跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/15 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林郁斌
研究生(外文):Yu-Bin Lin
論文名稱:濺鍍氧化鈮薄膜應用於電致色變元件之固態電解質
論文名稱(外文):Sputter Deposited Niobium Oxide Thin Film for Solid State Electrolyte in Elecrochromic Device
指導教授:何主亮何主亮引用關係
指導教授(外文):Ju-Liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:氧化鈮固態電解質反應性磁控濺鍍電致色變離子傳導層
外文關鍵詞:niobium oxidesolid electrolyteelectrochromicion conductive layerreactive magnetron sputter deposition
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1940
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:0
近年來無機氧化物高度被考慮取代以往的有機高分子,用於電致色變元件的離子傳導層。從而使電致色變元件有較高的導離子性、環境耐候性及較長循環壽命。其中常用Ta2O5作為離子傳導層雖然具有低堆積密度、高離子傳導性、高光學穿透率、高介電常數、良好的化學與熱穩定性等優點,卻由於其價格昂貴從而有商品化之困難。相較於常見的氧化鈮光學鍍膜不僅具有良好的離子傳導率和光學穿透率,價格比鉭靶更便宜,故本研究採用反應性磁控濺鍍法,以鈮金屬靶材製備氧化鈮無機固態電解質,搭配常用的氧化鎢作為電致色變層,探討施鍍參數中的氧氬流量比(控制相同厚度)及薄膜厚度(由沉積時間來控制)對於氧化鈮之微觀組織的影響,以及Glass/ITO/WO3/Nb2O5半元件在過氯酸鋰+碳酸丙烯溶液中之電致色變特性的影響。
實驗結果顯示:不同氧氬流量比所沉積之氧化鈮薄膜,皆屬於X-ray非晶質結構,由XPS分析得到薄膜成份為Nb2O5。當氧氬流量比介於5%及10%較低的氧氬流量比時,經由折射率計算及輔以微觀形貌的觀察得知生成的氧化鈮薄膜較疏鬆,可提供離子嵌入及嵌出的傳輸路徑,因而具有較佳的離子傳導能力,循環伏安分析可得到最大的滯環面積。在氧氬流量比10%時出現最低的鍍膜折射率及對應的離子傳導能力。當氧氬流量比為20%及40%時,因受靶中毒影響,鍍膜沉積速率逐漸降低而生成較為緻密的氧化鈮薄膜,也因此離子傳導能力逐漸降低。故而當10%之氧氬流量比所得氧化鈮薄膜具有最大的著、去色之起始電流,分別為25.3 mA與53.5 mA、最短的響應時間6秒與2秒、最高的著、去色之離子導電度2.1×10-7 S/cm與4.5×10-7 S/cm、最高的著、去色穿透率(�幅=62.0%)。
以上獲得最適化氧氬流量比之後,改變沉積時間來檢討氧化鈮薄膜厚度。結果顯示鍍膜皆屬於X-ray非晶質結構,藉由XPS分析得知薄膜成份均為Nb2O5。當薄膜厚度由100 nm提升至200 nm時其薄膜晶粒尺寸也隨之提升,超過200 nm之後一直到500 nm時並沒有太大的改變。是故200 nm薄膜厚度所製備之氧化鈮薄膜展現最佳的電致色變特性,分別可得最大的著、去色起始點電流27.0 mA與58.0 mA、最短的響應時間5秒與1秒及著、去色穿透度可達65.9%。
Recently, the inorganic oxide used as ion conducting layer of electrochromic device replaced the commonly used organic polymer layer had been arose much attention. This enables the electrochromic device to have high ion conductivity property, weather-resistance and longer cyclic lifetime. It is true that the tantalum oxide would also give such advantages as low packing density, high ionic conductivity, high optic transmittance, high dielectric constant, good chemical stability and thermostability. However, it would be failed for its high expensive price and difficult in commercialization. Compared with tantalum oxide, niobium oxide which usually used in optical coating would give the excellent ionic conductivity, high optic transmittance and the price of niobium target is inexpensive. Thus, niobium metal was introduced into reactive magnetron sputter deposition as a target source for fabricating inorganic niobium oxide solid state electrolyte as electrolyte layer and used tungsten oxide as active electrochromic layer in this study. Furthermore, the influence of the oxygen-to-argon flow ratio (at a constant film thickness) and film thickness (controlled by deposition time) of niobium oxide toward its film microstructure and electrochromic characteristic of Glass/ITO/WO3/Nb2O5 half device immersed in the solution of Lithium perchlorate and propylene carbonate were also discussed.
