(18.204.227.34) 您好!臺灣時間:2021/05/17 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林欣熠
研究生(外文):Hsin-I Lin
論文名稱:低溫生長光觸媒二氧化鈦於風扇葉片之空氣清淨及保固性研究
論文名稱(外文):Low-Temperature Growth of Photocatalytic TiO2 on Plastic Fan Blade for Air Purification and its Mechanical Performance
指導教授:陳克昌陳克昌引用關係何主亮何主亮引用關係
指導教授(外文):Keh-Chang ChenJu-Liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:空氣清淨效能保固性質光觸媒風扇組二氧化鈦動力學行為聚對苯二甲酸二丁酯電弧離子鍍
外文關鍵詞:arc ion platingmechanical performancetitanium dioxidepoly-butylene terephthalatekinetic behaviorphotocatalytic fan devicephotodecomposition efficiency
相關次數:
  • 被引用被引用:2
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉電弧離子鍍(Arc ion plating, AIP)特有之高離子密度、設備簡單、製程溫度低及潔淨無公害等優勢,於工業用高分子聚對苯二甲酸二丁酯(Poly-Butylene Terephthalate, PBT)表面低溫合成具有光觸媒特性之二氧化鈦鍍膜的被覆技術,探討不同施鍍參數對鍍膜微觀組織、晶體結構以及保固性能的影響。更進一步分析所建置之光觸媒風扇元件進行以甲醇為例之空氣清淨效能及其分解效率的動力學行為,為評估實現「無濾網」式的空氣淨化風扇之可行性,從而擴大光觸媒二氧化鈦鍍膜的應用範疇。
研究結果顯示:以電弧離子鍍被覆技術可以成功地藉由調整沉積總壓、弧電流及沉積時間等變數製備出具有銳鈦礦相結構之TiO2鍍膜。其中鍍膜沉積速率高達6.0 um/h,明顯高於許多PVD製程。在保固特性方面;對應於不同沉積總壓、弧電流及沉積時間所得之TiO2鍍膜其鉛筆硬度落於4H到5H之間,且附著性可達到規範最高等級5B。這表示在AIP沉積技術之下的確可提供TiO2鍍膜與基材之間高度附著性的保證。
於分解甲醇氣體之空氣清淨實驗結果中得知:以波長382.2 nm之UV-LED照射未施鍍的PBT風扇或是未施予UV-LED照射之TiO2光觸媒風扇需花費超過12小時來分解甲醇氣體,而且其數據線藉由取樣微分後呈現兩段斜率。發現之所以產生兩段斜率是因為甲醇氣體吸附於腔體內的器壁表面而提高分解甲醇氣體的難度造成兩段不同的斜率(活化能)在影響反應進行。沉積總壓0.25 Pa、弧電流80 A及沉積25 min所得之光觸媒風扇組受到 UV-LED照射可獲得最佳分解時間約為3小時。後續為了確認出最佳甲醇分解效率光觸媒風扇之動力學行為,將腔體溫度設定為298K、303K、313K及323K分別進行甲醇氣體分解效率試驗。藉由亞瑞尼士方程式所求出之光觸媒風扇於初期及後期之甲醇分解活化能為5.6 KJ/mole及16.0 KJ/mole,明顯低於其他種類觸媒催化甲醇所需之活化能值。分析兩段動力學行為發現:分解甲醇的過程中中間物會降低二氧化鈦之光催化活性,導致後期活化能提升阻礙反應的進行。在評估不同製程參數及所得鍍膜之晶體結構可知:當鍍膜沉積至一定厚度時其結晶性與甲醇分解效率不僅都能獲得相當顯著的提升,更能降低反應活化能促進甲醇分解效率的提升。故若有機會實際商品化本研究所研發之光觸媒風扇時,應當以提升鍍膜厚度為優先考量藉此獲得足夠的銳鈦礦相鍍膜結晶性,以取得最佳的光催化能力分解甲醇或是同質性的有機氣體。
Arc ion plating (AIP) beneficial from high cathode ionization rate, simple procedure, low process temperature, high film deposition rate, strong film adhesion and environmental friendly, are employed in this study to establish the coating technique for depositing photocatalytic titanium dioxide layer on poly-butylene terephthalate (PBT) surface. The correlation among deposition parameter, microstructure, crystalline structure and mechanical performance of TiO2 coating were discussed as well. Furthermore, the photodecomposition efficiency of methanol for TiO2-coated fan device and its kinetic behavior to the decomposition of methanol were also measured for evaluating the feasibility of this filter-free air purification fan device.
The experimental results indicated that by adjusting the coating parameters including total pressure, cathode current and deposition time, the TiO2 coating with major anatase phase and minor rutile phase strucutre could be successfully fabricated. The deposition rate with single cathodic source could reach 6.0 �慆/h. For mechanical performance, pencil hardness values of TiO2 coated specimens are between 4H to 5H. The coating adhesion by tape test grades 5B, the highest rank of specification. These all indicate that the AIP depositing technique could provide satisfactory mechanical performance of the TiO2 coating.
The photodecomposition efficiency of fan blade (without and with TiO2-coating) to methanol was revealed without and with 382.2 nm UV-LED illuminating over 12 hr. Moreover, two separated slopes were found for the curve of methanol concentration as a function of decomposition time, indicating two different activation energies during decomposing methanol. It is believed that methanol gas absorbed on the fan blade and the inner wall of chamber surface rise the difficult in decomposing methanol gas. However, the TiO2-coated fan blade deposited under 0.25 Pa oxygen pressure, 80 A cathode current and 25 min deposition time with UV-LED illuminating show that the optima decomposition time is 3.05 h. Based on the calculation of this particular case, it is found that activation energy of photodecomposition give two individual value, 5.6 KJ/mole and 16.0 KJ/mole, respectively, far lower than the value for other reported catalytic materials could provide (100~500 KJ/mole). The reduced reaction activation energy and ease of chemical reaction is obtained. It is believed that the CO intermediate absorbed on the TiO2 surface retards photocatalytic reaction and consequently two separated activation energies. Taking all coating parameters into consideration, not only the crystallinity degree of the deposits and methanol decomposition efficiency could both be promoted when deposited film came to a certain thickness. It is therefore recommended that a satisfactory film thickness for acquiring the sufficient film crystallinity would be first priority to provide the optima photodecomposition efficiency for methanol gas or other volatile organic compounds when commercializing the photocatalytic fan blade developed in this study.
