|
1. The national technology roadmap for semiconductors, International Technology Roadmap for Semiconductors (2007, updated). 2. S. P. Heng, International Symposium on VLSI TSA, p.164(1995). 3. 吳世全,“毫微米通訊”,第六卷,第三期,,p. 38 (1999)。 4. S.Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, T. Lii, V. Misra, K. Reid, C. Simpson, B. Smith, T. Sparks, D. Watts, E. J. Weitzman and B. Wilson, Integration of multi-level copper metallization into a high performance sub-0.25 pm cmos technology, IEEE, p. 146 (1998). 5. 張俊彥、鄭晃忠,“積體電路製程及設備技術手冊”,p. 241 (1997)。 6. 楊正杰、張鼎張,“工業材料”,167期,p. 121 (2000)。 7. M. T. Bohr, Inter connect scaling-The real limiter to high performance ULSI, IEDM, p. 241 (1995). 8. K. Rahmat, O. S. Nakagegawa, S. Y. Oh and J. Moll, A scaling scheme for interconnect in deep-submicron processes, IEDM, p. 245 (1995). 9. S. C. Sun, Process Technologies for Advanced Metallization and Interconnect Systems, IEDM, p. 765 (1997). 10. J. R. Lloyd, J. J. Clement, Electromigration in copper conductors, Thin Solid Films, 262, p. 135 (1995). 11. R. Miller, Circuit analysis theory and practice, Delmar Publishers, p. 42 (1995). 12. R. Solanki, B. Pathangey, Atomic layer deposition of copper seed layer, Electrochem. Solid-State Lett., 3, p. 479 (2000). 13. W. A. P. Claassen, J. Bloem, The nucleation of CVD silicon on SiO2 and Si3N4 substrates, J. Electrochem. Soc., 128, p. 1353 (1981). 14. H. Baker, Alloy phase digrams, ASM Handbook, Vol.3 (1992). 15. Y. Shacham-Diamand, A. Dedhia, Copper transport in thermal SiO2, J. Electrochem. Soc., 140, p. 2427 (1993). 16. C. S. Liu, L. J. Chen, Room-temperature oxidation of silicon in the presence of Cu3Si, Thin Solid Films, 262, p. 187 (1995). 17. C. S. Ryu, PhD Thesis, Mater. Sci Eng., Stanford University (1998). 18. 陳錦山、黃獻慶、鄭義冠,“真空科技”,第十二卷,第二期,p. 26 (1999)。 19. Y. Shacham-Diamand, S. Lopatin, High aspect ratio quarter-micron electron electroless coper integrated technology, Microelec. Eng., 37-38, p. 77 (2000). 20. R. Rosenberg, D. C. Edelstenin, C. K. Hu and K. P. Rodbell, Copper metallization for hight performance silicon technology, Annu. Rev. Mater. Sci., 30, p. 229 (2000). 21. S. Lee, S. H. Yang, H. S. Moon and J. W. Park, Dielectric constant stability and thermal stability of Cu/Ta/SiOF/Si multilayer films, Jpn. J. Appl. Phys, 40, p. 225 (2001). 22. S. Li, Z. L. Dong, K. M. Latt, H. S. Park and T. White, Formation of Cu diffusion channels in Ta of a Cu/Ta/SiO2/Si structure, Appl. Phys. Lett., 80, p. 2296 (2002). 23. K. H. Min, K. C. Chun and K. B. Kim, Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization, J. Vac. Sci. Technol., B, 14, p. 3263 (1996). 24. K. M. Latt, Y. K. Lee, S. Li, T. Osopowicz and H. L. Seng, The impact of layer thickness of IMP-deposited tantalum nitride films on integrity of Cu/TaN/SiO2/Si multilayer structure, Mater. Sci. Eng., B, 84, p. 217 (2001). 25. O. Voigt, B. Davepon, G. Staikov and J. W. Schultze, Localized electrochemical deposition and dissolution of Cu on microstructured Ti surfaces, Electrochim. Acta, 44, p. 3731 (1999). 26. S. H. Kim, K. T. Nam, A. Datta and K. B. Kim, Failure mechanism of a multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon, J. Appl. Phys., 92, p. 5512 (2002). 27. