跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張巍耀
研究生(外文):Wei-Yao Chang
論文名稱:高分子電解質燃料電池質導膜表面及界面改質研究
論文名稱(外文):Interface and Surface modification of proton-exchange membrane for polymer electrolyte fuel cells
指導教授:邱國峰邱國峰引用關係
指導教授(外文):Kuo-Feng Chiu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:139
中文關鍵詞:電漿離子轟擊三相界面自我呼吸質子交換膜燃料電池
外文關鍵詞:Three-phase boundariesPEMFCIon-bombardmentSurface roughnessSelf-breathing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜燃料電池(PEMFC)的電解質/觸媒/電極三相界面(TPB)特性,是決定電池效能最重要的關鍵。這個三相界面分別在陽極端使氫氣進行氧化反應,讓陰極端的氧氣產生還原反應,並兼具傳輸質子至電解質及傳導電子至電極的功能。所以增加此界面的有效反應面積,或降低電解質/觸媒/電極之間的接觸電阻,對電池效能表現都有正向的幫助。本研究將針對Nafion®117質導膜,利用氧電漿離子轟擊技術來提高表面粗糙度,進而增加三相界面的有效反應面積,並提升觸媒附著性;同時,採用自我呼吸製程來披覆初始觸媒,作為導電層(Conductivity Layer)之用,且讓觸媒能緊密附著在質導膜表面,使三相界面的接觸電阻降低。改質後試片與未經處理的試片比較,經過電漿處理與自我呼吸製程降低燃料電池內阻抗,其原因在於有效降低電荷轉移阻抗。研究中最佳參數為bs-BO2-20 W,有最小的0.45 Ω電荷轉移阻抗、最高的電流密度130 mA/cm2及輸出功率密度41 mW/cm2,相較於bs-N00其電荷轉移阻抗降低0.54 Ω、電流密度增加42 mA/cm2而輸出功率則提升了15 mW/cm2。
The three-phase boundaries(TPB)at the interfaces of electrolyte|catalyst|electrode play an important role in determining the performance of the proton-exchange membrane fuel cells (PEMFC). The electrochemical reactions occurring at the TPB include oxidation in the hydrogen anode site and reduction in the oxygen cathode site. In addition, the transfer of proton to electrolyte and electron to electrode must function well at the interface. Increasing the interface effective area or lowering the charge transfer resistance of the interface have positive effects to the cell performance. In this study, oxygen plasma bombardment was used to increase the surface roughness of Nafion® 117 membrane, and the interface effective area. We also used a self-breathing process to coating the initial Pt/C catalyst layer, which serve as adhesion layer to further reduce the charge transfer resistance of the interface. The results show that the plasma treatments and self-breathing processes were effective in reducing the interface charge transfer resistance, which was 1∼2 order less than the untreated samples. At optimal plasma and self-breathing perimeters, the interface charge transfer resistance as low as 0.54 Ω.
致謝 I
中文摘要 III
Abstract IV
總目錄 V
圖目錄 VIII
表目錄 XII
符號對照表 XIII
第一章 緒論及研究動機 1
1-1 前言 1
1-2 研究動機 4
第二章 理論基礎與文獻回顧 9
2-1 燃料電池簡介 9
2-2 燃料電池的演進發展 9
2-2-1 國內外發展現況 10
2-3 燃料電池之基本原理 12
2-3-1 燃料電池之熱力學探討 14
2-3-2 燃料電池之動力學探討 17
2-3-3 燃料電池之效率探討 27
2-4 交流阻抗分析 29
2-5 文獻回顧 31
第三章 實驗方法與鑑定分析 39
3-1 實驗材料與設備 39
3-1-1 實驗材料 39
3-1-2 實驗設備 39
3-2 實驗方法 40
3-2-1 質導膜前處理 40
3-2-2 以CCP電漿離子轟擊進行質導膜表面改質 40
3-2-3 質導膜之觸媒自我呼吸製程 41
3-2-4 膜電極組件(MEA)之製備 42
3-3 實驗參數代碼 42
3-4 材料鑑定與分析 42
3-4-1 高解析可變真空掃描式電子顯微鏡及能量散佈光譜儀 43
3-4-2 高解析多功能掃描式探針顯微鏡 43
3-4-3 傅立葉轉換紅外線光譜儀 44
3-4-4 化學分析電子能譜儀 44
3-4-5 交流阻抗電化學特性測試 45
3-4-6 燃料電池性能量測 46
第四章 結果與討論 52
4-1 電漿處理質導膜之特性分析 52
4-1-1 表面型態 52
4-1-2 表面官能基 53
4-1-3 表面鍵結型態 54
4-1-4 離子導電度 57
4-2 電漿改質對觸媒披覆之影響 59
4-2-1 表面形貌 59
4-2-2 酸蝕測試 60
4-3 單電池阻抗性質分析 63
4-3-1 電漿處理效應 63
4-3-2 自我呼吸製程效應 65
4-3-2 三相界面性質最佳化 67
4-4 燃料電池性能分析 68
4-4-1 時效測試性質 68
