(3.230.154.160) 您好!臺灣時間:2021/05/07 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳淑媛
研究生(外文):Shu-Yuan Wu
論文名稱:結合微弧氧化與鹼處理發展具有奈米形貌之二氧化鈦於鈦金屬及其染料敏化太陽電池之應用
論文名稱(外文):Combinatorial Micro-arc Oxidation and Post-alkali Treatment to Grow Nano-featured TiO2 on Titanium and Its Application in Dye-Sensitized Solar Cell
指導教授:陳克昌陳克昌引用關係何主亮何主亮引用關係
指導教授(外文):Keh-Chang ChenJu-Liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:132
中文關鍵詞:奈米多孔結構微弧處理染料敏化太陽電池鹼處理二氧化鈦
外文關鍵詞:Micro-arc oxidationAlkali treatmentTitaniumTiO2Dye-sensitized solar cellNano-porous
相關次數:
  • 被引用被引用:3
  • 點閱點閱:383
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
目前在太陽電池的領域中,一種新興元件-染料敏化太陽電池被發展出來之後,正面臨一個商品化的關鍵瓶頸,也就是製作具理想結構奈米多孔二氧化鈦電極材之困難性。二氧化鈦結構掌控著染料敏化太陽電池之轉換效率,如能以低製造成本的表面工程發展出理想的奈米多孔結構電極材,將會使染料敏化太陽電池獲得大幅的效能提昇並加速普及化。微弧氧化處理技術係於陽極金屬施加電壓使金屬表面發生電崩潰、融化、氣化、化學反應、擴散、凝固和相變化等物理化學過程,所形成的氧化膜具微米尺度之大量孔洞以及良好的附著性。藉由化學鹼處理及熱處理之後製程,進一步控制表面形態及結晶結構可使表面奈米化及提升結晶性。故本研究利用微弧處理於鈦金屬生長銳鈦礦相二氧化鈦多孔微米結構,結合化學鹼處理及熱處理後製程使表面進一步形成具有高比表面積的奈米多孔結晶結構以利於染料的吸收,成為理想的染料敏化太陽電池異質接面,期望提昇光電轉換效率。
本研究利用微弧氧化處理,在直流模式下改變放電電壓(300 V-500 V)及放電時間(10 min-90 min);在脈衝模式下改變脈衝頻率(100 Hz-4000 Hz)、放電時間(10 min-90 min)及脈衝占空比(1/9-8/2),於鈦金屬生長銳鈦礦相二氧化鈦薄膜並將微弧處理後的試片加以封裝成ITO glass/Pt/electrolyte (I2+LiI)/dye/TiO2/Ti反向架構之太陽電池元件,探討二氧化鈦奈米多孔結構之製程參數的變動對元件特性之影響。再從最高光電轉換效率所對應的微弧試片進行鹼處理使試片氧化層進一步獲得奈米形貌,探討鹼溶液溫度(20 oC-40 oC)、濃度(0.5 M-2.5 M NaOH)及浸泡時間(12 h-24 h)的影響。之後再於大氣中不同溫度(300 oC-500 oC)下進行熱處理,探討晶體結構的變化並藉以說明其光電轉換效率之變動。
研究結果顯示;以微弧氧化處理可製備出具有銳鈦礦相為主以及少量金紅石相結構之多孔微米尺度二氧化鈦薄膜。在直流電源模式中,當放電電壓提高和放電時間延長時,氧化膜之厚度隨之增大,但過大的放電電壓及放電時間會造成金紅石相含量提高、銳鈦礦相含量比例降低以及大孔洞的生成,故元件光電轉換效率隨微弧放電電壓先升後降,此一趨勢與提供染料吸附的氧化層總比表面積有關,最高可獲得0.061%的光電轉換效率。在脈衝電源模式中,當放電頻率增加時,氧化膜的銳鈦礦相含量提高,但厚度隨之下降,光電轉換效率先升後降,此仍是受染料吸收含量變化所致。脈衝占空比增加雖能增加膜厚,卻會使孔洞尺寸變大,導致光電轉換效率先升後降,最高可獲得0.078%的光電轉換效率。將微弧處理所得氧化膜進行鹼處理後,表面形態從微米尺度發展成奈米尺度,較高的鹼液溫度可獲得有相當深度的奈米片狀叢集形貌,但會伴隨裂痕的發生,導致電子-電洞再結合與電阻增加。經40 oC鹼處理12 h所獲得的奈米片狀叢集形貌,其光電轉換效率可達0.329%。藉由300 oC以上的後熱處理可促進二氧化鈦結晶性提昇,400 oC熱處理可得最高光電轉換效率2.194%。
Since the invention of the dye-sensitized solar cell (DSSC), it has reached a critical obstruction in commercialization due to the difficulty in manufacturing nano-featured TiO2 electrode with an ideal structure, which is also a key to higher efficiency of DSSC device. A simple and low cost surface engineering technique growing a nano-featured TiO2 electrode as the ideal electron emitter shall expand the promotion of commercial DSSC. Micro-arc oxidation (MAO) is developed recently which is based on the anodic oxidation, but running at a potential above the breakdown voltage of surface oxide layer on metal anodes. As the process through dielectric breakdown, melting, gasification, chemical reactions, diffusion, solidification and phase transformation, leaves an oxide layer on metal surface. This can produce a highly porous TiO2 coating onto titanium with pores in micrometer scale and still remain a good adherence with substrate. Besides, surface morphology and microstructure could be changed by means of different ways such as alkali treatment for developing nano-featured surface and heat treatment for crystallinity of oxide layer.
