(3.238.173.209) 您好!臺灣時間:2021/05/09 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃朝鴻
研究生(外文):Chao-Hung Huang
論文名稱:無電鍍Cu-Mn合金化薄膜之特性與應用研究
論文名稱(外文):Characterization and Application of Electrolessly Plated Cu-Mn Alloyed Thin Films
指導教授:陳錦山
指導教授(外文):Giin-Shan Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:阻障層內連接導線無電鍍銅合金化
外文關鍵詞:Barrier LayerElectrolessInterconnectCopper Alloyed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著積體電路元件(Integrated Circuit;IC)之技術節點進入100 nm世代後,阻障層之厚度要求將隨之而變得更加嚴謹,而傳統使用PVD或CVD之製備方法因其階梯覆蓋性(Step Coverge)不良與順依性(Confirmity)不佳,因此其製備之Ta/TaN阻障層將無法滿足次奈米世代之要求,因此開發新的製程技術與新穎替代材料系統是被多方期待。而在半導體工業藍圖中,原子層沉積(Atomic Layer Deposition;ALD)與電化學沉積(Electrochemical Plating;ECP)被視為兩個值得重視的製程技術替代方案。
本研究使用電化學之無電鍍製成沉積薄膜,並採用專利性之超微密鎳顆粒做為催化晶種層。分別探討10 nm之Co-P阻障層對於銅薄膜在高溫熱處理下之行為與錳原子的摻雜對於銅薄膜之高溫熱處理下之行為,並利用掃描式電子顯微鏡(Scanning Electron Microscopy;SEM)及X光繞射儀(X-ray Diffractometer;XRD)分析薄膜之表面型態與薄膜組織;歐傑電子分析儀(Auger Electron Spectrometer;AES)及電壓-電流特性量測系統(I-V Measurement System)分析其是否具有抑制銅原子在高溫熱處理下之擴散行為;並且使用四點探針(Four-point Probe)分析其是否符合作為內連接導線所要求之低電阻特性。由分析結果得知10 nm之Co-P阻障層能有效的抑制銅原子在高溫熱處理下之擴散行為與晶粒成長行為;錳原子的摻雜不僅可以有效的提高熱處理溫度且能延長熱處理溫度而不使銅原子擴散與矽基材反應生成銅矽化合物與劇烈的晶粒成長行為導致銅薄膜破裂現象之發生。
With the integrated circuit components technology node into the 100 nm generation, the barrier layer thickness of the requirements which will become more stringent, However, the PVD or CVD manufacture method has so poor step coverge and conformity in traditionally, therefore the requirement of preparation for Ta/TaN barrier layer can not be accepted in sub-nanometer generation. The atomic layer deposition and electrochemical deposition will be considered that two important manufacturing process alternatives plan in the semiconductor industry blueprint.
In this study, we use the electrochemical deposition to make thin films with non-plating way, which adopt the proprietary nickel ultrafine partides as a catalytic dense seed layer. We discuss the different between with or without 10 nm Co-P barrier layer and Mn doping or not when they under heat treatment at hight temperature. We also use the scanning electro microscope、X-ray diffractometry analysis and voltage-current characteristics of the measurement system analysis whether it can inhibit the Copper atoms in the proliferation of high-temperature heat treatment under the diffusion; and use the four-point probe analysis whether they conform to require as the low resistance of wires characteristics connected. By the results of the analysis that the 10 nm of Co-P barrier layer can effectively suppress the Copper atomic in the proliferation of hight-temperture heat treatment under the diffusion of behavior and grain growth; the doped Mn atoms can not only effectively increase the treatment temperature but also intend the treatment times, so that can avoid Copper atom diffusion to the Silica substrate to form Cu-Si compounds, and efficiently decree the grain grouth lead to Copper film broken.