4-4-2 極化曲線效能 69
第五章 結論 113
第六章 未來展望 115
參考文獻 116
【1】陳振源, “未來的綠色能源 燃料電池”, 科學發展, 391期, pp. 63-65(2005)。
【2】羅法聖, “燃料電池專利分析及創新趨勢”, 物理雙月刊, 30卷4期, pp. 399-405(2008)。
【3】衣寶廉, “燃料電池-原理與應用”, 五南書局。
【4】Lawrence D. Burns, “改變世界的概念車”, 科學人雜誌, 12月號(2002)。
【5】王堃維, “質子交換膜燃料電池碳電極疏水鍍層之開發與研究”, 逢甲大學, 材料科學與工程學系, 碩士論文, (2007)。
【6】陳演儒, “直接甲醇燃料電池質導膜之表面改質研究”, 逢甲大學, 材料科學與工程學系, 碩士論文, (2008)。
【7】盧敏彥, “燃料電池電極觸媒(一)-高分子電解質膜燃料電池陽極觸媒”, CHEMISTRY(THE CHINESE CHEM. SOC., TAPEI), Vol. 62, No. 1, pp. 139-148(2004).
【8】M. Warshay, P. R. Procopius, “The fuel cell in space: yesterday, today and tomorrow”, J. Power Sources, 29, pp. 193-200(1990).
【9】X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, J. Yu, “Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells”, J. Power Sources, 79, pp. 75-81(1999).
【10】X. Wang, I. M. Hsing, P. L. Yue,“Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells”, J. Power Sources, 96, pp. 282-287(2001).
【11】D. Schmal, C. E. Klutiters, I. P. Barendregt,“Testing of a De Nora polymer electrolyte fuel cell stack of 1 kw for naval applications”, J. Power Sources, 61, pp. 255-257(1996).
【12】J. Fournier, G. Faubert, J. Y. Tilquin, R. Côté, D. Guay, and J. P. Dodelet,“High-performance, low Pt content catalysts for the electrorecluction of oxygen in polymer-electrolyte fuel cells”, J. Electrochemical Society, 144, pp. 145-154(1997).
【13】黃朝榮, 林修正,“燃料電池的心臟 電極膜組”, 科學發展, 367期, pp. 27-29(2003)。
【14】E. J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, Y. Yang,“Cost analysis of fuel cell systems for transportation”, Subcontract Report, NREL/SR-560-39104, December(2005).
【15】J. H. Lee, T. R. Lalk,“Modelling fuel cell stack systems”, J. Power Sources, 73, pp. 229-241(1998).
【16】S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, T. H. Lee,“Effects of Nafion® impregnation on performances of PEMFC electrodes”, Electrochimica Acta, 43, pp. 3693-3701(1998).
【17】吳千舜, 諸柏仁,“燃料電池質子交換膜的最新發展”, CHEMISTRY(THE CHINESE CHEM. SOC., TAPEI), Vol. 62, No. 1, pp. 123-138(2004).
【18】Platinum price web-site,“http://platinumprice.org/”, May 22(2009).
【19】R. O’Hayre, S. J. Lee, S. W. Cha, F. B. Prinz,“A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading”, J. Power Sources, 109, pp. 483-493(2002).
【20】P. Brault, A. Caillard, A. L. Thomann, J. Mathias, C. Charles, R.W. Boswell, S. Escribano, J. Durand, T. Sauvage,“Plasma sputtering deposition of platinum into porous fuel cell electrodes”, J. Physics D: Applied Physics, 37, pp. 3419-3423(2004).
【21】A. T. Haug, R. E. White, J. W. Weidner, W. Huang, S. Shi, T. Stoner, N. Rana, “Increasing proton exchange membrane fuel cell catalyst effectiveness through sputter deposition”, J. Electrochemical Society, 149(3), pp. A280-A287(2002).
【22】A. L. Thomann, J. P. Rozenbaum, P. Brault, C. Andreazza, P. Andreazza, B. Rousseau, H. Estrade-Szwarckopf, A. Berthet, J. C. Bertolini, F. Aires, F. Monnet, C. Mirodatos, C. Charles, R. Boswell,“Plasma synthesis of catalytic thin films”, Pure and Applied Chemistry, 74, pp. 471-474(2002).