The results indicated that the X-ray amorphous film was contributed by means of different O2/(Ar+O2) flow ratio. It presented stoicheometrical Nb2O5 as identified by XPS analysis. The relatively low O2/(Ar+O2) flow ratio (5%-10%) would deposit films with less-dense structure which provide sufficient transporting pathway and thereby excellent ionic conducting ability for ionic insertion and extraction (as also explicated by the cyclic voltametry measurement where the hysteresis loop area represents the ionic conducting ability of Nb2O5). By refractive index measurement of the deposited films, it appeared a lowest refractive index and maximum porosity for the film deposited at 10% O2/(Ar+O2) flow ratio. On the other side, the relative high O2/(Ar+O2) for 20% and 40% would lead to much dense Nb2O5 films. As a consequence, the maximum initial coloring (25.3 mA) and bleaching current (53.5 mA), shortest coloring time (6 s) and bleaching response time (2 s), highest coloring and bleaching ionic conductivity (2.1×10-7 S/cm and 4.5×10-7 S/cm), highest coloring and bleaching transmittance change (62.0%), respectively can be obtained for the film deposited at O2/(Ar+O2) of 10%.
Once O2/(Ar+O2) has been ultimately achieved, the deposited Nb2O5 film with different thicknesses were further evaluated. The results showed that X-ray amorphous structure and an Nb2O5 stoichemetry of the deposited films are also obtained. Grain size of the deposited Nb2O5 films is increased well until the film thickness is up to 200 nm, over which remains unchanged until 500 nm. Above all, Nb2O5 film thickness with 200 nm would perform the best electrochromic ability acquiring the largest initial coloring current (27.0 mA), bleaching current (58.0 mA), shortest response time (5 s for coloring, 1 s for bleaching) and optical transmittance change (65.9%), respectively.
總目錄
中文摘要 I
英文摘要 III
總目錄 V
圖目錄 VII
表目錄 XI
第一章 前言 1
第二章 文獻回顧 5
2-1電致色變簡介 5
2-2電致色變原理及各層之功能 7
2-2-1透明導電層 10
2-2-2電致色變層-氧化鎢薄膜 10
2-2-3離子傳導層(電解質層) 14
2-2-4輔助變色層 17
2-3電致色變元件中之固態電解質層發展現況 18
2-3-1電致色變元件中之有機固態電解質 18
2-3-2電致色變元件中之無機固態電解質 22
2-4電致色變元件中之氧化鈮固態電解質 27
2-5研究動機 29
第三章 研究方法與流程 30
3-1實驗流程 30
3-2濺鍍設備 31
3-3半元件製備程序 32
3-3-1基材前處理 32
3-3-2氧化鎢電致色變層之製備 32
3-3-3氧化鈮固態電解質層之製備 33
3-4氧化鈮薄膜及半元件特性之分析與測試 37
3-4-1 晶體結構分析 37
3-4-2 化學組成分析 37
3-4-3 微觀形貌觀察 38
3-4-4 階梯電位響應分析 38
3-4-5 光學特性分析 39
3-4-6 循環伏安曲線分析 40
第四章 結果與討論 41
4-1 氧氬流量比對氧化鈮薄膜之微觀組織與電致色變特性的影響
41
4-1-1 反應濺鍍速率、靶材電壓及試片外觀 41
4-1-2 微觀組織 45
4-1-3 晶體結構 47
4-1-4 化學組成 48
4-1-5 著、去色之階梯響應電位及響應時間 52
4-1-6 著、去色之穿透率變化(�幅)及光學密度差(�嵌D) 55
4-1-7 半元件循環伏安曲線特性 58
4-2 薄膜厚度對氧化鈮薄膜之微觀組織與電致色變特性的影響 61
4-2-1 微觀組織 61
4-2-2 晶體結構 64
4-2-3 化學組成 65
4-2-4 著、去色之階梯響應電位及響應時間 69
4-2-5 著、去色之穿透率變化(�幅)及光學密度差(�嵌D) 72
4-2-6 半元件循環伏安曲線特性 75
第五章 結論 78
參考文獻 80
誌謝 93
圖目錄
圖1-1 四種不同電致色變應用示意圖(a)散射、(b)反射、(c)穿透及(d)吸收 2
圖1-2 智慧型窗戶(a)去色及(b)著色 3
圖1-3 (a)調節入射光的車窗及(b)汽車防眩後視鏡 3
圖1-4 利用電致色變特性做為顯示之應用(a)圖案顯示器及(b)數字顯示器 4
圖2-1 (a)穿透式裝置之電致色變元件及(b)反射式裝置之電致色變元件 6
