1. M. Grätzel, “Powering the planet”, Nature, 403 (2000) 363.
2. J. Zhao, A.A. Wang, P.P. Altermatt, S.R. Wenham and M.A. Green, “24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research”, Solar Energy Materials and Solar Cells, 41-42 (1996) 87-99.
3. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737-740.
4. P. Liska, K.R. Thampi, M. Grätzel, D. Brémaud, D. Rudmann, H.M. Upadhyaya and A.N. Tiwari, “Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency”, Applied Physics Letters, 88 (2006) 203103.
5. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley and Sons, (2003) 663-700.
6. 蔡進譯,“超高效率太陽電池”,物理雙月刊,27 (2005) 701-719。
7. H.J. Möller, “Semiconductors for solar cells”, Artech House, 2 (1993) 21-23.
8. 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司,(1997)。
9. A. Suzuki, “High-efficiency silicon space solar cells”, Solar Energy Materials and Solar Cells, 50 (1998) 289-303.
10. H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida and T. Nunoi, “Polycrystalline silicon solar cells with V-grooved surface”, Solar Energy Materials and Solar Cells, 34 (1994) 219-225.
11. 李永龍,“多功能單相三線式光伏能量轉換系統之研究”,國立成功大學電機工程研究所碩士論文,(1999)。12. S. Tsuda, S. Sakai and S. Nakano, “Recent progress in a-Si solar cells”, Applied Surface Science, 113-114 (1997) 734-740
13. J. Yang, “Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency”, 26th Pressure Vacuum Safety Valve, (1997) 563-568.
14. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fay, E. Vallat-Sauvain, L. Feitknecht, J. Dubail1 and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells”, Solar Energy Materials and Solar Cells, 74 (2002) 457-467.
15. P. Doshi, J. Mejia, K. Tate , S. Kamra, A. Rohatgi, S. Narayanan and R. Singh, “High-efficiency silicon solar cells by low-cost rapid thermal processing, screen-printing, and plasma-enhanced chemical vapor deposition”, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, (1996).
16. U. Malm and M. Edoff, “Simulating material inhomogeneities and defects in CIGS thin-film solar cells”, Progress in Photovoltaics: Research and Application, 17 (2009) 306-314.
17. K.W. Mitchell, C. Eberspacher, J.H. Ermer, K.L. Pauls and D.N. Pier, “CuInSe2 cells and modules”, IEEE Transaction on Electron Devices, 37 (1990) 410-417.
18. B. Dimmler, M. Powalla and H.W. Schock, “CIS-based thin-film photovoltaic modules: potential and prospects”, Progress in Photovoltaics: Research and Application, 10 (2002) 149-157.
19. A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews, 95 (1995) 49-68.
20. S. Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel and A.J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells”, Journal of Physical Chemistry B, 101 (1997) 2576-2582.
21. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Progress in Photovoltaics: Research and Applications, 11 (2003) 225-230.
22. M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid and Interface Science, 4 (1999) 314-321.
23. M.A. Green, K. Emery, Y. Hishikawa and W. Warta, “Solar cell efficiency tables (version 31)”, Progress in Photovoltaics: Research and Applications, 16 (2008) 61- 67.
24.http://www.nrel.gov/pv/thin_film/docs/kaz_best_research_cells.ppt
25. A. Hagfeldt and M Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews, 95 (1995) 49-68.
26. M Grätzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338-344.
27. B. Sun, A.V. Vorontsov and P.G. Smirniotis, “Role of platium deposited on TiO2 in phenol photocatalytic oxidation”, Langmuir, 19 (2003) 3151-3156.
28. V. Thavasi, V, Renugopalakrishnan, R. Jose and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials Science and Engineering R, 63 (2009) 81-99.
29. S. Gunes and N.S. Sariciftci, “Hydrid solar cell”, Inorganica Chimica Acta, 361 (2008) 581-588.
30. W. Kubo, S. Kambe and S. Nakade, “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes”, Journal of Physical Chemistry B, 107 (2003) 4374-4381.
31. W.J. Lee, E. Ramasamy, D.Y. Lee and J.S. Song, “Grid dye-sensitized solar cell module with carbon counter electrode”, Journal of Photochemistry and Photobiology, 194 (2008) 27-30.
32. 施永明,趙高淩,沈鴿,張溪文,翁文劍,杜丕一,韓高榮,“染料敏化納米薄膜太陽能電池的研究進展”,材料科學與工程,20 (2002) 125-128。
33. 張正華、李陵瘋、葉楚平、楊平華,有機與塑膠太陽電池,五南圖書出版股份有限公司,(2007) 26-28。
34. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, 177 (1998) 347-414.