In this study, the porous anatase TiO2 layer was grown on the titanium plate by MAO. In the direct current (DC) mode, the discharge voltage was set from 300 V to 500 V with various oxidation times from 10 min to 90 min. In pulse mode, the unipolar voltage pulse waveform frequency from 100 Hz to 4000 Hz, duty cycle from 1/9 to 8/2 and oxidation time setting were 10 min to 90 min. Then the inversed-type ITO glass/Pt/electrolyte (I2+LiI)/dye/TiO2/Ti devices were assembled using above MAO specimens, respectively. The influence of the processing parameters on the associated microstructural change of MAO specimens assembled DSSC photovoltaic efficiency was investigated. Base on the DSSC with highest photovoltaic efficiency, the corresponding oxide specimen was treated in various alkali solutions with a concentration 0.5 M to 2.5 M NaOH solution, set temperature 20 oC to 40 oC and soaking time of 12 h to 24 h for further formation of nano-featured TiO2. Finally, a post-heat treatment at different temperatures was carried out for enhancing the crystallinity of oxides for better photovoltaic efficiency.
Experimental results show that a micrometer-scale porous crystalline TiO2 layer can be fabricated by MAO, which composed of predominantly anatase phase and minor rutile phase. In DC power mode, by increasing the discharge voltage and oxidation time, the thickness of oxide layer increases. However, the over discharge voltage and oxidation time leads to the decrease of anatase phase and larger pore size in oxide layer. It reduces the specific surface area of oxide layer for the dye adsorption. Therefore, the photovoltaic efficiency of assembled DSSC also increases to maximun of 0.061% then decrease with discharge voltage or oxidation time. In unipolar pulse power mode, the thickness of TiO2 layer decreases, but the fraction of rutile increases by increasing the pulse frequency, which makes the assembled devices present different photocurrent-voltage curves. The thickness of oxide layer increases with the duty cycle, but result in larger pore size in TiO2 layer. Thus, the photovoltaic efficiency of DSSC increased first to the maximum of 0.078% then decreased. After alkali treatment, the oxide surface exhibits numerous pores. Higher solution temperature could obtain a considerable depth of nano-flaky morphology. However, the formation of cracks in the oxide layer reduced the photovoltaic efficiency. Alkali treatment in 1.25 M NaOH solution for 12 h at 40 oC, the assemble device present a photovoltaic efficiency of 0.329%. Post-annealing at a temperature over 300 oC significantly enhances the formation of anatase phase in oxide. The ultimate photovoltaic efficiency 2.194% appears on the DSSC based on the TiO2 layer annealed at 400 oC.