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park and J. J. Kim, Diffusion barrier performance of chemically vapor deposited TiN films prepared using tetrakis-dimethyl-amino titanium in the Cu/TiN/Si structure, Appl. Phys. Lett., 69, p. 4182 (1996). 28. A. Broniatowski, Multicarrier trapping by copper microprecepitates in silicon, Phys. Rev. Lett., 62, p. 3074 (1989). 29. S. D. Brotherton, J. R. Ayres, A. Gill, H. W. Van Kestern and F. J. A. M. Greidanus, Deep levels of copper in silicon, J. Appl. Phys., 662, p. 1826 (1987). 30. Y. Shacham-Diamand, Li J. Olowlafe, J. O. Russel, S. Tamou and Y. Mayer, Oxidation and thermal stability of thin film copper layers, IEEE, 12-14, p. 210 (1991). 31. H. H. Hsu, K. H. Lin, S. J. Lin and J. W. Yeh, Electroless copper deposition for ultralarge-scale integration, J. Electrochem. Soc., 148, p. C47 (2001). 32. Y. Shacham-Diamand, S. Lopatin, Integrated electroless metallization for ULSI, Electrochim. Acta, 44, p. 3639 (1999). 33. C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff and J. E. Cromin, Dual damascene: a ULSI wring technology, IEEE VMIC Conf, 11-12, p. 144 (1991). 34. R. L. Jackson, E. Broadbent, T. Cacouris, A. Harrus, M. Biberger, E. Patton and T. Walsh, Processing and integration of cooper interconnects, Solid State Technol., 41, p. 49 (1998). 35. X. W. Lin, D. Pramanik, Future interconnect technologies and copper metallization, Solid State Technol., 10, p. 63 (1998). 36. 王建榮、林必窕、林慶福,“半導體平坦化CMP 技術”,全華出版社, 89 年6 月。 37. C. Wenzel, N. Urbansky, W. Klimes, P. Siemruth and T. Schulke, Gap filling with PVD processes for copper metallized integrated circuits, Microelectron. Eng., 33, p. 31 (1997). 38. J. Cook, Angular distribution of sputtered atoms in physical vapor deposition and collimated sputtering, Thin Solid Films, 338, p.81 (1999). 39. D. Bollmann, R. Merkel and A. Klumpp, Conformal copper deposition in deep trenches, Microelectron. Eng., 37-38, p. 105 (1997). 40. A. Burk, G. Braeckelmann, M. Danger, E. Eisenbraun and A. E. Kaloyeros, Profile simulation of conformality of chemical vapor deposited copper in subquarter-micron trench and via structures, J. Appl. Phys., 82, p. 4651 (1997). 41. 逢板哲爾,“表面處理工業雜誌”,3 期,p. 25 (1986)。 42. N. W. Cheung, Nuclear instruments and methods in physics research, B55, p. 811 (1991). 43. Y. Shacham-Diamand, Electrochemical deposition process for ULSI copper interconnect fabrication, UCB Short Course (1998). 44. H. D. Yosi and S. Lopatin, Integrated electroless metallization for ULSI, Electrochim. Acta, 44, p. 3639 (1999). 45. E. J. O’Sullivan and A. G. Schrott, Electrolessly deposited diffusion barriers for microelectronics, IBM J. Res. Develop., 42, p. 607 (1998). 46. A. Kohn, M. Eizenberg and Y. Shacham-Diamand, Evaluation of electroless deposited Co(W,P) thin films as diffusion barriers for copper metallization, Microelectron. Eng., 55, p.297 (2001). 47. Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, Electroless deposition of thin-film cobalt-tungsten-phosphorus layers using tungsten phosphoric acid (H3[P(W3O10)4]) for ULSI and MEMS applications, J. Electrochem. Soc., 148, p. C162 (2001). 48. J. Torres, Advanced copper interconnections for silicon CMOS technologies, Appl. Surf. Sci. 91, p. 112 (1995). 