誌謝.................................................. I
中文摘要.............................................. II
Abstract ............................................. IV
總目錄 ............................................. VI
圖目錄 ............................................. VIII
表目錄 ............................................. X
第一章 前言 .........................................1
第二章 文獻回顧......................................3
2-1 空氣污染..................................... 3
2-1-1 一氧化碳......................................4
2-1-2 二氧化氮......................................5
2-1-3 二氧化硫......................................6
2-1-4 微粒..........................................6
2-1-5 有機揮發性氣體化合物..........................7
2-2 有機甲醇物質分解模式..........................9
2-2-1 甲醇分解......................................9
2-2-2 蒸氣重組......................................9
2-2-3 甲醇部分氧化..................................9
2-3 空氣清淨方法..................................10
2-3-1 物理吸附......................................10
2-3-2 負離子........................................11
2-3-3 光化學分解....................................12
2-4 光觸媒........................................12
2-4-1 光觸媒材料....................................13
2-4-2 光觸媒活性控制因素............................19
2-4-3 二氧化鈦晶結構................................23
2-4-4 二氧化鈦晶面..................................27
2-4-5 二氧化鈦光觸媒反應機制........................27
2-5 二氧化鈦光觸媒應用............................36
2-5-1 抗菌..........................................36
2-5-2 自潔..........................................39
2-5-3 污水處理......................................43
2-5-4 空氣淨化......................................44
2-6 二氧化鈦被覆技術..............................46
2-6-1 薄膜成長過程..................................46
2-6-2 二氧化鈦鍍膜沉積技術..........................47
2-7 研究動機......................................57
第三章 研究方法......................................58
3-1 電弧離子鍍二氧化鈦鍍膜........................58
3-1-1 基材準備......................................58
3-1-2 製備二氧化鈦鍍膜..............................60
3-2 二氧化鈦鍍膜之顯微與晶體結構分析..............64
3-2-1 SEM形貌觀察...................................64
3-2-2 XRD結構分析...................................64
3-3 二氧化鈦鍍膜之保固性..........................64
3-3-1 鉛筆硬度試驗..................................64
3-3-2 附著力試驗....................................65
3-4 二氧化鈦鍍膜之空氣清淨........................67
第四章 結果與討論....................................72
4-1 電弧離子鍍二氧化鈦的成長行為..................72
4-1-1 不同沉積參數所得二氧化鈦鍍膜XRD結構分析.......74
4-1-2 不同沉積參數所得二氧化鈦鍍膜SEM形貌觀察.......79
4-2 電弧離子鍍二氧化鈦的保固性....................81
4-2-1 二氧化鈦鍍膜的鉛筆硬度........................81
4-2-2 二氧化鈦鍍膜的附著性..........................81
4-3 電弧離子鍍二氧化鈦之空氣清淨效能..............83
4-3-1 二氧化鈦光觸媒風扇針對甲醇氣體之分解效率......83
4-3-2 最佳甲醇分解效率光觸媒風扇之動力學行為........88
第五章 結論..........................................94
參考文獻...............................................95
研究成果...............................................113
壹. 參與計畫......................................113
貳. 發表論文......................................113
參. 獲獎記錄......................................116
1.“公害舉證責任反轉向密切相關污染源求償-處理大寮空污事件的關鍵認知”,行政院環境保護署新聞資料,98年1月23日,URL: http://www.epa.gov.tw/ch/artshow.aspx?busin=1936&art=2009012019155082&path=12456。
2.“Budapest air pollution "dangerous", says green group”, The Budapest Times, 31 December 2008, URL: http://www.budapesttimes.hu/index.php?option=com_content&task=view&id=10426&Itemid=159.
3.K.A. Miller, D.S. Siscovick, L. Sheppard, K. Shepherd, J.H. Sullivan, G.L. Anderson and J.D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women”, The New England Journal of Medicine, 356 (2007) 447–458.
4.W.J. Gauderman, E. Avol, F. Gilliland, H. Vora, D. Thomas, K. Berhane, R. McConnell, N. Kuenzli, F. Lurmann, E. Rappaport, H. Margolis, D. Bates and J. Peters, “The effect of air pollution on lung development from 10 to 18 years of age”, The New England Journal of Medicine, 351 (2004) 1057–1067.
5.C.A. Pope III, M. Ezzati and D.W. Dockery, “Fine-particulate air pollution and life expectancy in the United States”, The New England Journal of Medicine, 360 (2009) 376–386.
6.J.H. Byeon, J.H. Park, K.Y. Yoon, B.J. Ko, J.H. Ji and J. Hwang, “Removal of volatile organic compounds by spark generated carbon aerosol particles”, Carbon, 44 (2006) 2111–2113.
7.X.L. Hao, X.W. Zhang and L.C. Lei, “Degradation characteristics of toxic contaminant with modified activated carbons in aqueous pulsed discharge plasma process”, Carbon, 47 (2009) 153–161.
8.C.J. Weschler, “Ozone in indoor environments: concentration and chemistry”, Indoor Air, 10 (2000) 269–288.
9.Y. Keping, H. Hexing, C. Mi, M. Jinsong, W. Xiaoli, B. Chongguang and L. Ruinian, “Corona induced non-thermal plasmas: fundamental study and industrial applications”, Journal of Electrostatics, 44 (1998) 17–39.
10.S.L Daniels, “On the ionization of air for removal of noxious effluvia”, IEEE Transaction on Plasma Science, 30 (2002) 1471-1481.
11.M. Kitano, M. Matsuoka, M. Ueshima and M. Anpo, “Recent developments in titanium oxide-based photocatalysts”, Applied Catalysis A: General, 325 (2007) 1–14.
12.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, “Light-induced amphiphilic surfaces”, Nature, 388 (1997) 431–432.
13.C.J. Chung, H.I. Lin and J.L. He, "Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating ", Surface and Coatings Technology, 202 (2007) 1302–1307.
14.C.J. Chung, H.I. Lin and J.L. He, "Microstructural effect on the antimicrobial efficacy of arc ion plated TiO2", Journal of Materials Research, 22 (2007) 3137–3143.
15.C.J. Chung, H.I. Lin, H.K. Tsou, Z.Y. Shi, J.L. He, "An antimicrobial TiO2 coating for reducing hospital-acquired infection", Journal of Biomedical Materials Research: Part B–Applied Biomaterials, 85B (2008) 220–224.
16.M. Grätzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338-344.
17.C.S. Turchi and D.E. Ollis, “Degradation of organic contaminants: mechanisms involving hydroxyl radical attack”, Journal of Catalysis, 122 (1990) 178–192.