中文摘要…………………………………………………...…………….I
英文摘要………………………………………………………………...II
目錄…………………………………………………………………….III
表目錄………………………………………………………………...VI
圖目錄………………………………………………………………….VII
第1章 前言.……………………………………………………...1
第2章 文獻回顧與研究動機.………………………………….….8
2.1 銅內連接導線的材料選擇與製備……………………….8
2.1.1 傳統內連接導線之材料選擇與製備………………8
2.1.2 大馬士全面包裹內連接導線…………….………..9
2.1.3 全程濕式內連接導線…………………………….10
2.2 擴散阻障層………………………………………………11
2.3 無電鍍催化晶種與超薄阻障層之製備與應………...…13
2.4 銅合金化薄膜之材料選擇與應用…………………..…14
第3章 實驗步驟與分析技術……………………………………23
3.1 實驗步驟…………………………………...…………….23
3.1.1 SiO2基材準備……………………..…………..23
3.1.2 無電鍍析鍍前處理―電漿與化學溶液表面改質…23
3.1.3 超微密Ni晶種之吸附/還原….…………………24
3.1.4 無電鍍薄膜析鍍……………………………………25
3.1.5 電容元件試片製作…………………………………26
3.2 實驗製程設備……………………………………………26
3.3 實驗製程分析儀器………………..……….……………27
第4章 結果與討論………………………………..…………….43
4.1 鎳晶種催化銅鍍浴析鍍與超薄Co-P阻障層…………43
4.1.1 超薄Co-P阻障層熱處理行為…………….….…43
4.1.2 超微密Ni晶種催化銅鍍浴析鍍…………………44
4.2 Cu-Mn合金薄膜生長型態與微結構分析….…………47
4.2.1 Cu-Mn薄膜析鍍行為…………………….….…47
4.2.2 Cu與Cu-Mn合金薄膜長時間熱處理分析..…49
4.2.3薄膜表面型態分析…………………….…………51
4.2.4 Cu與Cu-Mn薄膜微結構分析………..………52
4.2.5薄膜電阻率與片電阻變化分析………….……53
4.3 薄膜擴散行為分析………………………………………55
4.3.1AES縱深分佈曲線分析………….………….…55
4.3.2電壓-電流分析………………….………………56
第5章 結論……………………………………………………89
未來展望………………………………………………………90
參考文獻………………………………………………
1. The national technology roadmap for semiconductors, International Technology Roadmap for Semiconductors (2007, updated).
2. S. P. Heng, International Symposium on VLSI TSA, p.164(1995).
3. 吳世全,“毫微米通訊”,第六卷,第三期,,p. 38 (1999)。
4. S.Venkatesan, R. Venkatraman, A. Jain, J. Mendonca, S. Anderson, M. Angyal, C. Capasso, J. Cope, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, G. Hamilton, M. Herrick, H. Kawasaki, R. Islam, C. King, J. Klein, T. Lii, V. Misra, K. Reid, C. Simpson, B. Smith, T. Sparks, D. Watts, E. J. Weitzman and B. Wilson, Integration of multi-level copper metallization into a high performance sub-0.25 pm cmos technology, IEEE, p. 146 (1998).
5. 張俊彥、鄭晃忠,“積體電路製程及設備技術手冊”,p. 241 (1997)。
6. 楊正杰、張鼎張,“工業材料”,167期,p. 121 (2000)。
7. M. T. Bohr, Inter connect scaling-The real limiter to high performance ULSI, IEDM, p. 241 (1995).
8. K. Rahmat, O. S. Nakagegawa, S. Y. Oh and J. Moll, A scaling scheme for interconnect in deep-submicron processes, IEDM, p. 245 (1995).
9. S. C. Sun, Process Technologies for Advanced Metallization and Interconnect Systems, IEDM, p. 765 (1997).
10. J. R. Lloyd, J. J. Clement, Electromigration in copper conductors, Thin Solid Films, 262, p. 135 (1995).
11. R. Miller, Circuit analysis theory and practice, Delmar Publishers, p. 42 (1995).
12. R. Solanki, B. Pathangey, Atomic layer deposition of copper seed layer, Electrochem. Solid-State Lett., 3, p. 479 (2000).
13. W. A. P. Claassen, J. Bloem, The nucleation of CVD silicon on SiO2 and Si3N4 substrates, J. Electrochem. Soc., 128, p. 1353 (1981).
14. H. Baker, Alloy phase digrams, ASM Handbook, Vol.3 (1992).
15. Y. Shacham-Diamand, A. Dedhia, Copper transport in thermal SiO2, J. Electrochem. Soc., 140, p. 2427 (1993).
16. C. S. Liu, L. J. Chen, Room-temperature oxidation of silicon in the presence of Cu3Si, Thin Solid Films, 262, p. 187 (1995).
17. C. S. Ryu, PhD Thesis, Mater. Sci Eng., Stanford University (1998).
18. 陳錦山、黃獻慶、鄭義冠,“真空科技”,第十二卷,第二期,p. 26 (1999)。
19. Y. Shacham-Diamand, S. Lopatin, High aspect ratio quarter-micron electron electroless coper integrated technology, Microelec. Eng., 37-38, p. 77 (2000).