49. S. P. Murarka, Advanced materials for future interconnections of the future need and strategy : Invited lecture, Microelectron. Eng., 37-38, p. 29 (1997). 50. H. Kim, The application of atomic layer deposition for metallization of 65 nm and beyond, Surf. Coat. Technol., 200, p. 3104 (2006). 51. T. Usui, H. Nasu, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, H. Shibata, M. Wada and J. Koike, Highly reliable copper dual-damascene interconnects with self-formed MnSixOy barrier layer, IEEE, 53, p. 2492 (2006). 52. H. H. Hsu, C. C. Hsie, M. H. Chen, S. J. Lin and J. W. Yeh, Displacement activation of tantalum diffussion barrier layer for electroless copper deposition, J. Electrochem. Soc., 148, p. C590 (2001). 53. B. K. W. Baylis, A. Busuttil, N. Hedgecock and M. Schlesinger, Tin(Ⅳ) chloride solution as a sensitizer in photoselective metal deposition, J. Electrochem. Soc., 123, p. 348 (1976). 54. N. Feldstein, J. A. Weiner, Surface characterization of sensitized and activated teflon, J. Electrochem. Soc., 120, p. 475 (1973) 55. W. Lee, H. Cho, B. Cho, J. Kim, Y. S. Kim, W. G. Jung, H. Kwon, J. Lee, P. J. Reucroft, C. Lee and J. Lee, Factors affecting passivation of Cu(Mg) alloy films, J. Electrochem. Soc. 147, p. 3066 (2000). 56. G. O. Mallory, J. B. Hajdu Editors, Electroless plating: fundamentals and applications, American Electroplaters and Surface Finishers Soc., 12, p. 6 (1990). 57. M. Yoshino, H. Aramaki, I. Matsuda, Y. Okinaka and T. Osakaa, Effect of Organosilane Underlayers on the Effectiveness of NiB Barrier Layers in ULSI Metallization, Electrochem. Solid-State Lett., 12, p. D19 (2009). 58. W. Kern, D. A. Putinen, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA Review, 31, p. 187 (1970). 59. 陳松德,博士論文,逢甲大學材料科學與工程學系,民國93。 60. 謝逸弘,博士論文,逢甲大學材料科學與工程學系,民國96。 61. C. J. Liu, J. S. Chen, Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier, Appl. Phys. Lett., 80, p. 2678 (2002). 62. C. J. Liu, J. S. Chen, Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films, J. Mat. Res., 20, p. 496 (2005). 63. C. J. Liu, J. S. Chen, Correlation between outward diffusion of additives and oxidation of Cu(3.9at. % Ti) and Cu(2.3 at. % Ta) thin films, J. Appl. Phys., 99, 036104 (2006). 64. W. A. Lanford, P.J. Ding, W. Wang, S. Hymes and S. P. Murarka, Low-temperature passivation of copper by doping with Al or Mg, Thin Solid Films, 262, p. 234 (1995). 65. W. A. Lanford, P.J. Ding, Wei Wang, S. Hymes and S. P. Murarka, Alloying of copper for use in microelectronic metallization, Mater. Chem. Phys., 41, p. 192 (1995). 66. P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, Oxidation resistant high conductivity copper films, Appl. Phys. Lett. 64, p. 2897 (1994). 67. V. M. Dubin, Electroless Ni-P deposition on silicon with Pd activation, J. Electrochem. Soc., 139, p. 1289 (1992). 68. M. Haneda, J. Iijima and J. Koike, Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450℃, Appl. Phys. Lett., 90, 252107 (2007). 69. http://www.semichips.org 70. K. Barmak, C. Caral, Jr., K. P. Rodbell and J. M. E. Harper, On the use of alloying elements for Cu interconnect applications, J. Vac. Sci. Technol., B, 24, p. 2485 (2006). 71. E. M. Liston, L. Martinu and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhesion Sci. Technol., 7, p.1091 (1993). 