圖2-2 具有電致色變層特性的氧化物之過渡金屬元素 8
圖2-3 傳統典型的電致色變元件示意圖 9
圖2-4 電致色變材料之(a)著色及(b)去色示意圖 13
圖2-5 (a)Ta金屬價格及(b)Nb金屬價格 29
圖3-1 實驗流程圖 30
圖3-2 反應性磁控濺鍍系統之(a)設備示意圖、(b)設備外觀及(c)靶座相對於基材座之空間配置情形 31
圖3-3 沉積氧化鎢電致色變層前之試片外觀 32
圖3-4 多功能磁控濺鍍系統 33
圖3-5 工作壓力為(a)1 mTorr及(b)10 mTorr之氧化鈮薄膜SEM截面圖 34
圖3-6 結構為Glass/ITO/WO3/Nb2O5半元件置於恆電位儀系統示意圖 35
圖3-7 多功能薄膜X光繞射儀 37
圖3-8 冷場發射掃描式電子顯微鏡 38
圖3-9 可見紫外光光譜儀 40
圖4-1 氧氬流量比對於氧化鈮薄膜沉積速率之影響 43
圖4-2 氧氬流量比對於靶材電壓之影響 43
圖4-3 改變氧氬流量比,製備氧化鈮所得之Glass/ITO/WO3/Nb2O5半元件之試片外觀(a)0%、(b)1%、(c)2%、(d)3%、(e)4%、(f)5%、(g)10%、(h)20%及(i)40% 44
圖4-4 氧化鈮薄膜厚度為500 nm時,氧氬流量比為(a)5%、(b)10%、(c)20%及(d)40% 之Glass/ITO/WO3/Nb2O5半元件的SEM橫截面圖 45
圖4-5 氧化鈮薄膜厚度為500 nm時,氧氬流量比為(a)5%、(b)10%、(c)20%及(d)40%之Glass/ITO/WO3/Nb2O5半元件的SEM表面型態圖 46
圖4-6 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,沉積氧化鈮薄膜於玻璃(Glass/Nb2O5)之XRD繞射圖形 47
圖4-7 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜之XPS Nb 3d能譜圖 49
圖4-8 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜之XPS O 1s能譜圖 49
圖4-9 氧化鈮薄膜厚度為500 nm時,氧氬流量比為(a)5%、(b)10%、(c)20%及(d)40%製備氧化鈮薄膜之XPS Nb 3d 能譜經高斯函數分解圖 50
圖4-10 氧化鈮薄膜厚度為500 nm時,氧氬流量比為(a)5%、(b)10%、(c)20%及(d)40%製備氧化鈮薄膜之XPS O 1s能譜經高斯函數分解圖 51
圖4-11 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜所得Glass/ITO/WO3/Nb2O5半元件之(a)著色及(b)去色階梯電位響應圖 53
圖4-12 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜所得Glass/ITO/WO3/Nb2O5半元件之響應時間圖 53
圖4-13 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜之離子導電度 54
圖4-14 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜之折射率 54
圖4-15 氧化鈮薄膜厚度為500 nm時,氧氬流量比為(a)5%、(b)10%、(c)20%及(d)40% 之Glass/ITO/WO3/Nb2O5半元件的可見紫外光譜圖及試片外觀 56
圖4-16 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜所得Glass/ITO/WO3/Nb2O5半元件之特定波長(550 nm)之著、去色穿透率變化量(�幅) 57
圖4-17 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜所得Glass/ITO/WO3/Nb2O5半元件之光學密度差(�嵌D) 57
圖4-18 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜所得Glass/ITO/WO3/Nb2O5半元件之循環伏安曲線 59
圖4-19 氧氬流量比為10%時,氧化鈮薄膜厚度為(a)100 nm、(b)200 nm、(c)300 nm、(d)400 nm及(e)500 nm之Glass/ITO/WO3/ Nb2O5半元件的SEM橫截面圖 62
圖4-20 氧氬流量比為10%時,氧化鈮薄膜厚度為(a)100 nm、(b)200 nm、(c)300 nm、(d)400 nm及(e)500 nm之Glass/ITO/WO3/ Nb2O5半元件的表面型態圖 63
圖4-21 改變薄膜厚度沉積於玻璃(Glass/Nb2O5)之XRD繞射圖 64
圖4-22 氧氬流量比為10%時,改變氧化鈮薄膜厚度之XPS Nb 3d能譜圖 66
圖4-23 氧氬流量比為10%時,改變氧化鈮薄膜厚度之XPS O 1s能譜圖 66
圖4-24 氧氬流量比為10%時,氧化鈮薄膜厚度為(a)100 nm、(b)200 nm、(c)300 nm、(d)400 nm及(e)500 nm製備氧化鈮薄膜之XPS Nb 3d能譜經高斯函數分解圖 67
圖4-25 氧氬流量比為10%時,氧化鈮薄膜厚度為(a)100 nm、(b)200 nm、(c)300 nm、(d)400 nm及(e)500 nm製備氧化鈮薄膜之XPS O 1s能譜經高斯函數分解圖 68
圖4-26 氧氬流量比為10%時,改變氧化鈮薄膜厚度,製備Glass/ITO/ WO3/Nb2O5半元件之(a)著色及(b)去色階梯電位響應圖 70
圖4-27 氧氬流量比為10%時,改變氧化鈮薄膜厚度,製備Glass/ITO/ WO3/Nb2O5半元件之著、去色響應時間圖 70
圖4-28 氧化鈮薄膜厚度為500 nm時,改變氧氬流量比,製備氧化鈮薄膜之離子導電度 71
圖4-29 氧氬流量比為10%時,改變氧化鈮薄膜厚度之折射率 71
圖4-30 氧氬流量比為10%時,氧化鈮薄膜厚度為(a)100 nm、(b)200 nm、(c)300 nm、(d)400 nm及(e)500 nm之Glass/ITO/WO3/ Nb2O5半元件的可見紫外光譜圖及試片外觀 73
圖4-31 氧氬流量比為10%時,改變氧化鈮薄膜厚度,製備Glass/ITO/ WO3/Nb2O5半元件之特定波長(550 nm)之著、去色穿透率變化量(�幅) 74
圖4-32 氧氬流量比為10%時,改變氧化鈮薄膜厚度,製備Glass/ITO/ WO3/Nb2O5半元件之光學密度差(�嵌D) 74