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
總目錄...................................................Ⅴ
圖目錄...................................................Ⅶ
表目錄...................................................ΧI
符號說明................................................ΧII
第一章 前言.............................................1
第二章 文獻回顧.........................................3
2-1 太陽電池簡介..........................................3
2-1-1 太陽光譜............................................3
2-1-2 太陽電池的光伏效應..................................4
2-1-3 太陽電池的種類......................................6
2-2 染料敏化太陽電池......................................9
2-2-1 染料敏化太陽電池的基本結構及原理....................9
2-2-2 染料敏化太陽電池的電流電壓輸出特性.................20
2-2-3 染料敏化太陽電池的等效電路.........................22
2-2-4 染料敏化太陽電池的發展現況.........................23
2-3 二氧化鈦電極的發展及重要性...........................25
2-3-1 微弧氧化處理生長二氧化鈦薄膜.......................34
2-3-2 化學處理生長奈米多孔性二氧化鈦薄膜.................46
2-4 結合微弧氧化與鹼處理之研究動機.......................49
第三章 實驗方法與流程..................................50
3-1 試片準備及前處理.....................................51
3-2 微弧氧化處理製備多孔性二氧化鈦薄膜...................51
3-2-1 直流電源模式.......................................54
3-2-2 單極脈衝電源模式...................................54
3-3 化學鹼處理...........................................55
3-4 退火熱處理...........................................56
3-5 微觀形態觀察.........................................56
3-6 晶體結構分析.........................................57
3-7 太陽電池元件製作及光電轉換效率測試...................57
第四章 結果與討論......................................60
4-1 直流模式下生長二氧化鈦薄膜...........................60
4-1-1 放電電壓對二氧化鈦薄膜的微觀組織及光電轉換效率之影響.......................................................60
4-1-2 放電時間對二氧化鈦薄膜的微觀組織及光電轉換效率之影響.......................................................67
4-2 脈衝模式下生長二氧化鈦薄膜...........................73
4-2-1 頻率對二氧化鈦薄膜的微觀組織及光電轉換效率之影響...73
4-2-2 占空比對二氧化鈦薄膜的微觀組織及光電轉換效率之影響.80
4-2-3 放電時間對二氧化鈦薄膜的微觀組織及光電轉換效率之影響.......................................................87
4-3 二氧化鈦薄膜後鹼處理的微觀組織及光電轉換效率.........94
4-4 二氧化鈦薄膜後鹼處理及後熱處理的微觀組織及光電轉換效率......................................................101
第五章 結論...........................................104
參考文獻................................................106
誌謝....................................................116
1. M. Grätzel, “Powering the planet”, Nature, 403 (2000) 363.
2. J. Zhao, A.A. Wang, P.P. Altermatt, S.R. Wenham and M.A. Green, “24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research”, Solar Energy Materials and Solar Cells, 41-42 (1996) 87-99.
3. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737-740.
4. P. Liska, K.R. Thampi, M. Grätzel, D. Brémaud, D. Rudmann, H.M. Upadhyaya and A.N. Tiwari, “Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency”, Applied Physics Letters, 88 (2006) 203103.
5. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley and Sons, (2003) 663-700.
6. 蔡進譯,“超高效率太陽電池”,物理雙月刊,27 (2005) 701-719。
7. H.J. Möller, “Semiconductors for solar cells”, Artech House, 2 (1993) 21-23.
8. 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司,(1997)。
9. A. Suzuki, “High-efficiency silicon space solar cells”, Solar Energy Materials and Solar Cells, 50 (1998) 289-303.
10. H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida and T. Nunoi, “Polycrystalline silicon solar cells with V-grooved surface”, Solar Energy Materials and Solar Cells, 34 (1994) 219-225.
11. 李永龍,“多功能單相三線式光伏能量轉換系統之研究”,國立成功大學電機工程研究所碩士論文,(1999)。
12. S. Tsuda, S. Sakai and S. Nakano, “Recent progress in a-Si solar cells”, Applied Surface Science, 113-114 (1997) 734-740
13. J. Yang, “Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency”, 26th Pressure Vacuum Safety Valve, (1997) 563-568.
14. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fay, E. Vallat-Sauvain, L. Feitknecht, J. Dubail1 and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells”, Solar Energy Materials and Solar Cells, 74 (2002) 457-467.
15. P. Doshi, J. Mejia, K. Tate , S. Kamra, A. Rohatgi, S. Narayanan and R. Singh, “High-efficiency silicon solar cells by low-cost rapid thermal processing, screen-printing, and plasma-enhanced chemical vapor deposition”, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, (1996).
16. U. Malm and M. Edoff, “Simulating material inhomogeneities and defects in CIGS thin-film solar cells”, Progress in Photovoltaics: Research and Application, 17 (2009) 306-314.
17. K.W. Mitchell, C. Eberspacher, J.H. Ermer, K.L. Pauls and D.N. Pier, “CuInSe2 cells and modules”, IEEE Transaction on Electron Devices, 37 (1990) 410-417.
18. B. Dimmler, M. Powalla and H.W. Schock, “CIS-based thin-film photovoltaic modules: potential and prospects”, Progress in Photovoltaics: Research and Application, 10 (2002) 149-157.
19. A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews, 95 (1995) 49-68.
20. S. Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel and A.J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells”, Journal of Physical Chemistry B, 101 (1997) 2576-2582.
21. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Progress in Photovoltaics: Research and Applications, 11 (2003) 225-230.
22. M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid and Interface Science, 4 (1999) 314-321.
23. M.A. Green, K. Emery, Y. Hishikawa and W. Warta, “Solar cell efficiency tables (version 31)”, Progress in Photovoltaics: Research and Applications, 16 (2008) 61- 67.
24.http://www.nrel.gov/pv/thin_film/docs/kaz_best_research_cells.ppt
25. A. Hagfeldt and M Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews, 95 (1995) 49-68.
26. M Grätzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338-344.
27. B. Sun, A.V. Vorontsov and P.G. Smirniotis, “Role of platium deposited on TiO2 in phenol photocatalytic oxidation”, Langmuir, 19 (2003) 3151-3156.
28. V. Thavasi, V, Renugopalakrishnan, R. Jose and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials Science and Engineering R, 63 (2009) 81-99.
29. S. Gunes and N.S. Sariciftci, “Hydrid solar cell”, Inorganica Chimica Acta, 361 (2008) 581-588.
30. W. Kubo, S. Kambe and S. Nakade, “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes”, Journal of Physical Chemistry B, 107 (2003) 4374-4381.
31. W.J. Lee, E. Ramasamy, D.Y. Lee and J.S. Song, “Grid dye-sensitized solar cell module with carbon counter electrode”, Journal of Photochemistry and Photobiology, 194 (2008) 27-30.
32. 施永明,趙高淩,沈鴿,張溪文,翁文劍,杜丕一,韓高榮,“染料敏化納米薄膜太陽能電池的研究進展”,材料科學與工程,20 (2002) 125-128。
33. 張正華、李陵瘋、葉楚平、楊平華,有機與塑膠太陽電池,五南圖書出版股份有限公司,(2007) 26-28。
34. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, 177 (1998) 347-414.
35. P. M. Sommeling, M. Späth, J. Kroon, R. Kinderman and J. Van Roosmalen, “Flexible dye-sensitized nanocrystalline TiO2 solar cells”, ECN Solar Energy, (2000).
36. C. J. Barbe, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, Journal of the American Ceramic Society, 80 (1997) 3157-3171.
37. K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, K.G.U. Wijayantha and V.P.S. Perera, “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex”, Journal of Physics D: Applied Physics, 31 (1998) 1492-1496.
38. M.K. Nazeeruddin, P. Pëchy and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex”, Chemical Communications, 18 (1997) 1705-1706.
39. K. Hara, “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %”, Chemical Communications, (2001) 569-570.
40. H. Lindström, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist and A. Hagfeldt, “A new method for manufacturing nanostructured electrodes on plastic substrates”, Nano Letters, 1 (2001) 97-100.
41. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator”, Chemical Communications, (2002) 374-375.
