(3.210.184.142) 您好!臺灣時間:2021/05/09 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊家豪
研究生(外文):Chia-Hao Yang
論文名稱:純銅經等徑轉角擠型與低溫軋延後之退火行為與機械性質研究
論文名稱(外文):Annealing behavior and mechamical property in pure copper processed by equal channel angular extrusion and cryo-rolling
指導教授:孫佩鈴
指導教授(外文):Pei-Ling Sun
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:120
中文關鍵詞:低溫軋延奈米純銅等徑轉角擠型低溫退火
外文關鍵詞:Cryo-rollingNanocrystalline copperEqual channel angular extrusion (ECAE)Anneal
相關次數:
  • 被引用被引用:7
  • 點閱點閱:331
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
摘要

超細晶(ultrafine-grained, UFG)及奈米晶金屬(nanocrystalline, NC)具有比一般粗晶金屬更高強度的優點,但有在室溫下延展性不佳的缺點,如何改善超細晶及奈米晶金屬的延展性已成為近來熱門的研究方向。

本研究將純銅(99.99%)以等徑轉角擠型與液態氮溫度軋延,讓軋延總減縮量達95%,先利用不同溫度下恆溫退火一小時,量測其機械性質與微觀結構,探討奈米純銅的退火行為。此外,在低於再結晶溫度下實施退火,利用純銅的低疊差能產生退火雙晶,讓雙晶阻礙差排移動增加加工硬化率,進而改善延展性。

實驗結果顯示,經ECAE與低溫軋延的奈米晶純銅,降伏強度達510MPa,總伸長率只有6.1%,微結構都是以軋延後的層狀組織為主,且晶粒內部差排密度很高。奈米晶純銅的退火行為方面,當恆溫退火溫度上升,層狀組織平均間距增加,從穿透式電子顯微鏡與金相組織觀察,並未發現不連續再結晶或較大的晶粒。退火溫度低於200oC,層狀組織以一穩定速率成長,為連續再結晶;當退火溫度高於200oC,層狀組織平均間距會急遽增加且分布範圍變廣,為不連續再結晶。

低於再結晶溫度下進行退火處理,200oC-30分鐘與160oC-5小時的退火條件呈現有較好的降伏強度與伸長率結合,不過整體來說低溫退火對於經ECAE與低溫壓延的純銅機械性質無明顯的改善。
Abstract

Ultrafine-grained (UFG) and nanocrystalline (NC) metals usually have higher strength than the coarse-grained counterpart but also exhibit low tensile ductility at room temperature. Recently, much attention has been drawn to improve the tensile ductility in the UFG/NC metals.

In this study, pure copper (99.99%) was processed by equal channel angular extrusion (ECAE) and cryo-rolling to a rolling reduction of 95%. The as-deformed sample was then annealed at various temperatures ranging from 100oC to 320oC for 1 hour. The mechanical properties and microstructure of the as-deformed and isochronally annealed samples were investigated. to study the mechanical and annealing behavior of the NC copper. Low stacking fault energy (SFE) copper facilitates twin formation. Twins and/or stacking faults can hinder dislocation slip and increase dislocation accumulation and consequently increase work hardening rate and enhance tensile ductility.

The yield stress (YS) is increased to 510MPa and the total tensile elongation is 6.1% in the as-deformed copper. The as-deformed microstructure appears to be lamellar structure and dislocation density within the grain interior is high. The annealed samples show that the average boundary spacing increases with increasing annealing temperature. When the NC copper was annealed at temperature below 200oC, the boundary spacing followd a stable growth rate and exhibits continuous recrystallization phenomenon, When the annealing temperature is above 200oC, the average boundary spacing increased dramatically and shows discontinuous recrystallization phenomenon.