18.J.H. Xu and F. Shiraishi, “Photocatalytic decomposition of acetaldehyde in air over titanium dioxide”, Journal of Chemical Technology and Biotechnology, 74 (1999) 1096–1100.
19.J. Peral, X. Domènech and D.F. Ollis, “Heterogeneous photocatalysis for purification, decontamination and deodorization of air”, Journal of Chemical Technology and Biotechnology, 70 (1997) 117–140.
20.S. Watson, D. Beydoun, and R. Amal, “Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core”, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 303–313.
21.R. Held, T. Heinzel, P. Studerus and K. Ensslin, “Nanolithography by local anodic oxidation of metal films using an atomic force microscope”, Physica E: Low-dimensional Systems and Nanostructures, 2 (1998) 748–752.
22.F. Climent and R. Capellades, “Anodic oxidation of titanium at low voltages”, Materials Letters, 18 (1994) 263–268.
23.W.A. Jacoby, M.R. Nimlos and D.M. Blake, “Products, intermediates, mass balances, and reaction pathways for the oxidation of trichloroethylene in air via heterogeneous photocatalysis”, Environmental Science and Technology, 28 (1994) 1661–1668.
24.P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate”, Surface and Coatings Technology, 153 (2002) 93–99.
25.D. Glöß, P. Frach, O. Zywitzki, T. Modes, S. Klinkenberg and C. Gottfried, “Photocatalytic titanium dioxide thin films prepared by reactive pulse magnetron sputtering at low temperature”, Surface and Coatings Technology, 200 (2005) 967–971.
26.J. Pan, C. Leygraf, D. Thierry and A.M. Ektessabi. “Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering”, Journal of Biomedical Materials Research Part A, 35 (1997) 309–318.
27.C. Liu, T. Matsutani, T. Asanuma, K. Murai, M. Kiuchi, E. Alves and M. Reis, “Room-temperature growth of crystalline indium tin oxide films on glass using low-energy oxygen-ion-beam assisted deposition”, Journal of Applied Physics, 93 (2003) 2262–2266.
28.P. Frach, D. GlÖ��, Chr. Metzner, T. Modes, B. Scheffel and O. Zywitzki, “Deposition of photocatalytic TiO2 layers by pulse magnetron sputtering and by plasma-activated evaporation”, Vaccum, 80 (2006) 679–683.
29.T.S. Yang, C.B. Shiu and M.S. Wong, “Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation”, Surface Science, 548 (2004) 75–82.
30.J.T. Chang, Y.F. Lai, J.L. He, “Photocatalytic performance of chromium or nitrogen doped arc ion plated-TiO2 films”, Surface and Coatings Technology, 200 (2005) 1640–1644.
31.“AQI A guide to air quality and your health”, United States Environmental Protection Agency, (2003) 1–16.
32.J.M. Samet, M. C. Marbury and J.D. Spengler, “Health Effects and Sources of Indoor Air Pollution, Part I”, American Review of Respiratory Disease, 136 (1987) 1486–1508.
33.Indoor Air Pollution An Introduction for Health Professionals, American Lung Association, American Medical Association, U.S. Consumer Product Safety Commission and U.S. Environmental Protection Agency, 1994.
34.M. Shima and M. Adachi, “Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren”, International Journal of Epidemiology, 29 (2000) 862–870.
35.H.W. Parker, Air pollution, Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1991.
36.J. Colls, Air pollution, an introduction. London: E & FN Spon, 1997.
37.K. Lee, Y. Yanagisawa, J.D. Spengler and S. Nakai, “Carbon monoxide and nitrogen dioxide exposures in indoor ice skating rinks”, Journal of Sports Sciences, 12 (1994) 279-283.
38.S. Horvarth, “Impact of air quality in exercise performance”, Exercise and Sport Sciences Reviews, 9 (1981) 265-296.
39.World health organization, “Particulate matter air pollution: how it harms health”, (2005) Fact sheet EURO/04/05.
40.U.S. Department of Health and Human Services. “The Health Benefits of Smoking Cessation, A Report of the Surgeon General”, DHHS Publication No. (CDC) 90–8416. 1990.
41.U.S. Department of Health and Human Services, “Reducing the Health Consequences of Smoking: 25 Years of Progress, A Report of the Surgeon General”, DHHS Publication No. (CDC) 89–84. 1989.
42.International Agency for Research on Cancers (IARC), “Monographs on the evaluation of carcinogenic risk to humans”, Supplement 7, 1987.
43.L.A. Wallace, “Cancer risk from organic chemicals in homes, in: Proceedings of Environmental Risk Management”, APCA, Pittsburgh, PA (1986) 14–24.
44.T.N. Obee and R.T. Brown, “TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene”, Environmental Science and Technology, 29 (1995) 1223–1231.
45.M.R. Nimlos, E.J. Wolfrum, M.L. Brewer, J.A. Fennel and G.B. Bintner, “Gas-Phase Heterogeneous Photocatalytic Oxidation of Ethanol: Pathways and Kinetic Modeling”, Environmental Science and Technology, 30 (1996) 3102–3110.
46.C.H. Ao, S.C. Lee and J.C. Yu, “Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2”, Journal of Photochemistry and Photobiology A: Chemistry, 156 (2003) 171–177.
47.F.B. Li, X.Z. Li, C.H. Ao, S.C. Lee and M.F. Hou, “Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification”, Chemosphere, 59 (2005) 787–800.
48.W.K. Jo and K.H. Park, “Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application”, Chemosphere, 57 (2004) 555–565.
49.Kel-Ex Agencies Ltd., “Material Safety Data Sheet of methanol”, October 13, 2005.
50.J.C. Amphlett, K.A.M. Creber, J.M. Davis, R.F. Mann, B.A. Peppley and D.M. Stokes, “Hydrogen Prouction by Steam Reforming of Methomal for Polymer Electrolyte Fuel Cell.”, International Journal of Hydrogen Energy, 19 (1994) 131-137.
51.S.D. Jones and H.E. Hagelin-Weaver, “Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3”, Applied Catalysis B: Environmental, 90 (2009) 195-204.
52.P. Tolmacsov, A. Gazsi and F. Solymosi, “Decomposition and reforming of methanol on Pt metals supported by carbon Norit”, Applied Catalysis A: General, 362 (2009) 58-61.
53.G. Busca, T. Montanari, C. Resini, G. Ramis, U. Costantino, “Hydrogen from alcohols: IR and flow reactor studies”, Catalysis Today, 143 (2009) 2-8.
54.S. Poulston, E. Rowbotham, P. Stone, P. Parlett and M. Bowker, “Temperature-programmed desorption studies of methanol and formic acid decomposition on copper oxide surfaces”, Catalysis Letters, 52 (1998) 63-67.
