO2 formation by ion beam dynamic mixing, J. Vac. Sci. Technol. A, 10, p. 3253 (1992).
36. M. Gilo and N. Croitoru, properties of TiO2 films prepared by ion-assisted deposition using a gridless end-hall ion source, Thin Solid Films, 283, p. 84 (1996).
37. M. D. Wiggins, M. C. Nelson and C. R. Aita, Phase development in sputter deposited titanium dioxide, J. Vac. Sci. Technol., A14, p. 772 (1996).
38. 簡國明,奈米二氧化鈦專利地圖及分析,臺北市:行政院國家科學委員會科學技術資料中心,(2003)。
39. 垰田博史,光觸媒圖解,商周出版社,(2003)。
40. Bjorn O. Mysen, Phase Diagrams for Ceramists Figure, The American Ceramic Society Inc., 76 , p. 4455 (1975).
41. Y. Li and T. Ishigaki, Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt, J. Cryst. Growth, 242, p. 511 (2002).
42. C. Suresh, V. Biju, P. Mukundan and K. G. K. Warrier, Anatase to rutile transformation in sol-gel titania by modification of precursor , Polyhedron, 17, p. 3131 (1998).
43. R. W. Mattews, J. Phys. Chem. 91, p.3328 (1987).
44. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photoch. Photobio. A: Chem, 106, p. 51 (1997).
45. H. Sakai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation, Chem. Lett., 24, p. 185 (1995).
46. A. Rampaul, I. P. Parkin, Shane A. O. Neill, J. DeSouza, A. Mills and N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron, 22, p. 35 (2003).
47. G. H. Li, L. Yang, Y. X. Jin, L. D. Zhang, Structural and optical properties of TiO2 thin film and TiO2 + 2wt.% ZnFe2O4 composite film prepared by r.f. sputtering, Thin solid film, 368, p. 163 (2000).
48. R. Norma, de Tacconi , C. R. Chenthamarakshan , K. Rajeshwar ,T. Pauport, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films, Electrochem. Commun., 4, p.220 (2003).
49. Donia Beydoun, Rose Amal and Stephen McEvoy, Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, J. Phys. Chem. B, 104, p. 4387 (2000).
50. 宮內雅浩, 中島章, TiO2 /WO3 複合高感度光誘起親水性材料,工業材料2000 年6 月號V0l. 48,No.6。
51. M. Miyauchi, A. Nakajima, K. Hashimoto and T. Watanabe, A highly hydrophilic thin film under 1 μW/cm2UV llumination, Adv. Mater. 12, p. 24 (2000).
52. X. Z. Li, F. B. Li, C.L. Yang and W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol., A.,141, p. 209 (2001).
53. H. Irie, H.Mori, K. Hashimoto, Interacial structure dependence of layered TiO2/WO3 thin films on photoinduced hydrophilic property. Vacuum.,74, p.625 (2004).
54. Y. C. Lee, Y. P. Hong, H. Y. Lee and H. Kim, Photocatalysis and hydrophiliccity of doped TiO2 thin film. J. Colloid Interface Sci., 267, p.127 (2003).
55. M. Ohring, The Materials Science of Thin Films (1991).
56. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Photoinduced hydrophilic converseon of TiO2/WO3 Layered Thin Films, Chem Mater.,14 (11), p. 4714 (2002).
57. A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J. M. Herrmann, H. Tahiri and Y. Ait-Ichou, Preparation and characterization of TiO2 Photocatalysts supported on various rigid supports(glass, quartz and stainless steel). Comparative studies of photocatalytic activeity in water purifyication. Appl. Catal., B, 7, p. 49 (1995).
58. Y. Paz, A. heller, Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J. Mar. Res. 12, p.2759 (1997).
59. Jiaguo Yu and Xiujian Zhao, Effect of substrates on the photocatalytic activeity of nanometer TiO2 thin films. Mater. Res. Bull., 35, p.1293 (2000).
60. E. Aubry, M. N. Ghazzal, V. Demange, N. Chaoui, D. Robert and A. Billard, Poisoning preven tion of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of SiNx diffusion barriers. Surf. Coat. Technol., 201, p.7706 (2007).
61. W. K. Chu, J. W. Mayer and M. A. Nicolet, Backscattering Spectrometry, New York: Academic Press (1978)
62. 汪建民,材料分析,中國材料科學學會出版。
63. K. Takamura, Y. Abe and K. Sasaki, Influence of Oxygen Flow Ratio on the Oxidation of Ti Target and the Formation Process of TiO2 Films by Reactive Sputtering, Vacuum, 74, p. 397 (2004).
64. Joint Committee for Powder Diffraction Standards (JCPDS), Card No.5-1272【A-TiO2】, 21-1276【R-TiO2】
65. Akira Shibata, Kunio Okimura, Yukio Yamamoto and Kakuei Matubara, Effect of Heating Probe on Reactively Sputtered TiO2 Film Growth, 32, p. 5666 (1993).
66. W. Choi, A. Termin and M. R. Hoffmann, The role of metallic dopants in quantum-sized TiO2: correlation between photocareactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, p. 13669 (1994).
67. 陳力俊等編著,材料電子顯微鏡學,儀科中心出版。
68. Y. Huaming, S, Rongrong, Z. Ke, H. Yuehua, T. Aidong and Li. Xianwei, Synthesis of WO3/TiO2 nanocomposites via sol–gel method. , J. Alloys Compd., 389, p. 200 (2005)
69. S. Roth, R. Dennis, Phase Diagrams for Ceramists., Fig.2202 (1981).
70. H.Y. Wang, T.M. Wang and P. Xu, Effects of Substrate Temperature on the Microstructure and Photocatalytic Reactivity of TiO2 Films, J. Mater. Sci. Mater. Electron., 9, p. 327 (1998).
71. B. Karunagaran, R. T. Rajendra Kunar, D. Mangalaraj, S. K. Narayandass and G. M. Rao, Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Cryst. Res. Technol., 37, p. 1285 (2002).
72. H. Shinya, S. Makoto and A. Masashi, Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior, Thin solid films, 503, p. 201 (2006).
73. S.Y Chai , Y. J Kim and W. I. Lee , Photocatalytic WO3/TiO2 nanoparticles working under visible light, J. Electroceram., 17, p. 909 (2006).
74. Donald L, Smith, Thin-Film Deposition, McGraw-Hill, New York, p. 183 (1995).
75. S. Chatterjee, P. K. Mahapatra and A. K. Singh. et al., Structural, electrical and dielectric properties of Na2W4O13 ceramic, J. Mater. Sci. Lett., 22 (2), p.99 (2003).
76. A. Kudo, H. Kato, Photocatalytic activities of Na2W4O13 with layered structure, Chem. Lett., 5, P. 421 (1997).