圖4-33 氧氬流量比為10%時,改變氧化鈮薄膜厚度,製備Glass/ITO/ WO3/Nb2O5半元件之循環伏安曲線 76

表目錄
表2-1 電致色變材料的分類 8
表2-2 不同著色態之電致色變材料分類 9
表2-3 氧化鎢製作電致色變元件之實例 12
表2-4 應用於電致色變裝置之固態或類固態有機電解質 15
表2-5 應用於電致色變材料之固態無機電解質 16
表2-6 有機固態電解質電致色變元件 21
表2-7 無機固態電解質電致色變元件 26
表2-8 無機固態電解質應用於電致色變元件特性之比較 28
表3-1 沉積氧化鎢薄膜之製程參數 33
表3-2 不同壓力沉積氧化鈮薄膜之製程參數 34
表3-3 不同氧氬流量比沉積氧化鈮薄膜之製程參數 36
表3-4 不同厚度沉積氧化鈮薄膜之製程參數 36
表4-1 不同氧氬流量比沉積氧化鈮薄膜之製程參數 44
表4-2 改變氧氬流量比所製備氧化鈮薄膜之電致色變特性影響 60
表4-3 改變氧化鈮薄膜厚度所製備氧化鈮薄膜之電致色變特性影響77
參考文獻
1.何國川,“電化學與無窗簾時代”,化工,第37卷,第3期,1990年,32-41頁。
2.焦小浣、胡文玲、陳玲,“光窗透明材料的實驗研究”,太陽能學報,第8卷,第4期,1997年,365-370頁。
3.S.E. Selkowitz and C.M. Lampert, “Large-area chromogenics: materials and devices for transmittance control”, SPIE, (1988) 22-45.
4.C.G. Granqvist, E. Avendano and A. Azens, “Electrochromic coatings and devices: Survey of some recent advances”, Thin Solid Films, 442 (2003) 201-211.
5.C.G. Granqvist, A. Azens, P. Heszler, L.B. Kish and L.O. sterlund, “Nanomaterials for benign indoor environments: electrochromics for smart windows air cleaning”, Solar Energy Materials & Solar Cells, 91 (2007) 355-365.
6.http://www.sage-ec.com/pages/projgallery_res.html
7.http://big5.nikkeibp.com.cn/news/auto/18186-200501120109.html?isRedirected=1
8.F. Carpi and D. De Rossi, “Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials”, Optics and Laser Technology, 38 (2006) 292-305.
9.H. Pettersson, T. Gruszecki, L.H. Johansson, M.O.M. Edwards, A. Hagfeldt and T. Matuszczyk, “Direct-driven electrochromic displays based on nanocrystalline electrodes”, Displays, 25 (2004) 223-230.
10.G.G. Barna, “Material and device properties of a solid state electrochromic display”, Journal of Electronic Materials, 8 (1979) 153-173.
11.J.R. Platt, “Electrochromism: a possible change of color producible in dyes by an electric field”, Journal of Chemical Physics, 34 (1961) 862-863.
12.林保彰,“三氧化鎢薄膜電極之製備及其電致色變性質之研究”,國立台灣大學化學工程學研究所碩士論文,1998。
13.M.A. Habib and D. Glueck, “The electrochromic properties of chemically deposited tungsten oxide films”, Solar Energy Materials, 18 (1989) 127-141.
14.T. Yoshino, N. Baba, H. Masuda and K. Arai, “A new method for preparing electrochromic IrOχ thin films by periodic reverse electrolysis of sulfatoiridate complex”, The Electrochemical Society Softbound Proceedings Series, 90-2 (1990) 89-98.
15.P. Pfluger, H.U. Künzi and H.J. Güntherodt, “Discovery of a new reversible electrochromic effect”, Applied Physics Letter, 35 (1979) 771-772.
16.J. Nagao, “Characterization of evaporated nickel oxide and its application to electrochromic glazing”, Solar Energy Materials and Solar Cells, 31 (1993) 291-299.
17.S. Gottesfeld, “The anodic rhodium oxide film-a two-color electrochromic system”, Journal of the Electrochemical Society, 127 (1980) 272-277.
18.K. Boufker, “Lithiation study of molybdenum oxide thin-films- application to an electrochromic system”, Journal of Applied Electrochemistry, 25 (1995) 797-802.