55.Y. Matsumura, K. Kuraoka, T. Yazawa and M. Haruta, “Production of carbon monoxide and hydrogen by methanol decomposition over nickel dispersed on porous glass”, Catalysis Today, 45 (1998) 191-196.
56.S. Imamura, T. Higashihara, Y.o Saito, H. Aritani, H. Kanai, Y. Matsumura and N. Tsuda, “Decomposition of methanol on Pt-loaded ceria”, Catalysis Today, 50 (1999) 369-380.
57.J.P. Breen and J.R.H. Ross, “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts”, Catalysis Today, 51 (1999) 521-533.
58.G.C. Shen, S.I. Fujita, S. Matsumoto and N. Takezawa, “Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity”, Journal of Molecular Catalysis A: Chemical, 124 (1997) 123-136.
59.N. Iwasa, S. Masuda, N. Ogawa and N. Takezawa, “Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction”, Applied Catalysis A: General, 125 (1995) 145-157.
60.N. Takezawa and N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catalysis Today, 36 (1997) 45-56.
61.G. Li, D. Hu, G. Xia and Z.C. Zhang, “Methanol Partial Oxidation on MoO3/SiO2 Catalysts: Application of Vibrational Spectroscopic Imaging Techniques in a High Throughput Operando Reactor”, Topics in Catalysis, 52 (2009) 1381-1387.
62.C. Cao and K.L. Hohn, “Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3”, Applied Catalysis A: General, 354 (2009) 26-32.
63.F.W. Chang, L.S. Roselin and T.C. Ou, “Hydrogen production by partial oxidation of methanol over bimetallic Au–Ru/Fe2O3 catalysts”, Applied Catalysis A: General, 334 (2008) 147-155.
64.J. Andreas, D. Marc and P. Rainer, “Biofilter Technology: An Innovative and Cost-Effective System to Remove VOC”, IEEE Transactions on semiconductor manufacturing, 17 (2004) 255–260.
65.D.S. Tsoukleris, T. Maggos, C. Vassilakos and P. Falaras, “Photocatalytic degradation of volatile organics on TiO2 embedded glass spherules”, Catalysis Today, 129 (2007) 96–101.
66.W.K. Jo, J.H. Park and H.D. Chun, “Photocatalytic destruction of VOCs for in-vehicle air cleaning”, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 109–119.
67.S.L. Cao, K.L. Yeung, J.K.C. Kwan, P.M.T. To and S.C.T. Yu, “An investigation of the performance of catalytic aerogel filters”, Applied Catalysis B: Environmental, 86 (2009) 127–136.
68.A.S. Mestre, J. Pires, J.M.F. Nogueira and A.P. Carvalho, “Activated carbons for the adsorption of ibuprofen”, Carbon, 45 (2007) 1979–1988.
69.J.F. González-González, M. Alexandre-Franco, C.M. González-García, J.M. Encinar-Martín, A. Bernalte-García, V. Gómez-Serrano, “Nitrogen adsorption on carbonaceous materials A comparison between static and dynamic methods”, Powder Technology 192 (2009) 339–345.
70.T.A. Ternes, M. Meisenheimer, D. Mcdowell, F. Sacher, H.J. Brauch and B. Haist-Gulde, “Removal of pharmaceuticals during drinking water treatment”, Environmental Science and Technology, 36 (2002) 3855–3865.
71.Y. Yoon, P. Westerhoff, S.A. Snyder and M. Esparza, “HPLC-fluorescence detection and adsorption of bisphenol A, 17b-estradiol, and 17aethynyl estradiol on powdered activated carbon”, Water Research, 37 (2003) 3530–3537.
72.Z. Grabarczyk, “Effectiveness of indoor air cleaning with corona ionizers”, Journal of Electrostatics, 51–52 (2001) 278–283.
73.C.C. Wu and G.W.M. Lee, “The temporal aerosol size distribution in indoor environment with negative electric discharge”, Journal of Aerosol Science, 34 (2003) S999–S1000.
74.M. Adachi, Y. Kousaka and K. Okuyama, “Unipolar and bipolar diffusion charging of ultrafine aerosol particles”, Journal of Aerosol Science, 16 (1985) 109–123.
75.P. Buscher, A. Schmidt-Ott, A. Wiedensohler, “Performance of a unipolar “square wave” diffusion charger with variable nt-product”, Journal of Aerosol Science, 25 (1994) 651–663.
76.A. Hernandez-Sierra, F.J. Alguacil, M. Alonso, “Unipolar charging of nanometer aerosol particles in a corona ionizer”, Journal of Aerosol Science, 34 (2003) 733–745.
77.B.U. Lee, M. Yermakov and S.A. Grinshpun, “Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission”, Atmospheric Environment, 38 (2004) 4815–4823.
78.R.W. Matthews, “Photooxidation of organic impurities in water using thin films of titanium dioxide”, The Journal of Physical Chemistry, 91 (1987) 3328–3333.
79.S. Nick, “Brief introductory remarks on heterogeneous photocatalysis”, Solar energy materials and solar cells, 38 (1995) 369–379.
80.H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi and S. Deki, “Photocatalytic activity of titanium dioxide prepared by liquid phase deposition (LPD)”, Journal of materials chemistry, 8 (1998) 2019–2024.
81.M. Yamagishi, S. Kuriki, P.K. Song and Y. Shigesato, “Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering”, Thin Solid Films, 442 (2003) 227–231.
82.J.J. Bravo-Suárez, K.K. Bando, J. Lu, T. Fujitani and S.T. Oyama, “Oxidation of propane to propylene oxide on gold catalysts”, Journal of Catalysis, 255 (2008) 114–126.
83.K.S. Guan, “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films”, Surface and Coatings Technology, 191 (2005) 155– 160.
84.T. Giornelli, A. LÖfberg, L. Guillou, S. Paul, V.L. Courtois and E. Bordes-Richard, “Catalytic wall reactor Catalytic coatings of stainless steel by VOx/TiO2 and Co/SiO2 catalysts”, Catalysis Today, 128 (2007) 201–207.
85.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238 (1972) 37–38.
86.A. Fujishima, K. Kohayakawa and K. Honda, “Hydrogen production under sunlight with electrochemical photocell”, Journal of The Electrochemical Society, 122 (1975) 1487–1489.
87.A. Mills and S.L. Hunte, “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 1–35.
88.D.F. Ollis, E. Pellizzetti and N. Seropone, “Photocatalytic destruction of water contaminant”, Environmental Science and Technology, 25 (1991) 1523–1529.