72. J. C. Tsai, VLSI Technology2nd, S. M. Sze editor, McGraw-Hill Company (1988). 73. A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho and S. S. Wong, Kinetics of copper drift in PECVD dielectrics, IEEE Electr. Dev. Letts., 17, p. 549 (1996). 74. S. T. Chen, G. S. Chen, Characterization of ultrathin electroless barriers grown by self-aligned deposition on silicon-based dielectric films, J. Electrochem. Soc., 151, p. D99 (2004). 75. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi and J. A. Yarmoff, The Physics and chemistry of SiO2 and the Si-SiO2 interface, C. R. Helms and B. E. Deal, Editors, p. 219, Plenum Press, New York (1988). 76. V. Jousseaume, N. Rochat, L. Favennec, O. Renault and G. Passemard, Mechanical stress in PECVD a-SiC:H: aging and plasma treatments effects, Mater. Sci. Semicond. Proc., 7, p. 301 (2004). 77. C. J. Liu, J. S. Jeng and J. S. Chen, Effect of Ti addition on the morphology, interracial reaction, and diffusion of Cu on SiO2, J. Vac. Sci. Technol., B, 20, p. 2361 (2002). 78. C. Y. Yang, J. S. Chen, Investigation of Copper agglomeration at elevated tempertures, J. Electrochem. Soc., 150, p. G82 (2003). 79. K. T. Miller, F. F. Lange and D. B. Marshell, The instability of polycrystalline thin films: Experiment and theory, J. Mater. Res., 5, p. 151 (1990). 80. J. J. Rha, J. K. Park, Stability of the grain configurations of thin films-A model for agglomeration, J. Appl. Phys., 82, p. 1608 (1997). 81. J. J. Rha, J. K. Park, Agglomeration of TiSi2 thin film on (100) Si substrate, J. Appl. Phys., 82, p. 2933 (1997). 82. D. Weiss, O. Kraft and E. Arzt, Grain-boundary voiding in self-passivated Cu–1 at.% Al alloy films on Si substrates, J. Mater. Res., 17, p. 1363 (2002). 83. V. V. Svirdow, Minsk and Russia, Electrolessly deposited diffusion barriers for microelectronics, IBM J. Res. Develop., 42, p. 607 (1998). 84. M. Schlesinger, M. Paunovic, Modern electroplating, Fourth Edition, Wiley Interscience, NewYork, p. 652 (2002). 85. R. M. Lukes, Plating , 51, p.1066 (1964). 86. J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu–Mn alloy metallization, Appl. Phys. Lett., 87, 041911 (2005). 87. J. Koike, M. Haneda, J. Iijima and M. Wada, Cu alloy metallization for self-forming barrier process, IEEE Xplore, 28, p.161 (2006). 88. J. Koike, M. Haneda and J. Iijima, Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface, J. Appl. Phys., 102, 043527 (2007). 89. Z. H. Liu, C. Yang, H. M. Chen, Y. H. He and K. Liu, A study of electroless cobalt alloy films for magnetic recording media, Thin Solid Films, 182, p. 255 (1989). 90. T. Osaka, L. Koiwa, M. Toda, L. Sakurna, Y. Yamazaki, T. Narnikawa and F. Goto, An attempt on control of perpendicular coercivity toward film thickness directian of electroless plated cobalt alloy films for perpendicular magnetic recording, IEEE Transactions on Magnetics, 22, p. 1149 (1986). 91. Z. H. Liu, Y. Chen, Y. H. He and H. M. Chen, An investigation of the microstructure of electroless Co-alloy film, J. Appl. Phys., 68, p. 889 (1990). 92. H. M. Chen and Z. H. Liu, Electrolessly plated cobalt alloy films for perpendicular magnetic recording media, Journal of Magnetism and Magnetic Materials, 115, p. 99 (1992).
|