42. 原浩二郎,“世界最高性能的有機色素增感太陽電池”,AIST Today, 122 (2002) 14.
43. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cell”, Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.
44. F. Robert, “Solar cells: Tricks for beating the heat help panels see the light”, Science, 300 (2003) 1219.
45. M. Spath, J. van Rossmalen, P. Sommeling, N. van der Burg, H. Smit, D. Mahieu, N. Bakker and J. Kroon, “Dye sensitized solar cells from laboratory scale to pre-pilot stage”, IEEE 3th World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003.
46. 蕭光宏,“二氧化鈦微結構對染料敏化太陽能電池光電效能的影響”,國立台灣大學化學系碩士論文,(2007)。
47. 蔡忠憲,“以二氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極”,國立成功大學化學工程學系碩士論文,(2004)。
48. 周誌宸,“改善染料敏化太陽能電池二氧化鈦工作電極之研究”,國立東華大學化學系碩士論文,(2006)。
49. 黃盈誠,“二氧化鈦工作電極與電解質化學組成對染料敏化太陽能電池之探討”,國立東華大學化學系碩士論文,(2007)。
50. 蔡瑞文,“染料敏化二氧化鈦電極特性之研究”,大同大學材料工程學系碩士論文,(2005)。
51. 劉同城,“以氧化水熱法製備奈米結構之二氧化鈦電極應用於染劑敏化電池”,大同大學材料工程學系碩士論文,(2006)。
52. Y. Bando, M. Zhang and K. Wada, “Sol-gel template preparation of TiO2 nanotubes and nanorods”, Journal of Materials Science Letters, 20 (2001) 167-170.
53. A. Hoess, N. Teuscher, A. Thormann, H, Aurich, A. Heilmann, “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes”, Acta Biomaterialia, 3 (2007) 43-55.
54. H. Imai, M. Matsuta, K. Shimizu, H. Hirashima and N. Negishi, “Preparation of TiO2 fibers with well-organized structures”, Journal of Materials Chemistry, 10 (2000) 2005-2006.
55. P. Sawunyama, A. Yasumori and K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33 (1998) 795-801.
56. J. W. Galusha, C.K. Tsung, G.D. Stucky and M.H. Bartl, “Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals”, Chemistry of Materials, 20 (2008) 4925-4930.
57. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube”, Longmuir, 14 (1998) 3160-3163.
58. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Titania nanotubes prepared by chemical processing”, Advanced Materials, 11 (1999) 1307-1311.
59. B. Liu and S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conduction substrates for dye-sensitized solar cell”, Journal of the American Society, 131 (2009) 3985-3990.
60. 徐明義,“模板式生長二氧化鈦奈米管之染料敏化太陽能電池研究”,逢甲大學材料科學研究所碩士論文,(2006)。
61. M. Gómez, E. Magnusson, E. Olsson, A. Hagfeldt, S.E. Lindquist and C.G. Granqvist, “Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness”, Solar Energy Materials and Solar Cells, 62 (2000) 269-263.
62. D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjinés, F. Lévy and V.I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering”, Applied Catalysis B: Environmental, 25 (2000) 83-92.
63. P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate”, Surface and Coatings Technology, 153 (2002) 93-99.
64. D. Byun, Y. Jin, B. Kim, J.K. Lee and D. Park, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials, 73 (2000) 199-206.
65. D.R. Burgess, P.A.M. Hotsenpiller, T.J. Anderson and J.L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2”, Journal of Crystal Growth, 166 (1996) 763-768.
66. 李幸芳,“微弧生長銳鈦礦氧化鈦薄膜於鈦金屬板及其敏化太陽電池效能之研究”,逢甲大學材料科學研究所碩士論文,2007。
67. S.Y. Wu, W.C. Lo, K.C. Chen and J.L. He, "Study on the preparation of nano-flaky anatase titania films and photovoltaic application", Renewable Energy International Conference and Exhibition, P-PV-087, (2008).
68. W. Song, W. Xiaohong, Q. Wei and J. Zhaohua, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell”, Electrochimica Acta, 53 (2007) 1883-1889.