89.N. Balázs, K. Mogyorósi, D.F. Srankó, A. Pallagi, T. Alapi, A. Oszkó, A Dombi and P. Sipos, “The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition”, Applied Catalysis B: Environmental, 84 (2008) 356–362.
90.J. Mo, Y. Zhang, Q Xu, J.J. Lamson and Zhao, “Photocatalytic purification of volatile organic compounds in indoor air: A literature review”, Atmospheric Environment, 43 (2009) 2229–2246.
91.J. Grzechulska and A.W. Morawski, “Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water”, Applied Catalysis B: Environmental, 46 (2003) 415–419.
92.A. Rachel, M. Subrahmanyam and P. Boule, “Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilized form for the photocatalytic degradation of nitrobenzenesulfonic acids”, Applied Catalysis B: Environmental, 37 (2002) 301–308.
93.J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney and M. Rouse, “Immobilisation of TiO2 powder for the treatment of polluted water”, Applied Catalysis B: Environmental, 17 (1998) 25–36.
94.K. Rajeshwar, “Photoelectrochemistry and the environment”, Journal of Applied Electrochemistry, 25 (1995) 1067–1082.
95.A. Mills, R. H. Davis and D. Worsley, “Water purication by semiconductor photocatalysis”, Chemical Society Reviews, 22 (1993) 417–425.
96.M. Grätzel, Energy Resource Through Photochemistry and photocatalysis, New York: Academic Press Inc., 1983.
97.E.M. Levin, C.R. Robbins and H.F. McMurdie, Phase diagrams for Ceramists, Volume III, Ohio: The American Ceramic Society Inc., 1975.
98.A. Sclafain, L. Palmisano and M. Schiavello, “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion”, Journal of Physical Chemistry, 94 (1990) 829–832.
99.Z. Ding, G.Q. Lu and P.F. Greenfield, “Role of crystallite phase of TiO2 in heterogeneous photocatalysis”, Journal of Physical Chemistry B, 104 (2000) 4815–4820.
100.T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda and R. Miyagawa, “Ion-beam modification of TiO2 film to multilayered photocatalyst”, Nuclear Instruments and Methods in Physics Research B, 148 (1999) 758–761.
101.T. Fuyuki and H. Matsunami, “Electronic properties of interface between Si and TiO2 deposited at very low temperature”, Japanese Journal of Applied Physics, 25 (1986) 1288–1291.
102.N.G. Park, J. van de Lagemaat and A.J. Frank, “Comparison of Dye-sensitized rutile- and anatase-based TiO2 solar cells”, Journal of Physical Chemistry B, 104 (2000) 8989–8994.
103.K. Prasad, A.R. Bally, P.E. Schmid, F. Levy, J. Benoit, C. Barthou and P. Benalloul, “Ce-doped TiO2 insulators in thin film electroluminescent devices”, Japanese journal of applied physics, 36 (1997) 5696–5702.
104.I.P. Parkin and R.G. Palgrave, “Self-cleaning coatings”, Journal of Materials Chemistry, 15 (2005) 1689–1695.
105.D.R. Acosta, A.I. Martínez, A.A. López and C.R. Magaña, “Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties”, Journal of Molecular Catalysis A: Chemical, 228 (2005) 183–188.
106.Q. Cheng, C. Li, V. Pavlinek, P. Saha and H. Wang, “Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties”, Applied Surface Science, 252 (2006) 4154–4160.
107.N. Serpone, “Brief introductory remarks on heterogeous photocatalysis”, Solar Energy Materials and Solar Cells, 38 (1995) 369–379.
108.B. Sun, A.V. Vorontsov and P.G. Smirniotis, “Role of platinum deposited on TiO2 in phenol photocatalytic oxidation”, Langmuir, 19 (2003) 3151–3156.
109.O. Legrini, E. Oliveros and A. M. Braun, “Photochemical processes for water treatment”, Chemical Reviews, 93 (1993) 671–698.
110.L.B. Khalil, W.E. Mourad and M.W. Rophael, “Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination”, Applied Catalysis B: Environmental, 17 (1998) 267–273.
111.G.B. Raupp, A. Alexiadis, Md.M. Hossain and R. Changrani, “First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification”, Catalysis Today, 69 (2001) 41–49.
112.H. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis and M. Che, “Photocatalytic decomposition of NO at 275 K on titanium oxides included within Y-zeolite cavities: The structure and role of the active sites”, Journal of Physical Chemistry, 100 (1996) 16041–16044.
113.C. Wu, Y. Yue, X. Deng, W. Hua and Z. Gao, “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations”, Catalysis Today, 93–95 (2004) 863–869.
114.C. Lao, Y. Chuai, L. Su, X. Liu, L. Huang, H. Cheng and D. Zou, “Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titaniumdioxide used in dye-sensitized solar cell”, Solar Energy Materials and Solar Cells, 85 (2005) 457–465.
115.K. Lee, W.S. Nam and G.Y. Han, “Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study”, International Journal of Hydrogen Energy, 29 (2004) 1343–1347.
116.J. Rabani, K. Yamashita, K. Ushida, J. Stark and A. Kira, “Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser”, Journal of Physical Chemistry B, 102 (1998) 1689–1695.
117.M. Sharon and B. Pal, “Reactivity of nano-size particles vis-a-vis large particles and their applications”, Bulletin of Electrochemistry, 12 (1996) 219–233.
118.H.E. Chao, Y.U. Yun, H.U. Xingfang and A. Larbot, “Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder”, Journal of the European Ceramic Society, 23 (2003) 1457–1464.
119.H. Sakai, H. Kawahara, M. Shimazaki and M. Abe, “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition”, Langmuir, 14 (1998) 2208–2212.
120.M.R. Hoffman, S.T. Martin, W. Choi and D.W. Bahnemann, “Environmental applications of semiconductor photocatalysis”, Chemistry Reviews, 95 (1995) 69–95.
121.Q. Zhang, L. Gao and J. Guo, “Effects of calcinations on the photocatalyitc properties of nanosized TiO2 powders TiCl4 hydrolysis”, Applied Catalysis B, 26 (2000) 207–215.
122.M. Anpo, T. Shima, S. Kodama and Y. KuboKawa, “Photocatalytic hydrogenation of CH3COOH with H2O on small-particle TiO2: Size quantization effects and reaction intermediates”, Journal of Physical Chemistry, 91 (1987) 4305–4310.
123.K. Okamoto, Y. Yamamoto, H. Tanaka and A. Itaya, “Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder”, Bulletin of the Chemical Society of Japan, 58 (1985) 2023–2028.