19.C.K. Dyer and J.S.L. Leach, “Reversible optical changes within anodic oxide films on titanium and niobium”, Journal of the Electrochemical Society, 125 (1978) 23-29.
20.T. Ohtasuka, M. Masuda and N. Sato, “Cathodic reduction of anodic oxide films formed on titanium”, Journal of the Electrochemical Society, 134 (1987) 2406-2410.
21.K. Itaya, K. Shibayama, H. Akahshi and S. Toshima, “Prussian-blue- modified electrodes: an application for a stable electrochromic display device”, Journal of Applied Physics, 53 (1982) 804-805.
22.D.D. Deford and A.W. Davidson, “Studies on the oxidation of potassium ruthenocyanide”, Journal of the American Chemical Society, 73 (1951) 1469-1474.
23.Z. Gao, G. Wang, P. Li and Z. Zhao, “Electrochemical and spectroscopic studies of cobalt-hexacyanoferrate film modified electrodes”, Electrochimica Acta, 36 (1991) 147-152.
24.D. Shaojun and L. Fengbin, “Researches on chemically modified electrodes: Part XV. preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode”, Journal of Electroanalytical Chemistry, 210 (1986) 31-44.
25.K.J. Kulesza and M. Faszynska, “Indium (III)-hexacyan of errate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates”, Journal of Electroanalytical Chemistry, 252 (1988) 461-466.
26.R.V. Pole, G.T. Sincerbox and M.D. Shattuck, “Photoinduced electrochromic effect and its applications to displays”, Applied Physics Letters, 28 (1976) 494-497.
27.N.R. Lynam and A.Agrawal, “Large-area chromogenic: materials and devices for transmittance control”, SPIE Optics Engineering Press, 4 (1990) 335-365.
28.F.B. Kaufman, E.M. Engler, V.V. Patel and A.H. Schroeder, “Polymer-modified electrodes : a new class of electrochromic materials”, Applied Physics Letters, 36-6 (1979) 422-425.
29.S.K. Deb, “A novel electrophotographic systems”, Applied Optics, 3 (1969) 192.
30.F.G.K. Baucke, “Electrochromic applications”, Materials Science and Engineering B, 10 (1991) 285-292.
31.D.J. You, S.K. Choi, H.S. Han, J.S. Lee and C.B. Lim, “Effect of the deposition geometry on the electrical properties within tin-doped indium oxide film deposited under a given RF magnetron sputtering condition”, Thin Solid Films, 401 (2001) 229-234.
32.C.M. Lampert, “Smart switchable glazing for solar energy and daylight control”, Solar Energy Materials and Solar Cells, 52 (1998) 207-221.
33.G. Leftheriotis, S. Papaefthimiou, P. Yianoulis and A. Siokou, “Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films”, Thin Solid Films, 384 (2001) 298-306.
34.A. Donnadieu, “Electrochromic materials”, Material Science and Engineering B, 3 (1989) 185-195.
35.S.J. Babinec, “A quartz crystal microbalance analysis of ion insertion into WO3”, Solar Energy Material Solar Cells, 25 (1992) 269-291.
36.M. Kitao and S. Yamada, “Proceedings of the international seminar in solid state ionic devices”, Radhakrishna World Publishing Co., Singapore, (1988) 139.
37.M. Green, D.C. Smith and J. A. Weiner, “A thin film electrochromic display based on the tungsten bronzes”, Thin Solid Films, 38 (1976) 89-100.
38.R.B. Goldner, P. Norton, K. Wong, G. Foley, E.L. Goldner, G. Seward and R. Chapman, “Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films”, Applied Physics Letters, 47 (1985) 536-538.
39.G.G. Barna, “Material and device properties of a solid state electrochromic display”, Journal of Electronic Materials, 8 (1979) 153-173.
40.S.J. Babinec, “A quartz crystal microbalance analysis of ion insertion into WO3”, Solar Energy Material Solar Cells, 25 (1992) 269-291.
41.B. Reichman and A. J. Bard, “The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of WO3”, Journal of The Electrochemical Society, 126 (1979) 583-591.
42.S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide”, Philosophical Magazine, 27 (1973) 801-822.
43.A. Deneuville, P. Gerard and R. Billat, “Principles and operation of an all solid state electrochromic display based on a-‘WO3’ ”, Thin Solid Films, 70 (1980) 203-223.
44.F. Beck and M. Dahlhaus, “Anodic formation of polypyrrole tungsten trioxide composites”, Journal of Applied Electrochemistry, 23 (1993) 781-789.
45.M. Dahlhaus and F. Beck, “Characterization of anodically formed polypyrrole tungsten trioxide composites”, Journal of Applied Electrochemistry, 23 (1993) 957-965.
46.L.L. Hensch and J.K. West, “The sol-gel process”, Chemical Reviews 90 (1990) 33-72.
47.L.M. Schiavone, W.C. Dautremont-Smith, G. Beni and J.L. Shay, “Improved electrochromic behavior of reactively sputtered iridium oxide films”, Journal of the Electrochemical Society, 128 (1981) 1339-1342.