35. P. M. Sommeling, M. Späth, J. Kroon, R. Kinderman and J. Van Roosmalen, “Flexible dye-sensitized nanocrystalline TiO2 solar cells”, ECN Solar Energy, (2000).
36. C. J. Barbe, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, Journal of the American Ceramic Society, 80 (1997) 3157-3171.
37. K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, K.G.U. Wijayantha and V.P.S. Perera, “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex”, Journal of Physics D: Applied Physics, 31 (1998) 1492-1496.
38. M.K. Nazeeruddin, P. Pëchy and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex”, Chemical Communications, 18 (1997) 1705-1706.
39. K. Hara, “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %”, Chemical Communications, (2001) 569-570.
40. H. Lindström, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist and A. Hagfeldt, “A new method for manufacturing nanostructured electrodes on plastic substrates”, Nano Letters, 1 (2001) 97-100.
41. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator”, Chemical Communications, (2002) 374-375.
42. 原浩二郎,“世界最高性能的有機色素增感太陽電池”,AIST Today, 122 (2002) 14.
43. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cell”, Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.
44. F. Robert, “Solar cells: Tricks for beating the heat help panels see the light”, Science, 300 (2003) 1219.
45. M. Spath, J. van Rossmalen, P. Sommeling, N. van der Burg, H. Smit, D. Mahieu, N. Bakker and J. Kroon, “Dye sensitized solar cells from laboratory scale to pre-pilot stage”, IEEE 3th World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003.
46. 蕭光宏,“二氧化鈦微結構對染料敏化太陽能電池光電效能的影響”,國立台灣大學化學系碩士論文,(2007)。47. 蔡忠憲,“以二氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極”,國立成功大學化學工程學系碩士論文,(2004)。48. 周誌宸,“改善染料敏化太陽能電池二氧化鈦工作電極之研究”,國立東華大學化學系碩士論文,(2006)。49. 黃盈誠,“二氧化鈦工作電極與電解質化學組成對染料敏化太陽能電池之探討”,國立東華大學化學系碩士論文,(2007)。50. 蔡瑞文,“染料敏化二氧化鈦電極特性之研究”,大同大學材料工程學系碩士論文,(2005)。51. 劉同城,“以氧化水熱法製備奈米結構之二氧化鈦電極應用於染劑敏化電池”,大同大學材料工程學系碩士論文,(2006)。52. Y. Bando, M. Zhang and K. Wada, “Sol-gel template preparation of TiO2 nanotubes and nanorods”, Journal of Materials Science Letters, 20 (2001) 167-170.
53. A. Hoess, N. Teuscher, A. Thormann, H, Aurich, A. Heilmann, “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes”, Acta Biomaterialia, 3 (2007) 43-55.
54. H. Imai, M. Matsuta, K. Shimizu, H. Hirashima and N. Negishi, “Preparation of TiO2 fibers with well-organized structures”, Journal of Materials Chemistry, 10 (2000) 2005-2006.
55. P. Sawunyama, A. Yasumori and K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33 (1998) 795-801.
56. J. W. Galusha, C.K. Tsung, G.D. Stucky and M.H. Bartl, “Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals”, Chemistry of Materials, 20 (2008) 4925-4930.
57. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube”, Longmuir, 14 (1998) 3160-3163.
58. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Titania nanotubes prepared by chemical processing”, Advanced Materials, 11 (1999) 1307-1311.
59. B. Liu and S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conduction substrates for dye-sensitized solar cell”, Journal of the American Society, 131 (2009) 3985-3990.
60. 徐明義,“模板式生長二氧化鈦奈米管之染料敏化太陽能電池研究”,逢甲大學材料科學研究所碩士論文,(2006)。61. M. Gómez, E. Magnusson, E. Olsson, A. Hagfeldt, S.E. Lindquist and C.G. Granqvist, “Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness”, Solar Energy Materials and Solar Cells, 62 (2000) 269-263.
62. D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjinés, F. Lévy and V.I. Pârvulescu, “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering”, Applied Catalysis B: Environmental, 25 (2000) 83-92.
63. P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate”, Surface and Coatings Technology, 153 (2002) 93-99.
64. D. Byun, Y. Jin, B. Kim, J.K. Lee and D. Park, “Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials, 73 (2000) 199-206.
65. D.R. Burgess, P.A.M. Hotsenpiller, T.J. Anderson and J.L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2”, Journal of Crystal Growth, 166 (1996) 763-768.