Samples annealed at 200oC for 30 minutes and 160oC for 5 hours appear to have better mechanical properties (higher strength and ductility combination) than other samples. However, the ductility of the NC copper is still fairly limited in the present work.
目錄
中文摘要…….………......…………………………………………………………..……I
英文摘要…….…………….........………………………….…………………………….II
目錄….…………………......………………………………...........................………….III
表目錄………………….......………………………..…………………..…….…………V
圖目錄……………….......…………...…………………..……………………...…........VI
第一章 前言…………………………........……………………………………………....1
第二章 文獻回顧…………………………........……………………………………..…..3
2-1等徑轉角擠型簡介…………………………........……………………………..3
2-1-1等徑轉角擠型之應變…………………………........…………..………..5
2-1-2等徑轉角擠型之路徑…………………………........……………..……..5
2-2細晶材料之機械性質…………………………........…………………………..9
2-2-1細晶材料的高強度…………………………........…………..…………..9
2-2-2細晶材料的低延展性…………………………........…………..………..9
2-2-3 Lüders band與顯著降伏點…………………………........…….……..10
2-2-4 Shear band…………………………........……………………..………..12
2-3 機械性質改善方法…………………………........…………………………..15
2-3-1 bimodal structure…………………………........………………………..15
2-3-2 雙晶…………………………........………………………………….....19
2-3-3 疊差能…………………………........…………………………...……..22
2-3-4 Grain boundary…………………………........………..………….……..24
2-4 王允俊論文回顧…………………………........……………………………..26
2-5 超細晶銅的再結晶溫度…………………………........……………………..34
第三章 實驗方法…………………………........……………………………….…..38
3-1 實驗材料…………………………........…………………………………..…38
3-2 等徑轉角擠型擠製…………………………………………….…………….38
3-3 壓延………………………………………………….……………………….38
3-4 退火處理……………………………………………………………….…….39
3-5 微硬度測量…………………………………………..………………………39
3-6拉伸側試………………………………………………………………...……40
3-7 微觀組織觀察………………………………………………………………..40
3-7-1 金相組織觀察………………………………………………………….40
3-7-2 穿透式電子顯微鏡試片製備………………………………………….40
3-7-3 掃描式電子顯微鏡觀察……………………………………………….41
第四章 結果.…..……………………........…………………………….………..44
4-1 退火行為…………………………........……………………………..………..44
4-1-1微硬度值測定…………………………....................…………………..44
4-1-2縱向面金相組織觀察……………………................…………………..46
4-1-3 微觀組織觀察………………………………….......…………………..51
4-1-4 縱向面掃描式電子顯微鏡觀察……………………………..………...64
4-1-5 層狀組織間距………………………………….......…………………..71
4-2 機械性質改良…………………………........………………………………..74
4-2-1 拉伸測試…………………………........…………………...…………..74
4-2-2 微觀組織觀察…………………………........…………...……………..79
4-2-3縱向面金相組織觀察…………………........…………………………..91
4-2-4 層狀組織間距………………………………...........…………………..93
4-2-5 強度與身長率比較…………………………...........…………………..96
4-3 拉伸斷裂面觀察…………………………........……………………………..98
第五章 討論…………………………........…………………………………………..108
第六章 結論…………………………........…………………………………………..113
第七章 參考文獻…………………………....................................…………………..114

表目錄
表2-1 各文獻超細晶純銅之再結晶溫度比較…………………………........…………37
表4-1 純銅未退火與不同溫度恆溫退火之平均層狀間距與標準差一覽表............…95
































圖目錄
圖2-1 等徑轉角擠型示意圖……………………….……………………………….…4
圖2-2 等徑轉角擠型的四種路徑與三個正交平面……….……………………….…6
圖2-3 等徑轉角擠型四種不同路徑的剪應變幾何特性……….…………….………8
圖2-4 (a)不具明顯降伏點之金屬拉伸應力-應變曲線,(b) 具明顯降伏點的金屬拉
伸應力-應變曲線………………………………….………..………..………11
圖2-5 拉伸試片上的Lüders bands ……………………...…………… ……….……11
圖2-6 (a) 剪切帶以外的等軸晶粒與剪切帶上的長軸晶粒,(b) 箭頭所指處為剪切
帶未穿過處,差排量很少…………………………………………………….13
圖2-7 (a) 較大晶粒中,shear band是由cells形成 (b) 在小晶粒內,shear band是
由大量糾結的差排形成…………………...………………….…………...….14
圖2-8 Wang 等人在不同條件下純銅的拉伸應力應變曲線圖…...…………….…17
圖2-9 奈米晶銅與次微米晶銅退火後,均勻伸長量對降伏強度之曲線圖……….18
圖2-10 奈米晶銅與次微米晶銅均勻伸長量對再結晶體積比例之曲線圖……...….18
圖2-11 a至d為雙晶晶界間距隨拉伸應力增加而變化之TEM影像圖……….….21
圖2-12 奈米純鎳、鎳銅合金和鎳鐵合金的真實應力應變曲線圖…………………..23
圖2-13 奈米純鎳、鎳銅合金和鎳鐵合金的真實應變與加工硬化率曲線圖…….….23
圖2-14 次微米細晶AA1050純鋁於(a) 298K及應變速率為10-3, 1與103 s-1之拉伸曲線圖及於(b) 77K及應變速率10-3與1s-1之拉伸曲線圖…………….…....25
圖2-15 (a) A組試片於120 oC退火處理之微硬度圖 (b) A組試片於140 oC退火處理之微硬度圖 (c) B組試片於120 oC退火處理之微硬度圖 (d) B組試片於
140 oC退火處理之微硬度圖……………………………………...……….…29
圖2-16 試片A於各種退火條件下之拉伸曲線圖……….……….………………….30
圖2-17 試片B於各種退火條件下之拉伸曲線圖…………..………………………..30