20. R. Rosenberg, D. C. Edelstenin, C. K. Hu and K. P. Rodbell, Copper metallization for hight performance silicon technology, Annu. Rev. Mater. Sci., 30, p. 229 (2000).
21. S. Lee, S. H. Yang, H. S. Moon and J. W. Park, Dielectric constant stability and thermal stability of Cu/Ta/SiOF/Si multilayer films, Jpn. J. Appl. Phys, 40, p. 225 (2001).
22. S. Li, Z. L. Dong, K. M. Latt, H. S. Park and T. White, Formation of Cu diffusion channels in Ta of a Cu/Ta/SiO2/Si structure, Appl. Phys. Lett., 80, p. 2296 (2002).
23. K. H. Min, K. C. Chun and K. B. Kim, Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization, J. Vac. Sci. Technol., B, 14, p. 3263 (1996).
24. K. M. Latt, Y. K. Lee, S. Li, T. Osopowicz and H. L. Seng, The impact of layer thickness of IMP-deposited tantalum nitride films on integrity of Cu/TaN/SiO2/Si multilayer structure, Mater. Sci. Eng., B, 84, p. 217 (2001).
25. O. Voigt, B. Davepon, G. Staikov and J. W. Schultze, Localized electrochemical deposition and dissolution of Cu on microstructured Ti surfaces, Electrochim. Acta, 44, p. 3731 (1999).
26. S. H. Kim, K. T. Nam, A. Datta and K. B. Kim, Failure mechanism of a multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon, J. Appl. Phys., 92, p. 5512 (2002).
27. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park and J. J. Kim, Diffusion barrier performance of chemically vapor deposited TiN films prepared using tetrakis-dimethyl-amino titanium in the Cu/TiN/Si structure, Appl. Phys. Lett., 69, p. 4182 (1996).
28. A. Broniatowski, Multicarrier trapping by copper microprecepitates in silicon, Phys. Rev. Lett., 62, p. 3074 (1989).
29. S. D. Brotherton, J. R. Ayres, A. Gill, H. W. Van Kestern and F. J. A. M. Greidanus, Deep levels of copper in silicon, J. Appl. Phys., 662, p. 1826 (1987).
30. Y. Shacham-Diamand, Li J. Olowlafe, J. O. Russel, S. Tamou and Y. Mayer, Oxidation and thermal stability of thin film copper layers, IEEE, 12-14, p. 210 (1991).
31. H. H. Hsu, K. H. Lin, S. J. Lin and J. W. Yeh, Electroless copper deposition for ultralarge-scale integration, J. Electrochem. Soc., 148, p. C47 (2001).
32. Y. Shacham-Diamand, S. Lopatin, Integrated electroless metallization for ULSI, Electrochim. Acta, 44, p. 3639 (1999).
33. C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff and J. E. Cromin, Dual damascene: a ULSI wring technology, IEEE VMIC Conf, 11-12, p. 144 (1991).
34. R. L. Jackson, E. Broadbent, T. Cacouris, A. Harrus, M. Biberger, E. Patton and T. Walsh, Processing and integration of cooper interconnects, Solid State Technol., 41, p. 49 (1998).
35. X. W. Lin, D. Pramanik, Future interconnect technologies and copper metallization, Solid State Technol., 10, p. 63 (1998).
36. 王建榮、林必窕、林慶福,“半導體平坦化CMP 技術”,全華出版社, 89 年6 月。
37. C. Wenzel, N. Urbansky, W. Klimes, P. Siemruth and T. Schulke, Gap filling with PVD processes for copper metallized integrated circuits, Microelectron. Eng., 33, p. 31 (1997).
38. J. Cook, Angular distribution of sputtered atoms in physical vapor deposition and collimated sputtering, Thin Solid Films, 338, p.81 (1999).
39. D. Bollmann, R. Merkel and A. Klumpp, Conformal copper deposition in deep trenches, Microelectron. Eng., 37-38, p. 105 (1997).
40. A. Burk, G. Braeckelmann, M. Danger, E. Eisenbraun and A. E. Kaloyeros, Profile simulation of conformality of chemical vapor deposited copper in subquarter-micron trench and via structures, J. Appl. Phys., 82, p. 4651 (1997).