48.A. Maccari, G. Macrelli, P. Polato and E. Poli, “Design, production and characterization of an all solid state electrochromic medium size device”, Solar Energy, 63 (1998) 217-229.
49.P.M.S. Monk, R.J. Mortimer and D.R. Rosseinsky, “Electrochromism: fundaments and applications”, VCH, Weinheim, (1995) 45-46.
50.S.R. Jiang, P.X. Yan, B.X. Feng, X.M. Cai and J. Wang, “The response of a NiOx thin film to a step potential and its electrochromic mechanism”, Materials Chemistry and Physics, 77 (2002) 384-389.
51.A. Pennisi and F. Simone, “Electrochromic device based on tungsten- oxide and on nafion-H as polymeric electrolyte”, Applied Physics A, 57 (1993) 13-17.
52.A. Pennisi and F. Simone, “Characterization and performances of WO3:Mo/Nafion-HTM electrochromic device”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2255 (1994) 406-414.
53.A. Pennisi and F. Simone, “An eectrochromic device working in absence of ion storage counterelectrode”, Solar Energy Materials and Solar Cells, 39 (1995) 333-340.
54.K.C. Ho, T.G. Rukavina and C.B. Greenberg, “Tungsten-oxide prussian blue electrochromic system based on a proton-conducting polymer electrolyte”, Journal of the Electrochemical Society, 141 (1994) 2061- 2067.
55.K.C. Ho, T.G. Rukavina and C.B. Greenberg, “Proceedings of the symposium on elrctrochromic materials II”, The Electrochemical Society, 94-2 (1994) 278-289.
56.K.H. Heckner and A. Rothe, “Intercalation mechanisms and time dependencies of work parameters of electrochromic layers”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2255 (1994) 305-313.
57.M. Antinucci and A. Ferriolo, “Development of fast-response electrochromic devices on polymeric substrate”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2255 (1994) 395-403.
58.M. Antinucci, B. Chevalier and A. Ferriolo, “Development and characterisation of electrochromic devices on polymeric substrates”, Solar Energy Materials and Solar Cells, 39 (1995) 271-287.
59.F. Michalak and P. Aldebert, “A flexible electrochromic device based on colloidal tungsten-oxide and polyaniline”, Solid State Ionics, 85 (1996) 265-272.
60.J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna and R.S. Crandall, “Optimization study of solid-state electrochromic devices based on WO3/lithium-polymer electrolyte/V2O5 structures”, Journal of the Electrochemical Society, 141 (1994) 2795-2800.
61.S. Passerini, A.L. Tipton and W.H. Smyrl, “Spin coated V2O5 XRG as optically passive electrode in laminated electrochromic devices”, Solar Energy Materials and Solar Cells, 39 (1995) 167-177.
62.P. Schlotter, G. Baur, R. Schmidt and U. Weinberg, “Laminated electrochromic device for smart windows”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2255 (1994) 351-362.
63.B. Munro, S. Kramer, P. Zapp, H. Krug and H. Schmidt, “All sol-gel electrochromic system for plate glass”, Journal of Non-Crystalline Solids, 218 (1997) 185-188.
64.B. Munro, P. Conrad, S. Kramer, H. Schmidt and P. Zapp, “Development of electrochromic cells by the sol-gel process”, Solar Energy Materials and Solar Cell, 54 (1998) 131-137.
65.H. Inaba, M. Iwaku, K. Nakase, H. Yasukawa, I. Seo and N. Oyama, “Electrochromic display device of tungsten trioxide and prussian-blue films using polymer gel electrolyte of methacrylate”, Electrochimical Acta, 40 (1995) 227-232.
66.R. Lechner and L.K. Thomas, “All solid state electrochromic devices on glass and polymeric foils”, Solar Energy Materials and Solar Cells, 54 (1998) 139-146.
67.S.H. Lee and S.K. Joo, “Electrochromic behavior of Ni-W oxide electrodes”, Solar Energy Materials and Solar Cells, 39 (1995) 155-166.
68.B. Orel, U.O. Krasovec and U.L. Stangar, “All sol-gel electrochromic devices with Li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films”, Journal of Sol-Gel Science and Technology, 11 (1998) 87-104.
69.M.A. Depaoli, A. Zaneli, M. Mastragostino and A.M. Rocco, “An electrochromic device combining polypyrrole and WO3 II: solid-state device with polymeric electrolyte”, Journal of Electroanalytical Chemistry, 435 (1997) 217-224.
70.K.S. Ahn, Y.C. Nah and Y.E. Sung , “Effect of interfacial property on electrochromic response speed of Ta2O5/NiO and Ta2O5/Ni(OH)2”, Solid State Ionics, 165 (2003) 155-160.