圖2-18 (a) 試片A經過120 oC -60 分鐘之微結構 (b) 試片A經140 oC -20 分鐘恆
溫退火之微結構………………….………………………………………….31
圖2-19 (a) 試片B經120 oC -480 分鐘退火之微結構 (b) 試片B經140 oC -60 分
鐘恆退火之微結構 (c) 試片B經150 oC -30 分鐘恆溫退火之微結構……33
圖2-20 純銅經ECAE後於不同溫度恆溫退火之硬度曲線圖…….....…….…….….35
圖2-21 超細晶銅之DSC曲線圖…………………………….…………….……….…35
圖2-22 ECAE純銅在不同應變下的晶粒尺寸曲線……..……..………………...….36
圖2-23 ECAE純銅於不同應變下之再結晶溫度曲線………………………………36
圖2-24 ECAE純銅之DSC曲線………….………………………………………….37
圖3-1 拉伸試棒幾何規格…………...….…………………………………………....42
圖3-2 純銅滾壓面與縱向面示意圖…………………….…………………………...42
圖3-3 電鍍銅之儀器設備示意圖…………………….………………………….…..43
圖3-4 純銅縱向面TEM試片…………..……………………………..……………..43
圖4-1 低溫壓延後之純銅等時退火硬度曲線圖………………………………...….45
圖4-2 低溫壓延純銅縱向面等時退火一小時之金相組織圖(a) 100 oC (b) 120 oC (c)
140 oC (d) 160 oC (e) 200 oC (f) 240 oC (g) 280 oC (h) 320 oC………………...50
圖4-3 未退火之TEM微結構圖 (a)低倍率(b)高倍率……………………..……….53
圖4-4 未退火之選區繞射圖形…………………….………………………….……..54
圖4-5 140oC-1小時恆溫退火之TEM微結構圖 (a)低倍率 (b)高倍率…….…. …55
圖4-6 140oC-1小時恆溫退火之選區繞射圖形…………………………………......56
圖4-7 200oC-1小時恆溫退火之TEM微結構圖 (a)低倍率 (b)高倍率….…...…...57
圖4-8 240oC-1小時恆溫退火之TEM微結構圖 (a)低倍率 (b)高倍率….……..…58
圖4-9 280oC-1小時恆溫退火之TEM微結構圖 (a)低倍率 (b)高倍率….…......…59
圖4-10 200oC-1小時恆溫退火之SAD繞射圖形…………..….………….…………60圖4-11 240oC-1小時恆溫退火之SAD繞射圖形……..…….………….……………60
圖4-12 280oC-1小時恆溫退火之SAD繞射圖形………..…….….……………...….61
圖4-13 320oC-1小時恆溫退火之TEM微結構圖………..…………………………..62
圖4-14 320oC-1小時恆溫退火之選區繞射圖形……...………………….…………..63
圖4-15 低溫壓延純銅縱向面等時退火一小時之低倍率BEI圖 (a) 140 oC (b) 200 oC
(c) 240 oC (d) 280 oC (e) 320oC………………………………………………..67
圖4-16 低溫壓延純銅縱向面等時退火一小時之高倍率BEI圖 (a) 140 oC (b) 200 oC (c) 240 oC (d) 280 oC (e) 320 oC……………………………………………….70
圖4-17 (a) 未退火試片 (b) 140oC-1小時恆溫退火後 (c) 200oC-1小時恆溫退火後
(d) 80oC-1小時恆溫退火後 (e) 320oC-1小時恆溫退火後層狀組織間距分佈圖..................................................................................................72
圖4-18 層狀組織間距隨退火溫度變化圖…………………..………………………..73
圖4-19 未退火與120oC恆溫退火試片之拉伸應力應變圖…….…...…….…………76
圖4-20 未退火與140oC恆溫退火試片之拉伸應力應變圖……………….………....76