66. 李幸芳,“微弧生長銳鈦礦氧化鈦薄膜於鈦金屬板及其敏化太陽電池效能之研究”,逢甲大學材料科學研究所碩士論文,2007。67. S.Y. Wu, W.C. Lo, K.C. Chen and J.L. He, "Study on the preparation of nano-flaky anatase titania films and photovoltaic application", Renewable Energy International Conference and Exhibition, P-PV-087, (2008).
68. W. Song, W. Xiaohong, Q. Wei and J. Zhaohua, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell”, Electrochimica Acta, 53 (2007) 1883-1889.
69. 陳震閎,“透明導電玻璃生長二氧化鈦奈米管陣列應用於敏化太陽電池”,逢甲大學材料科學研究所碩士論文,(2008)。70. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties and solar energy applications”, Solar Energy Materials and Solar Cells, 90 (2006) 2011-2075.
71. B.Y. Yu, A. Tsai, S.P. Tsai, K.T. Wong, Y. Yang, C.W. Chu and J.J. Shyue, “Efficient inverted solar cells using TiO2 nanotube arrays”, Nanotechnology, 19 (2008) 255202.
72. D. Wei, Y. Zhou, D. Jia and Y. Wang, “Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications”, Acta Biomaterialia, 254 (2008) 1775-1782.
73. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, 122 (1999) 73-93.
74. X. Liu, P.K. Chu and C. Ding, “Surface modification of titanium, titanium alloys and related materials for biomedical applications”, Materials Science and Engineering R, 47 (2004) 49-121.
75. J.W. Schultze and M.M. Lohrengel, “Stability, reactivity and breakdown of passive films. Problems of recent and future research”, Electrochimica Acta, 45 (2000) 2499-2513.
76. D. Wei, Y. Zhou, D. Jia and Y. Wang, “Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment”, Acta Biomaterialia, 3 (2007) 817-827.
77. 陳賢德、蕭景鴻、龍涵澐、鍾啟仁、湯智昕、陳克昌、何主亮,“微弧氧化處理β鈦合金之結構鑑定及其骨母細胞相容性”,生物醫學工程年會暨科技研討,B-013,(2008) 19-20。
78. F. Jaspard-Mecuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola and J. Beauvir, “Tailored aluminium oxide layers by bipolar current adjustment in the plasma electrolytic oxidation (PEO) process”, Surface and Coating Technology, 201 (2007) 8677-8682.
79. E. Matykina, A. Berkani, P. Skeldon and G.E. Thompson, “Real-time imaging of coating growth during plasma electrolytic oxidation of titanium”, Electrochimica Acta, 53 (2007) 1987-1994.
80. J.B. Wang, H.H. Wu, Q.J. Li, Z.K. Li, G.R. Gu, X.Y. Lu, W.T. Zheng and Z. S. Jin, “Characteristics of grain growth of microarc oxidation coatings on pure titanium”, Chinese Physics, 14 (2005) 2598-2601.
81. I. Han, J.H. Choi, B.H. Zhao, H.K. Baik and I.S. Lee, “Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform”, Surface and Coating Technology, 201 (2007) 5533-5536.
82. L. Wan, J.F. Li, W. Sun and Z.Q. Mao, “Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation”, Materials Science and Engineering B, 139 (2007) 216-220.
83. A. Afshar and M.R. Vaezi, “Evaluation of electrical breakdown of anodic films on titanium in phosphate-base solutions”, Surface and Coating Technology, 186 (2004) 398-404.
84. F. Jin, P.K. Chu, K. Wang, J. Zhao, A. Huang and H. Tong, “Thermal stability of titania films prepared on titanium by micro-arc oxidation”, Materials Science and Engineering A, 476 (2008) 78-82.
85. Y. Han, S.H. Hong and K.W. Xu, “Porous nanocrystalline titania films by plasma electrolytic oxidation”, Surface and Coating Technology, 154 (2002) 314-318.
86. D. Wei, Y. Zhou, D. Jia and Y. Wang, “Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films”, Materials Chemistry and Physics, 104 (2007) 177-182.
87. Y. Wang, B. Jiang, T. Lei and L. Guo, “Dependence of growth features of micro-arc oxidation coatings of titanium alloy on control modes of alternate pulse”, Material Letters, 58 (2004) 1907-1911.
88. G.H. Lu, H. Chen, W.C. Ga, L. Li, E.W. Niu, X.H. Zhang and S.Z. Yang, “Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology”, Journal of Materials Processing Technology, 208 (2008) 9-13.
89. Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei and B.L. Jiang, “Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al2V alloy”, Materials Chemistry and Physics, 90 (2005) 128-133.