【23】S. Roualdes, I. Topala, H. Mahdjoub, V. Rouessac, P. Sistat, J. Durand,“Sulfonated polystyrene-type plasma-polymerized membranes for miniature direct methanol fuel cells”, J. Power Sources, 158, pp. 1270-1281(2006).
【24】A. T. Haug, R. E. White, J. W. Weidner, W. Huang, S. Shi, N. Rana, S. Grunow, T. C. Stoner, A. E. Kaloyeros,“Using sputter deposition to increase CO tolerance in a proton-exchange membrane fuel cell”, J. Electrochemical Society, 149, pp. A868-A872(2002).
【25】R. J. Lawrence, L. D. Wood,“Method of making solid polymer electrolyte catalytic electrodes and electrodes made thereby”, U.S. Patent 4,272,353(1981).
【26】S. A. Sheppard, S. A. Campbell, J. R. Smith, G. W. Lloyd, F. C. Walsh, T. R. Ralph,“Method of making solid polymer electrolyte catalytic electrodes and electrodes made thereby”, Analyst Articles, 123, pp. 1923-1929(1998).
【27】P. Millet, T. Alleau, R. Durand, “Characterization of membrane-electrode assemblies for solid polymer electrolyte water electrolysis”, J. Applied Electrochemistry, 23, pp. 322-328(1993).
【28】T.H. Yang, Y.G. Yoon, C.S. Kim, S.H. Kwak, K.H. Yoon, “The chemical and structural nature of proton exchange membrane fuel cell properties”, J. Power Sources, 106, pp. 328-332(2002).
【29】Y. Song, H. Xu, Y. Wei, H.R. Kunz, L.J. Bonville, J.M. Fenton, “Dependence of high-temperature PEM fuel cell performance on Nafion® content”, J. Power Sources, 154, pp. 138-144(2006).
【30】S. A. Cho, E. A. Cho, I. -H. Oh, H. -J. Kim, H. Y. Ha, S. -A. Hong, J. B. Ju, “Surface modified Nafion® membrane by ion beam bombardment for fuel cell applications”, J. Power Sources, 155, pp. 286-290(2006).
【31】M. Prasanna, E. A. Cho, H. -J. Kim, T. -H. Lim, I. -H. Oh, S. -A. Hong,“Effects of platinum loading on performance of proton-exchange membrane fuel cells using surface-modified Nafion® membranes”, J. Power Sources, 160, pp. 90-96(2006).
【32】D. Ramdutt, C. Charles, J. Hudspeth, B. Ladewig, T. Gengenbach, R. Boswell, A. Dicks, P. Brault,“Low energy plasma treatment of Nafion® membranes for PEM fuel cells”, J. Power Sources, 165, pp. 41-48(2007).
【33】R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz原著,“燃料電池基礎”, 全華科技圖書股份有限公司。
【34】台灣燃料電池資訊網,“ http://www.tfci.org.tw ”, June 20(2009).
【35】張行直,“我國氫能燃料電池 產業發展現況”, 能源報導, 5月號, pp. 15-16(2008)。
【36】蔡麗端,“可攜式電能的明日之星-微小型燃料電池”, 工業材料雜誌, 259, pp. 88(2008)。
【37】薛康琳,“小型固態氧化物燃料電池的原理、應用與發展”, 工業材料雜誌, 259, pp. 89-99(2008)。
【38】電気学会.燃料電池發電次世代システム技術調查專門委員会編,“燃料電池技術”, 全華科技圖書股份有限公司。
【39】K. C. Yu, W. J Kim, C. H. Chung,“Utilization of Pt/Ru catalysts in MEA for fuel cell application by breathing process of proton exchange membrane”, J. Power Sources, 163, pp. 34-40(2006).
【40】M. A. Hickner, B. S.Pivovar,“The chemical and structural nature of proton exchange membrane fuel cell properties”, Fuel Cells, 2, pp. 213-229(2005).
【41】Y. Kim, Y. Lee, S. Han, K. J. Kim,“Improvement of hydrophobic properties of polymer surfaces by plasma source ion implantation”, Surface & Coatings Technology, 200, pp. 4763-4769(2006).
【42】F. Liu, C. Y. Wang,“Variations in interfacial properties during cell conditioning and influence of heat-treatment of ionomer on the characteristics of direct methanol fuel cells”, Electrochimica Acta, 50, pp. 1413-1422(2005).