124.T. Noguchi, A. Fujishima, P. Sawanyama and K. Hashimoto, “Photocatalytic degradation of gaseous formaldehyde using TiO2 film”, Environmental Science and Technology, 32 (1998) 3831–3833.
125.M.A. Fox and M.T. Dulay, “Heterogeneous photocatalysis”, Chemical Reviews, 93 (1993) 341–357.
126.V. Subramanian, V.G. Pangarkar and A. Beenackers, “Photocatalytic degradation of para-hydroxybenzoic acid: Relationship between substrate adsorption and photocatalytic degradation”, Clean Products and Processes, 2 (2000) 149–156.
127.A. Haarstrick, O.M. Kut and E. Heinzle, “TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor”, Environmental Science and Technology, 30 (1996) 817–824.
128.T.Y. Wei, Y.Y. Wang and C.C. Wan, “Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powder”, Journal of photochemistry and photobiology A: Chemistry, 55 (1990) 115–126.
129.A. Sclafani, L. Palmisano and E. Davi, “Photocatalytic degradation of phenol in aqueous polycrystalline TiO2 dispersions”, Journal of photochemistry and photobiology A: Chemistry, 56 (1991) 113–123.
130.M. Anpo, “Application of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale”, Studies in Surace Science and Catalysis, 130 (2000) 157–167.
131.W. Choi, A. Termir and M.R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics” Journal of Physical Chemistry, 98 (1994) 13669–13679.
132.J. Domaradzki, E.L. Prociow, D. Kaczmarek, T. Berlicki, A. Podhorodecki, R. Kudrawiec and J. Misiewicz, “X-ray, optical and lectrical characterization of doped nanocrystalline titanium oxide thin films”, Materials Science Engineering B, 109 (2004) 249–251.
133.K. Vinodgopal and P.V. Kamat, “Enhanced rate of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films”, Environmental Science and Technology, 29 (1995) 841–845.
134.Y.R. Do, W. Lee, K. Dwight and A. Wold, “The effect of WO3 on the photocatalytic activity of TiO2”, Journal of Solid State Chemistry, 108 (1994) 198–201.
135.J. Papp, S. Soled, K. Dwight and A. Wold, “Surface acidify and photocatalytic activity of TiO2 WO3/TiO2, and MOO3/TiO2 Phatocatalysts”, Chemistry of Materials, 6 (1994) 496–500.
136.X. Fu, L.A. Clark, Q. Yang and M.A. Anderson, “Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2”, Environmental Science and Technology, 30 (1996) 647–653.
137.A. Hattori, Y. Tokihisa, H. Tada and S. Ito, “Acceleration of oxidation and retardation of reactions in photocatalysis of a TiO2/SnO2 bilayer type catalyst”, Journal of the Electrochemical Society, 147 (2000) 2279–2283.
138.H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, “A patterned-TiO2/SnO2 bilayer type photocatalyst”, Journal of Physical Chemistry B, 104 (2000) 4585–4587.
139.W.A. Zeltner, C.G. Hill and M.A. Anderson, “Supported titania for photodegradation”, Chemical Innovation, 23 (1993) 21–29.
140.M.F. Yan and W.W. Rhodes, “Low-temperature Sintering of TiO2”, Material Science and Engineering, 61 (1983) 59–66.
141.A. Labouriau and W.L. Earl, “Titanium solid-state NMR in anatase, brookite and rutile”, Chemical Physics Letter, 270 (1997) 278–284.
142.T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa and S. Kurita, “Raman spectroscopy and phase transition of anatase TiO2 under high pressure”, Journal of Physics and Chemistry of Solids, 62 (2001) 717–721.
143.N. Hossks, T. Sekiya and S. Kurita, “Excitonic state in anatase TiO2 single crystal”, Journal of Luminescence, 72–74 (1997) 874–875.
144.V. Swamy and L. S. Dubrovinsky, “Bulk modulus of anatase”, Journal of Physics and Chemistry of Solids, 62 (2001) 673–675.
145.K. Okimura, “Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering”, Surface and Coatings Technology, 135 (2001) 286–290.
146.D.R. Burgess, T.J. Anderson, P.A. Morris Hotsenpiller and J.L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2”, Journal of Crystal Growth, 166 (1996) 763–768.
147.U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, 48 (2003) 53–229.
148.J. Muscat, N.M. Harrison and G. Thornton, “Effects of exchange, correlation, and numerical approximations on the computed properties of the rutile TiO2 (100) surface”, Physical Review B, 59 (1999) 2310–2326.
149.Powder Diffraction File, Card No.21–1276, JCPDS-International Centre for Diffraction Data, US: Swarthmore PA, 1997.
150.T.E. Weirich, M. Winterer, S. Seifried, H. Hahn and H. Fuess, “Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2”, Ultramicroscopy, 81(2000) 263–270.
151.Powder Diffraction File, Card No.21–1272, JCPDS-International Centre for Diffraction Data, US: Swarthmore PA, 1997.
152.J.K. Burdett, T. Hughbands, J.M. Gordon, J.W. Richardson and J.V. Smith, “Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, Journal of the American Chemical Society, 109 (1987) 3639–3646.
153.K.J. Laidler and J.H. Meiser, Physical Chemistry, New York: John Wiley and Sons, Inc., 1982.
154.W. Stumn, Chemistry of the Solid-Water Interface, New York: John Wiley and Sons, 1992.
155.A.L. Linsebigler, G. Lu and J.T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, 95 (1995) 735–758.
156.R.P.S. Suri, J. Liu, D.W. Hand, J.C. Crittenden, D.L. Perram and M.E. Mullins “Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water”, Water Environment Research, 65 (1993) 665–673.
157.S.T. Martin, H. Herrmann, W. Choi and M.R. Hoffmann, “Time-resolved microware conductivity”, Journal of the Chemical Society, Faraday Transactions, 90 (1994) 3315–3322.
158.K. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, “Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water”, Journal of Physical Chemistry B, 104 (2000) 4934–4938.
159.O. Ishitani, C. Inoue, Y. Suzuki and T. Ibusuki, “Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, 72 (1993) 269–271.
160.Z.H. Wang and Q.X. Zhuang, “Photocatalytic reduction of pollutant Hg (II) on doped WO3 dispersion”, Journal of Photochemistry and Photobiology A: Chemistry, 75 (1993) 105–111.
161.K. Tennakone and U. S. Ketipearachchi, “Photocatalytic method for removal of mercury from contaminated water”, Applied Catalysis B: Environmental, 5 (1995) 343–349.