41. 逢板哲爾,“表面處理工業雜誌”,3 期,p. 25 (1986)。
42. N. W. Cheung, Nuclear instruments and methods in physics research, B55, p. 811 (1991).
43. Y. Shacham-Diamand, Electrochemical deposition process for ULSI copper interconnect fabrication, UCB Short Course (1998).
44. H. D. Yosi and S. Lopatin, Integrated electroless metallization for ULSI, Electrochim. Acta, 44, p. 3639 (1999).
45. E. J. O’Sullivan and A. G. Schrott, Electrolessly deposited diffusion barriers for microelectronics, IBM J. Res. Develop., 42, p. 607 (1998).
46. A. Kohn, M. Eizenberg and Y. Shacham-Diamand, Evaluation of electroless deposited Co(W,P) thin films as diffusion barriers for copper metallization, Microelectron. Eng., 55, p.297 (2001).
47. Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, Electroless deposition of thin-film cobalt-tungsten-phosphorus layers using tungsten phosphoric acid (H3[P(W3O10)4]) for ULSI and MEMS applications, J. Electrochem. Soc., 148, p. C162 (2001).
48. J. Torres, Advanced copper interconnections for silicon CMOS technologies, Appl. Surf. Sci. 91, p. 112 (1995).
49. S. P. Murarka, Advanced materials for future interconnections of the future need and strategy : Invited lecture, Microelectron. Eng., 37-38, p. 29 (1997).
50. H. Kim, The application of atomic layer deposition for metallization of 65 nm and beyond, Surf. Coat. Technol., 200, p. 3104 (2006).
51. T. Usui, H. Nasu, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, H. Shibata, M. Wada and J. Koike, Highly reliable copper dual-damascene interconnects with self-formed MnSixOy barrier layer, IEEE, 53, p. 2492 (2006).
52. H. H. Hsu, C. C. Hsie, M. H. Chen, S. J. Lin and J. W. Yeh, Displacement activation of tantalum diffussion barrier layer for electroless copper deposition, J. Electrochem. Soc., 148, p. C590 (2001).
53. B. K. W. Baylis, A. Busuttil, N. Hedgecock and M. Schlesinger, Tin(Ⅳ) chloride solution as a sensitizer in photoselective metal deposition, J. Electrochem. Soc., 123, p. 348 (1976).
54. N. Feldstein, J. A. Weiner, Surface characterization of sensitized and activated teflon, J. Electrochem. Soc., 120, p. 475 (1973)
55. W. Lee, H. Cho, B. Cho, J. Kim, Y. S. Kim, W. G. Jung, H. Kwon, J. Lee, P. J. Reucroft, C. Lee and J. Lee, Factors affecting passivation of Cu(Mg) alloy films, J. Electrochem. Soc. 147, p. 3066 (2000).
56. G. O. Mallory, J. B. Hajdu Editors, Electroless plating: fundamentals and applications, American Electroplaters and Surface Finishers Soc., 12, p. 6 (1990).
57. M. Yoshino, H. Aramaki, I. Matsuda, Y. Okinaka and T. Osakaa, Effect of Organosilane Underlayers on the Effectiveness of NiB Barrier Layers in ULSI Metallization, Electrochem. Solid-State Lett., 12, p. D19 (2009).
58. W. Kern, D. A. Putinen, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA Review, 31, p. 187 (1970).
59. 陳松德,博士論文,逢甲大學材料科學與工程學系,民國93。
60. 謝逸弘,博士論文,逢甲大學材料科學與工程學系,民國96。
61. C. J. Liu, J. S. Chen, Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier, Appl. Phys. Lett., 80, p. 2678 (2002).
62. C. J. Liu, J. S. Chen, Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films, J. Mat. Res., 20, p. 496 (2005).
63. C. J. Liu, J. S. Chen, Correlation between outward diffusion of additives and oxidation of Cu(3.9at. % Ti) and Cu(2.3 at. % Ta) thin films, J. Appl. Phys., 99, 036104 (2006).
64. W. A. Lanford, P.J. Ding, W. Wang, S. Hymes and S. P. Murarka, Low-temperature passivation of copper by doping with Al or Mg, Thin Solid Films, 262, p. 234 (1995).
65. W. A. Lanford, P.J. Ding, Wei Wang, S. Hymes and S. P. Murarka, Alloying of copper for use in microelectronic metallization, Mater. Chem. Phys., 41, p. 192 (1995).
66. P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, Oxidation resistant high conductivity copper films, Appl. Phys. Lett. 64, p. 2897 (1994).