【43】K. B. Prater,“Polymer electrolyte fuel cells: a review of recent developments”, J. Power Sources, 51, pp. 129-144(1994).
【44】Y. G. Guo, J. S. Hu, H. P. Liang L. J. Wan, C. L. Bai,“Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel”, Chemistry Materials, 15, pp. 4332-4336(2003).
【45】維基百科,“http://upload.wikimedia.org/wikipedia/commons/c/ce/Pem.fuelcell2. gif ”, June 20(2009).
【46】S. Litster, G. McLean,“PEM fuel cell electrodes”, J. Power Sources, 130, pp. 61-76(2004).
【47】L. J. Hobson, H. Ozu, M. Yamaguchi, S. Hayasea,“Modified Nafion® 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells”, J . Electrochemical Society, 148, pp. A1185-A1190(2001).
【48】Z. G. Shao, X. Wang, I. M. Hsing,“Composite Nafion®/polyvinyl alcohol membranes for the direct methanol fuel cell”, J. Membrane Science, 210, pp. 147–153(2002).
【49】郭振源,“有機光譜學”, 高立圖書有限公司。
【50】C. Huang, K. S. Tan, J. Lin, K. L. Tan,“XRD and XPS analysis of the degradation of the polymer electrolyte in H2-O2 fuel cell”, Chemical Physics Letters, 371, pp. 80–85(2003).
【51】C. Chen, G. Levitin, D. W. Hess, T. F. Fuller,“XPS investigation of Nafion® memebrane degradation”, J. Power Sources, 169, pp. 288-295(2007).
【52】N. Massoni, A. B. Martinent, J. Y. Laurent,“Effect of an oxygen plasma treatment on the specific surface of platinum electrodeposits for fuel cells”, J. Power Sources, 166, pp. 68-73(2007).
【53】XPS Data by J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Edited by J. Chastain,“Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation Physical Electronics Division(1992).
【54】K. F. Chiu, M. Y. Hsieh,“Plasma Surface Modification of Carbon Electrodes for Polymer Electrolyte Fuel Cells”, J. Fuel Cell Science and Technology, 3, pp. 322-326(2006).
【55】C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenber,“Handbook of X-ray Photoelectron Spectroscopy”,(1982).
【56】R. L. Clough,“High-energy radiation and polymers: A reivew of commercial processes and emerging applications”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 185, pp. 8-33(2001).
【57】F. Liu, B. Yi, D. Xing, J. Ju, Z. Hou, Y. Fu,“Development of novel self-humidifying composite membranes for fuel cells”, J. Power Sources, 124, pp. 81-89(2003).
【58】X. Yuan, H. Wang, J. C. Sun, J. Z. Hang,“AC impedance technique in PEM fuel cell diagnosis-A review”, International Journal of Hydrogen energy, 32, pp. 4365-4380(2007).
【59】P. G. Escribano, C. del Rio y, J. L. Acosta,“Preparation, characterization and single cell testing of new ionic conducting polymers for fuel cell applications”, J. Power Sources, 187, pp. 98-102(2009).
【60】Y. Sone, P. Ekdunge, D. Simonsson,“Proton Conductivity of Nafion® 117 as Measured by a Four-Electrode AC Impedance Method”, J. Electrochemical Society, 143, pp. 1254-1259(1996).
【61】U. H. Jung, S. UK Jeong, K. T. Park, H. M. Lee, K. Chun, D. W. Choi, S. H. Kim,“Improvement of water management in air-breathing and air-blowing PEMFC at low temperature using hydrophilic silica nano-particles”, International Journal of Hydrogen energy, 32, pp. 4459-4465(2007).
【62】C. Brunetto, A. Moschetto, G. Tina,“PEM fuel cell testing by electrochemical impedance spectroscopy”, Electric Power Systems Research, 79, pp. 17-26(2009).
【63】H. S. Park, Yong-H. Cho, Yoon-H. Cho, C. R. Jung, J. H. Jang, Y. E. Sung,“Performance enhancement of PEMFC through temperature control in catalyst layer fabrication ”, Electrochimica Acta, 53, pp. 763-767(2007).
【64】J. Hou, W. Song, H. Yu, Y. Fu, Z. Shao, B. Yi,“Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature”, J. Power Sources, 171, pp. 610-616(2007).
【65】C. M. Lai, J. C. Lin, F. P. Ting, S. D. Chyou, K. L. Hsueh,“Contribution of Nafion® loading to the activity of catalysts and the performance of PEFC”, International Journal of Hydrogen energy, 33, pp. 4132-4137(2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top