162.M.L.G. González, A.M Chaparro and P. Salvador, “Photoelectrochemical study of the TiO2-Cr system. Observation of strong (001) rutile photoetching in the presence of Cr (VI)”, Journal of Photochemistry and Photobiology A: Chemistry, 73 (1993) 221–231.
163.D. Bhakta, S.S. Shukla, M.S. Chandrasdeharaiah and J.L. Margrave, “A Novel Photocatalytic Method for Detoxification of Cyanide Wastes”, Environmental Science and Technology, 26 (1992) 625–626.
164.H.W. Prengle and C.E. Mauk, “New technology: ozone/UV chemical oxidation waste water process for metal complexes, organic species and disinfection”, The American Institute of Chemical Engineers, 74 (1978) 228–242.
165.R. Barker and A.R. Jones, “Treatment of malodorants in air by the UV/ozone technique”, Ozone: Science and Engineering, 10 (1988) 405–418.
166.Y.S. Chiang, J. Craddock, D. Mickewich and J. Turkevich, “Study with fast-mixing techniques of the titanium (III) and hydrogen peroxide reaction”, Journal of Physical Chemistry, 70 (1966) 3509–3515.
167.R.B. Cundall, R. Rudham and M.S. Salim, “Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile”, Journal of the Chemical Society, Faraday Transactions I, 72 (1976) 1642–1651.
168.P. Meriaudeau and J.C. Vedrine, “Electron paramagnetic resonance investigation of oxygen photoadsorption and its reactivity with carbon monoxide on titanium dioxide: the O3-3 species”, Journal of the Chemical Society, Faraday Transactions II, 72 (1976) 472–480.
169.C.H. Hung and B.J. MariÑas, “Role of chlorine and Oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films”, Environmental Science Technology, 31 (1997) 562–568.
170.R.W. Legan, “Ultraviolet light takes on CPI roles”, Chemical Engineering, 89 (1982) 95–100.
171.A. Fujishima, T.N. Rao and D.A. Tryk, “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1–21.
172.T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, “Photo-electrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbiology Letters, 29 (1985) 211–214.
173.D.M. Blake, P.C. Maness, Z. Huang, E.J. Wolfrum and J. Huang, “Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells”, Separation and Purification Methods, 28 (1999) 1–50.
174.P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum and W.A. Jacoby, “Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism”, Applied and Environmental Microbiology, 65 (1999) 4094–4098.
175.C. Wei, W.Y. Lin, Z. Zainal, N.E. Williams, K.Zhu, A.P. Kruzic, R.L. Smith and K. Rajeshwar, “Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system”, Environmental Science and Technology, 28 (1994) 934–938.
176.W. Barthlott and C. Neinhuis, “Purity of the sacred lotus or escape from contamination in biological surfaces”, Planta, 202 (1997) 1–8.
177.A. Hata, Y. Kai, I. Yamanaka, H. Oosaki, K. Hirota and S. Yamazaki, “Development of hydrophilic outside mirror coated with titania photocatalyst”, JSAE Review, 21 (2000) 97–102.
178.T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima and K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass”, Thin Solid Films, 351 (1999) 260–263.
179.垰田博史 著,張晶、楊健 譯,光觸媒圖解,商周出版,2003。
180.G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, “Photoassisted hydrogen-production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, 77 (1994) 59–67.
181.S.N. Frank and A.J. Bard, “Heterogeneous photocatalytic oxidation of cyanide, sulphite in aqueous solutions at semiconductor powders”, Journal of Physical Chemistry, 81 (1977) 1484–1888.
182.K. Tennakone, “Semiconductor photocatalysis for life-support systems on the moon”, Journal of Photochemistry and Photobiology A: Chemistry, 71 (1993) 199–200.
183.R.W. Mattews, “Photooxidation of organic impurities in water using thin films of titanium dioxide”, Journal of Physical Chemistry, 91 (1987) 3328–3333.
184.K.E. Karakitsou and X.E. Verykios, “Influence of catalyst parameters and operational variables on the photocatalytic cleavage of water”, Journal of Catalysis, 134 (1992) 629–634.
185.K.E. Karakitsou and X.E. Verykios, “Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage”, Journal of Physical Chemical, 97 (1993) 1184–11889.
186.K.E. Karakitsou and X.E. Verykios, “Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts”, Journal of Catalysis, 152 (1995) 360–367.
187.T.N. Obee and R.T. Brown, “TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-Butadiene”, Environmental Science and Technology, 29 (1995) 1223–1231.
188.T.N. Obee, “Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor”, Environmental Science and Technology, 30 (1996) 3578–3584.
189.P. Pichat, J Disdier, C. Hoang-Van, D. Mas, G. Goutailler and C. Gaysse, “Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis”, Catalysis Today, 63 (2000) 363–369.
190.D. Byun, Y. Jin, B. Kim, J.K. Lee and D. Park, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials, B73 (2000) 199–206.
191.S. Gimeno, J.C. Muñoz and A. Lousa, “Deposition time influence on cubic boron nitride thin films by tuned rf magnetron sputtering”, Thin Solid Films, 317 (1998) 376–379.
192.J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder and A. Zmelty, “Some properties of TiO2 layers prepared by medium frequency reactive sputtering”, Surface and Coatings Technology, 112 (1999) 261–266.
193.O. Treichel and V. Kirchhoff, “The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass”, Surface and Coatings Technology, 123 (2000) 268–272.
194.P. Sawunyama, A. Yasumori and K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33 (1998) 795–801.
195.C.D. Valentine, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, “Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations”, Journal of Physical Chemistry B, 109 (2005) 11414–11419.
196.Z.C. Wang, U. Helmersson and P.O. Kall, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature”, Thin Solid Films, 405 (2002) 50–54.
197.R.A. Zoppi, B.C. Trasferetti and C.U. Davanzo, “Sol-gel titanium dioxide thin films on platinum substrates: Preparation and characterization”, Journal of Electroanalytical Chemistry, 544 (2003) 47–53.
198.J.X. Liua, D.Z. Yanga, F. Shi and Y.J. Cai, “Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement”, Thin Solid Films, 429 (2003) 225–230.
199.W.A. Jacoby, M.R. Nimlos and D.M. Blake, “Products, intermediates, mass balances, and reaction pathways for the oxidation of trichloroethylene in air via heterogeneous photocatalysis”, Environmental Science and Technology, 28 (1994) 1661–1668.
200.G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, “Photoassisted hydrogen-production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, 77 (1994) 59–67.