圖4-21 未退火與160oC恆溫退火試片之拉伸應力應變圖………...………………..77
圖4-22 未退火與200oC恆溫退火試片之拉伸應力應變圖………………...………..77
圖4-23 未退火與不同溫度退火一小時之拉伸應力應變圖……………………...….78
圖4-24 120oC-3小時恆溫退火之TEM微結構圖 (a)層狀組織與些許退火雙晶(b)雙
晶內部有許多差排……………………………………………………….81
圖4-25 120oC-3小時恆溫退火之選區繞射圖形……………………………………..82
圖4-26 140oC-5小時恆溫退火之TEM微結構圖 (a)已產生些許較大的層狀間距(b)
層狀組織……………………………………………………………………...83
圖4-27 140oC-5小時恆溫退火之選區繞射圖形………..……..……………………..84
圖4-28 140oC-10小時恆溫退火之TEM微結構圖 (a)較大的層間距開始在微結構散
(b)較大的晶粒內部產生雙晶 (c)層狀組織與些許退火雙晶…………….86
圖4-29 140 oC-10小時恆溫退火之選區繞射圖形………………………………...…87
圖4-30 160oC-5小時恆溫退火之TEM微結構圖 (a) 層狀組織間距大小不一 (b)微
結構內部還是有許多差排堆積糾結 (c)層狀組織內部產生許多退火雙
晶…………………………………………………………………………...….89
圖4-31 160oC-5小時恆溫退火之選區繞射圖形……………………………...……...90
圖4-32 低溫軋延純銅經200oC-30分鐘退火之縱向面金相組織………..…………92
圖4-33 低溫軋延純銅經160oC-5小時退火之縱向面金相組織……………………92
圖4-34 (a) 120oC-3小時 (b) 140oC-5小時 (c) 140oC-10小時 (d) 160oC-5小時恆溫
退火後層狀組織間距分佈圖……….……..………………….……….…….94
圖4-35 各種退火條件之降伏應力與均勻伸長圖………..………………………..…97
圖4-36 各種退火條件之降伏應力與總伸長率圖………………..…………………..97
圖4-37 未退火純銅之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率………..…………….99
圖4-38 120oC-3小時恆溫退火之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率………..100
圖4-39 140oC-1小時恆溫退火之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率………..101
圖4-40 140oC-5小時恆溫退火之拉伸斷裂面圖(a) 低倍率 (b) 高倍率…….…...102
圖4-41 140oC-10小時恆溫退火之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率………103
圖4-42 160oC-5小時恆溫退火之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率………..104
圖4-43 200oC-1小時恆溫退火之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率………..105
圖4-44 280oC-1小時恆溫退火之拉伸斷裂面圖 (a) 低倍率 (b) 高倍率……..…106
圖4-45 320oC-1小時恆溫退火之拉伸斷裂面圖(a) 低倍率 (b) 高倍率………....107
圖5-1 低溫壓延純銅與室溫及100oC ECAE擠製純銅之微硬度曲線比較圖…...110
圖5-2 純鋁經ECAE後晶粒尺寸與晶粒長寬比對不同溫度下退火一小時之曲線
圖…………………………………………………………………………..…110
圖5-3 純鋁經ECAE後於573K恆溫退火一小時之TEM微結構圖……………111
圖5-4 純鋁經ECAE後於473K恆溫退火一小時之SEM微結構圖…………….111
圖5-5 純鋁經ECAE後於673K恆溫退火一小時之SEM微結構圖…………….112
第七章 參考文獻