71.Y.C. Nah, K.S. Ahn, K.Y. Cho, J.Y. Park, H.S. Shim, Y. M. Lee, J.K. Park and Y.E. Sung, “Polymer-laminated electrochromic devices composed of WO3 and Ni(OH)2 on glass and PET substrates”, Journal of the Electrochemical Society, 152 (2005) 201-204.
72.K. Kuwabara and M. Yamada , “Early cycling processes in a variable transparency ECD utilizing antimony hydrogen phosphate thin-film electrolyte”, Solid State Ionics, 59 (1993) 25-31.
73.A. Lusis , Proc. Soc. Photo-Opt. Instr. Eng. 2968(1996)167.
74.M.A. Macedo, M.A. Aegerter, “Sol-gel electrochromic device”, Journal of Sol-Gel Science and Technology, 2 (1994) 667-671.
75.A. Azens, L. Kullman, G. Vaivars, H. Nordborg and C.G. Granqvist, “Sputter-deposite nickel oxide electrochromic applications”, Solid State Ionics, 113-115 (1998 ) 449-456.
76.P.V. Ashrit, K. Benaissa, G. Bader, F.E. Girouard and V.V. Truong, “Lithiation studies on some transition-metal oxides for an all-solid thin-film electrochromic system”, Solid State Ionics, 59 (1993) 47-57.
77.N.A. O''Brien, J. Gordon, H. Mathew and B.P. Hichwa, “Electrochromic coatings- applications and manufacturing issues”, Thin Solid Films, 345 (1999) 312-318.
78.H. Yoshimura and N. Koshidaa, “Fast electrochromic effect obtained from solid-state inorganic thin-film configuration with a carrier accumulation structure”, Applied Physics Letters, 88, 093509 (2006) 1-3.
79.A. Subrahmanyam, C.S. Kumar and K.M. Karuppasamy, “A note on fast protonic solid state electrochromic device: NiOχ/Ta2O5/WO3-χ”, Solar Energy Materials and Solar Cells, 91 (2007) 62-66.
80.M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, National Association of Corrous, (1974) 56-60.
81.K.S. Ahn, Y.C. Nah and Y.E. Sung, “All-solid-state electrochromic device composed of WO3 and Ni(OH)2 with a Ta2O5 protective layer”, Applied Physics Letters, 81 (2002) 3930-3932.
82.P.V. Ashrit, K. Benaissa, G. Bader, F.E. Girouard and V.V. Truong, “Lithiation studies on some transition-metal oxides for an all-solid thin-film electrochromic system”, Solid State Ionics, 59 (1993) 47-57.
83.H.L. Tuller, D.P. Button and D.R. Uhlmann, “Fast ion transport in oxide glasses”, Journal of Non-Crystalline Solids, 40 (1980) 93-118.
84.G.B. Smith, G.A. Niklasson, J.S.E.M. Svenson and C.G. Granqvist, “Noble-metal-based transparent infrared reflectors: experiments and theoretical analyses for very thin gold films”, Journal of Applied Physics, 59 (1986) 571-581.
85.A. Talledo and C.G. Granqvist, “Electrochromic vanadium- pentoxide- based films: structural, electochemical, and optical properties”, Journal of Applied Physics, 77 (1995) 4655-4666.
86.V. Eyert and K.H. Hock, “Electronic-structure of FeS2 - the crucial role of electron-lattice interaction”, Physical Review B, 57 (1998) 6350-6359.
87.P.V. Ashrit, F.E. Girouard and V.V. Truong, “Fabrication and testing of an all-solid-state system for smart window application”, Solid State Ionics, 89 (1996) 65-73.
88.I. Hamberg and C.G. Granqvist, “Color properties of transparent-ent and heat-reflecting MgF2-coated indium-tin-oxide films”, Applied Optics, 22 (1983) 609-614.
89.I. Hamberg and C.G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows”, Journal of Applied Physics, 60 (1986) R123-R159.
90.S.F. Cogan, R.D. Rauh, J.D. Klein, N.M. Nguyen, R.B.Jones and T.D. Plante , “Variable transmittance coatings using electrochromic lithium chromate and amorphous WO3 thin films”, Journal of the electrochemical society, 144 (1997) 956-960.
91.S.F. Cogan, R.D. Rauh, J.D. Klein, N.M. Nguyen, R.B. Jones and T.D. Plante, “Variable transmittance coatings using electrochromic lithium chromate and amorphous WO3 thin-films”, Journal of the Electrochemical Society, 144 (1997) 956-960.
92.J. Chen, Z. Zhu, Y. Zhou, R. Wang and Y. Yan, “All solid state electrochromic device: WO3/LiAlF4:Li/VO2”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2531 (1995) 161-165.
93.A. R. Lusis, J. J. Kleperis, A. A. Brishka and E. V. Pentyush , “Electro-optic spectroscopy of electrochromic processes in tungsten trioxide”, Solid State Ionics, 13 (1984) 319-324.
94.J.G.H. Mathew, S.P. Sapers, M.J. Cumbo, N.A. O’Brien, R.B. Sargent, V.P. Raksha, R.B. Lahaderne and B.P. Hichwa, “Large area electrochromics for architectural applications”, Journal of Non-Crystalline Solids, 218 (1997) 342-346.