67. V. M. Dubin, Electroless Ni-P deposition on silicon with Pd activation, J. Electrochem. Soc., 139, p. 1289 (1992).
68. M. Haneda, J. Iijima and J. Koike, Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450℃, Appl. Phys. Lett., 90, 252107 (2007).
69. http://www.semichips.org
70. K. Barmak, C. Caral, Jr., K. P. Rodbell and J. M. E. Harper, On the use of alloying elements for Cu interconnect applications, J. Vac. Sci. Technol., B, 24, p. 2485 (2006).
71. E. M. Liston, L. Martinu and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhesion Sci. Technol., 7, p.1091 (1993).
72. J. C. Tsai, VLSI Technology2nd, S. M. Sze editor, McGraw-Hill Company (1988).
73. A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho and S. S. Wong, Kinetics of copper drift in PECVD dielectrics, IEEE Electr. Dev. Letts., 17, p. 549 (1996).
74. S. T. Chen, G. S. Chen, Characterization of ultrathin electroless barriers grown by self-aligned deposition on silicon-based dielectric films, J. Electrochem. Soc., 151, p. D99 (2004).
75. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi and J. A. Yarmoff, The Physics and chemistry of SiO2 and the Si-SiO2 interface, C. R. Helms and B. E. Deal, Editors, p. 219, Plenum Press, New York (1988).
76. V. Jousseaume, N. Rochat, L. Favennec, O. Renault and G. Passemard, Mechanical stress in PECVD a-SiC:H: aging and plasma treatments effects, Mater. Sci. Semicond. Proc., 7, p. 301 (2004).
77. C. J. Liu, J. S. Jeng and J. S. Chen, Effect of Ti addition on the morphology, interracial reaction, and diffusion of Cu on SiO2, J. Vac. Sci. Technol., B, 20, p. 2361 (2002).
78. C. Y. Yang, J. S. Chen, Investigation of Copper agglomeration at elevated tempertures, J. Electrochem. Soc., 150, p. G82 (2003).
79. K. T. Miller, F. F. Lange and D. B. Marshell, The instability of polycrystalline thin films: Experiment and theory, J. Mater. Res., 5, p. 151 (1990).
80. J. J. Rha, J. K. Park, Stability of the grain configurations of thin films-A model for agglomeration, J. Appl. Phys., 82, p. 1608 (1997).
81. J. J. Rha, J. K. Park, Agglomeration of TiSi2 thin film on (100) Si substrate, J. Appl. Phys., 82, p. 2933 (1997).
82. D. Weiss, O. Kraft and E. Arzt, Grain-boundary voiding in self-passivated Cu–1 at.% Al alloy films on Si substrates, J. Mater. Res., 17, p. 1363 (2002).
83. V. V. Svirdow, Minsk and Russia, Electrolessly deposited diffusion barriers for microelectronics, IBM J. Res. Develop., 42, p. 607 (1998).
84. M. Schlesinger, M. Paunovic, Modern electroplating, Fourth Edition, Wiley Interscience, NewYork, p. 652 (2002).
85. R. M. Lukes, Plating , 51, p.1066 (1964).
86. J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu–Mn alloy metallization, Appl. Phys. Lett., 87, 041911 (2005).
87. J. Koike, M. Haneda, J. Iijima and M. Wada, Cu alloy metallization for self-forming barrier process, IEEE Xplore, 28, p.161 (2006).
88. J. Koike, M. Haneda and J. Iijima, Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface, J. Appl. Phys., 102, 043527 (2007).
89. Z. H. Liu, C. Yang, H. M. Chen, Y. H. He and K. Liu, A study of electroless cobalt alloy films for magnetic recording media, Thin Solid Films, 182, p. 255 (1989).
90. T. Osaka, L. Koiwa, M. Toda, L. Sakurna, Y. Yamazaki, T. Narnikawa and F. Goto, An attempt on control of perpendicular coercivity toward film thickness directian of electroless plated cobalt alloy films for perpendicular magnetic recording, IEEE Transactions on Magnetics, 22, p. 1149 (1986).
91. Z. H. Liu, Y. Chen, Y. H. He and H. M. Chen, An investigation of the microstructure of electroless Co-alloy film, J. Appl. Phys., 68, p. 889 (1990).
92. H. M. Chen and Z. H. Liu, Electrolessly plated cobalt alloy films for perpendicular magnetic recording media, Journal of Magnetism and Magnetic Materials, 115, p. 99 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