201.V.G. Bessergenev, R.J.F. Pereira, M.C. Mateus, I.V. Khmelinskii and D.A. Vasconcelos, “Study of physical and photocatalytic properties of titanium dioxide thin films prepared from complex precursors by chemical vapor deposition”, Thin Solid Films, 503 (2006) 29–39.
202.F.D. Duminica, F. Maury and F. Senocq, “Atmospheric pressure MOCVD of TiO2 thin films using various reactive gas mixtures”, Surface and Coatings Technology, 188–189 (2004) 255–259.
203.D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjinés, F. Lévy and V.I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering”, Applied Catalysis B-Environmental, 25 (2000) 83–92.
204.D.L. Smith, Thin-film Deposition: Principles and Practice, Boston: The McGraw-Hill Company Inc., 1995.
205.S. Meassick, C. Chan and R. Allen, “Thin film deposition techniques using the anodic vacuum arc”, Surface and Coatings Technology, 54–55 (1992) 343–354.
206.P.J. Martin, R.P. Netterfield, A. Bendavid and T.J. Kinder, “The deposition of thin films by filtered arc evaporation”, Surface and Coatings Technology, 54–55 (1992) 136–142.
207.K. Akari, H, Tamagaki, T. Kumakiri, K. Tsuji, E. S. Koh and C. N. Tai, “Reduction in macroparticles during the deposition of tin films prepared by arc ion plating”, Surface and Coatings Technology, 43/44 (1990) 312–323.
208.D.M. Sanders and E.A. Pyle, “Magnetic enhancement of cathodic arc deposition”, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 5 (1987) 2728–2731.
209.P.J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition, Thin Solid Films, 394 (2001) 1–15.
210.K. Miernil, J. Walkowicz and J. Bujak, “Design and performance of the microdroplet filtering system used in cathodic arc coating deposition”, Plasma and Ions, 3 (2000) 41–51.
211.M. Nishibori, “How to solve problems of films coated by arc methods”, Surface and Coatings Technology, 52 (1992) 229–233.
212.J.E. Daalder, “Diameter and current density of single and multiple cathode discharges in a vacuum”, IEEE Transactions on Power Apparatus and Systems, 6 (1974) 1747–1757.
213.趙浩勇、何主亮、陳克昌,“如何減少陰極電弧電漿沉積薄膜上的微粒”,表面技術雜誌,第153期,1995年,第75–89頁。
214.A. Bendavid, P.J. Martin, A. Jamting and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition”, Thin Solid Films, 355–356 (1999) 6–11.
215.B.K. Taya, Z.W. Zhao and D.H.C. Chua, “Review of metal oxide films deposited by filtered cathodic vacuum arc technique”, Materials Science and Engineering: R: Reports, 52 (2006) 1–48.
216.F. Zhang, X. Wang, C. Li, H. Wang, L. Chen and X. Liu, “Rutile-type titanium oxide films synthesized by filtered arc deposition”, Surface and Coatings Technology, 110 (1998) 136–139.
217.J.T. Chang, C.W. Su and J.L. He, “Photocatalytic TiO2 film prepared using arc ion plating”, Surface and Coatings Technology, 200 (2006) 3027–3034.
218.X. Li, J.K. Mishra, S.D. Seul, I. Kim and C.S. Ha, “Microstructure and properties of poly(butylenes terephthalate) based nanocomposites”, Composite Interfaces, 11 (2004) 335-346.
219.J.M. Margolis and G.D. Choi, Engineering Plastics Handbook, McGraw-Hill Professional Publishing, 2005.
220.ASTM D3363–05, “Standard test method for film hardness by pencil test”, American Society for Testing and Materials, Philadelphia, PA, 2005.
221.ASTM D3359–2, “Standard test method for measuring adhesion by tape test”, American Society for Testing and Materials, Philadelphia, PA, 2002.
222.C.J. Chung, H.I. Lin, P.Y. Hsieh, K.C. Chen, J.L. He, “Growth behavior and microstrutcture of arc ion plated titanium dioxide”, The International Conference on Metallurgical Coatings and Thin Films (ICMCTF), B5-2-3, April 27- May 01, 2009, San Diego, California, USA.
223.謝秉諺,鄒錫凱,鍾啟仁,何主亮,“電弧離子鍍二氧化鈦於塑膠基材之研究”, 2008中國材料科學學會年會,論文摘要集第209頁,海報展示第P06–95筆,2008年11月21~22日,台北科技大學。
224.H. Yumoto, S. Matsudo, K. Akashi, “Photocatalytic decomposition of NO2 on TiO2 films prepared by arc ion plating”, Vacuum, 65 (2002) 509–514.
225.J.F. Porter, Y. Li, C.K. Cahn, “The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2”, Journal of Materials Science, 34 (1999) 1523–1531.
226.K.M. Reddy, C.V.G. Reddy, S.V. Manorama, “Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase TiO2”, Journal of Solid State Chemistry, 158 (2001) 180–186.
227.J. Agrell, K. Hasselbo, K. Jansson, S.G. Järås and M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211 (2001) 239–250.
228.R.M. Alberici and W.F. Jardim, “Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide”, Applied Catalysis B: Environmental, 14 (1997) 55-68.
229.M.R. Rafael and C.M. Nelson, “Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene” Catalysis Today, 40 (1998) 353-365.
230.K. Kunimatsu and H. Kita, “Infrared spectroscopic study of methanol and formic acid absorbates on a platinum electrode: Part II. Role of the linear CO(a) derived from methanol and formic acid in thee electrocatalytic oxidation of CH3OH and HCOOH”, Journal of Electroanalytical Chemistry, 218 (1987) 155-172.
231.J.B. Goodenough, A. Hamnet, B.J. Kennedy and S. A. Weeks, “XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell”, Electrochim Acta, 32 (1998) 1233-1238.
232.R. Parsons and T. VanderNoot, “The oxidation of small organic molecules: A survey of recent fuel cell related research”, Journal of Electroanalytical Chemistry, 257 (1988) 9-45.
233.G. Li, S. Ciston, Z.V. Saponjic, L. Chen, N.M. Dimitrijevic, T. Rajh and K.A. Gray, “Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications”, Journal of Catalysis, 253 (2008) 105–110.
234.Q. Shen, K. Katayama, T. Sawada, M. Yamaguchi, Y. Kumagai and T. Toyoda, “Photoexcited hole dynamics in TiO2 nanocrystalline films characterized using a lens-free heterodyne detection transient grating technique”, Chemical Physics Letters, 419 (2006) 464–468.
235.L. Alejo, R. Lago, M.A. Pefia, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General, 162 (1997) 281-297.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top