Agnew S.R., Weertman J.R., “Cyclic softening of ultrafine grain copper”, Materials Science and Engineering A 244, 145-153 (1998)

Agnew S.R., Weertman J.R., “The influence of texture on the elastic properties of ultrafine-grain copper”, Materials Science and Engineering A 242, 174-180 (1998)

Arruffat-Massion R., Toth L.S., Mathieu J.-P., “Modeling of deformation and texture development of copperin a 120o ECAE die”, Scripta Materialia 54, 1667-1672 (2006)

Cheng X., Horit Z., Langdon T. G., “The evolution of homogeneity in processing by high-pressure torsion”, Acta Materialia 55, 203-212 (2007)

Dalla Torre F. H., Gazder A. A., Pereloma E. V., Davies C. H. J., “Recent progress on the study of the microstructure and mechanical properties of ECAE copper”, J Mater Sci 42, 9097-9111 (2007)

Dalla Torre F., Lapovok R., Sandlin J., Thomson P.F., Davies C.H.J., Pereloma E.V.,” Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes”, Acta Materialia 52, 4819-4832 (2004)

Ebrahimi F., Ahmed Z., Li H., “Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals”, Applied Physics Letters 85, 3749-3751 (2004)

Etter A.L., Baudin T., Rey C., Penelle R., “Microstructural and textural characterization of copper processed by ECAE”, Materials Characterization 56, 19-25 (2006)
Furukawa M., Iwahashi Y., Horita Z., Nemoto M., Langdon T. G., “The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering A 257, 328–332 (1998)

Furukawa M., Horita Z., Langdon T. G., “Factors influencing the shearing patterns in equal-channel angular pressing”, Materials Science and Engineering A 332, 97-109 (2002)

Gazder A.A., Li S., Dalla Torre F.H., Beyerlein I.J., Gu C.F., Davies C.H.J., Pereloma E.V., “Progressive texture evolution during equal channel angular extrusion”, Materials Science and Engineering A 437, 259-267 (2006)

Gholinia A., Prangnell P.B., and Markushev M.V., “The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE”, Acta Materialia 48, 1115-1130 (2000)

Hebesberger T., Stuwe H.P., Vorhauer A., Wetscher F., Pippan R., “Structure of Cu deformed by high pressure torsion”, Acta Materialia 53, 393-402 (2005)

Hsieh P.J., Lo Y.C., Huang J.C., Ju S.P., “On the latest stage of transformation from nanocrystalline to amorphous phases during ARB” Simulation and experiment”, Intermetallics 14, 924-930 (2006)

Hsieh P.J., Lo Y.C., Wang C.T., Huang J.C., Ju S.P., “Cyclic transformation between nanocrystalline and amorphous phases in Zr based intermetallic alloys during ARB”, Intermetallics 15, 644-651 (2007)

Hull D., Bacon D.J., Introduction to dislocations (Butterworth Heinemann Fourth Edition. 2001)
Iwahashi Y., Wang J., Horita Z., Nemoto M., Langdon T. G., “Principle of equal-channel angular peessing for the processing of ultra-fine grained materials”, Scripta Materialia 35, 143-146 (1996)

Iwahashi Y., Horita Z., Nemoto M., Langdon T. G., “An investigation of microstructural evolution during equal-channel angular pressing”, Acta Materialia. 45, 4733-4741 (1997)

Iwahashi Y., Horit Z., Nemoto M., Langdon T. G., “The process of grain refinement in equal-channel angular pressing”, Acta Materialia 46, 3317-3331 (1998)

Lee T.R., Chang C.P., Kao P.W., “The tensile behavior and deformation microstructure of cryo-rolled and annealed pure nickel”, Materials Science and Engineering A 408, 131-135 (2005)

Li S., Beyerlein I. J., Necker C. T., Alexander D. J., Bourke M., “Heterogeneity of deformation texture in equal channel angular extrusion of copper”, Acta Materialia 52, 4859-4875 (2004)

Li Y.S., Tao N.R., Lu K., “Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures”, Acta Materialia 56, 230-241 (2008)

Li Y.S., Zhang Y., Tao N.R., Lu K., “Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation”, Scripta Materialia 59, 475–478 (2008)

Lu L., Wang L.B., Ding B.Z., Lu K., “High-tensile ductility in nanocrystalline copper”,Journal of Materials Research 15, 270-273 (2000)
Nakashima K., Horita Z., Nemoto M. and. Langdon T. G, ”Influence of Channel Angle on the Development of Ultrafine Grains in Equal-Channel Angular Pressing”, Acta Mater., 46,1589(1998).

Qin E.W., Lu L., Tao N.R. and Lu K., “Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins”, Scripta Materialia 60, 539-542 (2009)

Valiev R. Z., Gunderov D. V., Zhilyaev A. P., Popov A.G., Pushin V. “Nanocrystallization Induced by Severe Plastic Deformation of Amorphous Alloys”,
Journal of Metastable and Nanocrystalline Materials 22, 21-26 (2004)_

Richert M., Liu Q. L., Hansen N., “Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression”, Materials Science and Engineering A 260, 275-283 (1999)

Reed H., Reza A., Physical Metallurgy Principles (PWS PUBLISHING COMPANY Third Edition 1992)

Saito Y., Utsunomiya H., Tsuji N., Sakai T., “Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process”, Acta Materialia 47, 579-583 (1999)