69. 陳震閎,“透明導電玻璃生長二氧化鈦奈米管陣列應用於敏化太陽電池”,逢甲大學材料科學研究所碩士論文,(2008)。
70. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties and solar energy applications”, Solar Energy Materials and Solar Cells, 90 (2006) 2011-2075.
71. B.Y. Yu, A. Tsai, S.P. Tsai, K.T. Wong, Y. Yang, C.W. Chu and J.J. Shyue, “Efficient inverted solar cells using TiO2 nanotube arrays”, Nanotechnology, 19 (2008) 255202.
72. D. Wei, Y. Zhou, D. Jia and Y. Wang, “Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications”, Acta Biomaterialia, 254 (2008) 1775-1782.
73. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, 122 (1999) 73-93.
74. X. Liu, P.K. Chu and C. Ding, “Surface modification of titanium, titanium alloys and related materials for biomedical applications”, Materials Science and Engineering R, 47 (2004) 49-121.
75. J.W. Schultze and M.M. Lohrengel, “Stability, reactivity and breakdown of passive films. Problems of recent and future research”, Electrochimica Acta, 45 (2000) 2499-2513.
76. D. Wei, Y. Zhou, D. Jia and Y. Wang, “Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment”, Acta Biomaterialia, 3 (2007) 817-827.
77. 陳賢德、蕭景鴻、龍涵澐、鍾啟仁、湯智昕、陳克昌、何主亮,“微弧氧化處理β鈦合金之結構鑑定及其骨母細胞相容性”,生物醫學工程年會暨科技研討,B-013,(2008) 19-20。
78. F. Jaspard-Mecuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola and J. Beauvir, “Tailored aluminium oxide layers by bipolar current adjustment in the plasma electrolytic oxidation (PEO) process”, Surface and Coating Technology, 201 (2007) 8677-8682.
79. E. Matykina, A. Berkani, P. Skeldon and G.E. Thompson, “Real-time imaging of coating growth during plasma electrolytic oxidation of titanium”, Electrochimica Acta, 53 (2007) 1987-1994.
80. J.B. Wang, H.H. Wu, Q.J. Li, Z.K. Li, G.R. Gu, X.Y. Lu, W.T. Zheng and Z. S. Jin, “Characteristics of grain growth of microarc oxidation coatings on pure titanium”, Chinese Physics, 14 (2005) 2598-2601.
81. I. Han, J.H. Choi, B.H. Zhao, H.K. Baik and I.S. Lee, “Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform”, Surface and Coating Technology, 201 (2007) 5533-5536.
82. L. Wan, J.F. Li, W. Sun and Z.Q. Mao, “Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation”, Materials Science and Engineering B, 139 (2007) 216-220.
83. A. Afshar and M.R. Vaezi, “Evaluation of electrical breakdown of anodic films on titanium in phosphate-base solutions”, Surface and Coating Technology, 186 (2004) 398-404.
84. F. Jin, P.K. Chu, K. Wang, J. Zhao, A. Huang and H. Tong, “Thermal stability of titania films prepared on titanium by micro-arc oxidation”, Materials Science and Engineering A, 476 (2008) 78-82.
85. Y. Han, S.H. Hong and K.W. Xu, “Porous nanocrystalline titania films by plasma electrolytic oxidation”, Surface and Coating Technology, 154 (2002) 314-318.
86. D. Wei, Y. Zhou, D. Jia and Y. Wang, “Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films”, Materials Chemistry and Physics, 104 (2007) 177-182.
87. Y. Wang, B. Jiang, T. Lei and L. Guo, “Dependence of growth features of micro-arc oxidation coatings of titanium alloy on control modes of alternate pulse”, Material Letters, 58 (2004) 1907-1911.
88. G.H. Lu, H. Chen, W.C. Ga, L. Li, E.W. Niu, X.H. Zhang and S.Z. Yang, “Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology”, Journal of Materials Processing Technology, 208 (2008) 9-13.
89. Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei and B.L. Jiang, “Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al2V alloy”, Materials Chemistry and Physics, 90 (2005) 128-133.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