Segal V.M., “Materials processing by simple shear”, Materials Science and Engineering A 197, 157-164 (1995)

Shan Z.W., Lu L., Minor A.M., Stach E.A., Mao S.X., “The Effect of Twin Plane Spacing on the Deformation of Copper Containing a High Density of Growth Twins”, Journal of Materials 60, 71-74 (2008)
Shan Z., Mao S. X., “Direct evidence of a deformation mechanism crossover in nanocrystalline nickel”, Advanced engineering materials 7, 603-606 (2005)

Shi F.J., Wang J.M., Xu X.J., “Study on Recrystallization Behavior of Ultra-fine Grain Copper Fabricated by Equal Channel Angular Pressing”, Hot working technology 12, 24-26 (2005)

Sun P.L., Kao P.W., Chang C.P., “Effect of Deformation Route on Microstructural Developmentin Aluminum Processed by Equal Channel Angular Extrusion”, Metallurgical and materials transactions A 35, 1359-1368 (2004)

Sun P.L., Yu C.Y., Kao P.W., Chang C.P., “Influence of boundary characters on the tensile behavior of sub-micron-grained aluminum”, Scripta Materialia 52, 265-269 (2005)

Sun P.L., Cerreta E.K., Bingert J.F., Gray G.T., Hundley M.F., “Enhanced tensile ductility through boundary structure engineering in ultrafine-grained aluminum”, Materials Science and Engineering A 464, 343-350 (2007)

Takayama A., Yang X., Miura H., Sakai T. “Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging”, Materials Science and Engineering A 478, 221-228 (2008)

Valiev R.Z., Alexandrov I.V., Zhu Y.T., Lowe T.C., “Paradox of strength and ductility in metals processed by severe plastic deformation”, Journal of Materials 17, 5-8 (2002)

Van Swygenhoven H., Spacz´er M., Farkas D., Caro A., “Competing plastic deformation mechanism in nanophase metals”, NanoStruct. Mater.
12, 323–326 (1999)

Wang Y., Chen M., Zhou F., Ma E., “High tensile ductility in a nanostructured metal”, Nature 419, 912-914 (2002)

Wang Y.M., Ma E., “Three strategies to achieve uniform tensile deformation in a nanostructured metal”, Acta Materialia 52, 1699-709 (2004)

Waryoba D.R., Kalu P.N., Crooks R., “Grain-boundary structure of oxygen-free high-conductivity (OFHC) copper subjected to severe plastic deformation and annealing”, Materials Science and Engineering A 494, 47-51 (2008)

Xiao G.H., Tao N.R., Lu K., “Effects of strain, strain rate and temperature on deformation twinning in a Cu–Zn alloy”, Scripta Materialia 59, 975-978 (2008)

Yu C.Y., Sun P.L., Kao P.W., Chang C.P., “Evolution of microstructure during annealing of a severely deformed aluminum”, Materials Science and Engineering A 366, 310-317 (2004)

Yu Z.Y., Jiang Q.W., Li X.W., ”Temperature-dependent deformation and damage behaviour of ultrafine-grained copper under uniaxial compression”, Physica status solidi A 10, 2417-2421 (2008)

Zhang Y., Wang J.T., Cheng C., Liu J., “Stored energy and recrystallization
Temperature in high purity copper after equal channel angular pressing”, J Mater Sci
43, 7326-7330 (2008)

Zhang Y., Tao N.R., Lu K., “Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles”, Acta Materialia 56, 2429-21440 (2008)

Zhang Y., Tao N.R., Lu K., “Effect of stacking-fault energy on deformation twin
thickness in Cu–Al alloys”, Scripta Materialia 60, 211-213 (2009)

Zhao Y.H., Zhua Y. T., Liao X.Z., Horita Z., Langdon T. G., “Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy”, Applied Physics Letters 89, 1-3 (2006)

王允俊,純銅經等徑轉角擠型之低溫退火和機械性質,中山大學碩士論文(2001)

王郁雲,變形溫度對等徑轉角擠製純鋁微組織之影響,中山大學碩士論文(2003)

李存仁,低溫軋壓對純鎳機械性質的影響,中山大學碩士論文(2004)

高文彬,細晶鋁的疲勞組織研究,中山大學碩士論文(2001)

陳俊豪,部分退火冷軋鋁合金之拉伸性質研究,中山大學碩士論文(2007)

曾錫萍,等通道彎角擠製參數對5083鋁合金之影響,中央大學碩士論文(2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