95.A. Daneo, G. Macrelli, P. Polato and E. Poli, “Photometric characterization of an all solid state inorganic electrochromic large area device”, Solar Energy Materials and Solar Cells, 56 (1999) 237-248
96.J. Nagai, G.D. McMeeking and Y. Saitoh, “Durability of electrochromic glazing”, Solar Energy Materials and Solar Cells, 56 (1999) 309-319.
97.C. Corbella, M. Vives, A. Pinyol, I. Porqueras, C. Person, E. Bertran, “RF sputtering deposition of Ag/ITO coatings at room temperature”, Solid State Ionics, 165 (2003) 139-148.
98.S.J. Yoo, J.W. Lim and Y.E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer”, Solar Energy Materials and Solar Cells, 90 (2006) 477-484.
99.H. Yang, C. Wang, X. Diao, H. Wang, T. Wang and K. Zhu “A new all-thin-film electrochromic device using LiBSO as the ion conducting layer”, Journal of Physics D: Applied Physics, 41 (2008) 115301.
100.R.B. Goldner, F.O. Arntz and T.E. Haas, “d-Electrons and two active thin film devices for achieving a solar energy economy”, Solar Energy Materials and Solar Cells, 32 (1994) 421-428.
101.R.B. Goldner, F.O. Arntz, K. Dickson, M.A. Goldner, T.E. Haas, T. Y. Liu, S. Slaven, G. Wei, K.K. Wong and P. Zerigian, “Some lessons learned from research on a thin-film electrochromic window”, Solid State Ionics, 70-71(1994) 613-618.
102.R.B. Goldner, F.O. Arntz, K.Dickson, M.A. Goldner, T.E. Haas, T. Y. Liu, S. Slaven, G. Wei, K.K. Wong, P. Zerigian and K.C. Ho, “Proceedings of the symposium on electrochromic materials II”, The Electrochemical Society, 94-2 (1994) 237-243.
103.N. Ozer, C.M. Lampert, “Electrochrmical lithium insertion in sol-gel deposited LiNbO3 film”, Solar Energy Materials and Solar, 39 (1995) 367-375.
104.L.Q. Nguyen and V.V. Truong, “Thin film of lithium niobium oxynitride as ionic conductor”, American Institute of Physics, 80 (1996) 2914-2917.
105.X.P. Zhang, “Study on LiNbO ion conducting thin film used in electrochromic devices,” Acta Optica Sinica, 18 (1998) 803-807.
106.X. Zhang, H. Zhang, Q. Li and H. Luo, “An all-solid-state inorganic electrochromic display of WO3 and NiO films with LiNbO3 ion conductor”, IEEE Electronic Device Letters, 21 (2000) 215-217.
107.http://www.metalprices.com/FreeSite/metals/ta/ta.asp
108.J.L. He and M.C. Chiu, “Effect of oxygen on the electrochromism of RF reactive magnetron sputter deposited tungsten oxide”, Surface and Coatings Technology, 127 (2000) 43-51.
109.林郁斌、葉佳明、何紹誌、唐謙仁、何主亮,“濺鍍氧化鈮薄膜應用於電致色變元件之固態電解質層”,台灣鍍膜科技協會年會(AMTACT 2008)暨國科會專題計畫成果發表會,A01永續能源相關薄膜(Coatings for sustainable energy),論文編號02073,頁碼B54-1~4,2008年12月5-6日,彰化明道大學。
110.R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only”, Journal of the Optical Society of America A-Optics Image Science and Vision, 2 (1985).
111.S.M. Rossnagel, Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, U.S.A, (1982) 77-88.
112.楊錦章,“基礎濺鍍電流”,電子發展月刊,第68卷,1983年,第13-40頁。
113.H. Wang, H. Shen, D. Ba, B. Wang, L. Wen, “Influence of oxygen flow on optical property of TiO2 thin film prepared by DC reactive magnetron sputtering ”, Acta Scientiarum Naturalium Unviversitatis Sunyatsen, 6 (2005) 36-40.
114.林宗隆,“¬氧化鎢、氧化鈦單層膜及多層膜知製備及其電致色變特性研究”,國立東華大學材料科學與工程研究所碩士論文,2003。
115.張智傑,“濺鍍氧化鉭薄膜應用於電致色變元件之離子傳導層研究”,逢甲大學材料科學系碩士論文,2005。
116.H. Habazali, M. Yamasaki, T. Ogasawara, K. Fushimi, H. Konno, K. Shimizu, T. Izumi, R. Matsuoka, P. Skeldon and G.E. Thompson, “Thermal degradation of anodic niobia on niobium and oxygen-containing niobium”, Thin Solid Films, 516 (2008) 991-998.
117.P. Singh, B.J. Brandenburg, C.P. Sebastian, D. Kumar and O. Parkash, “XPS and mossbauer studies on BaSn1-xNbxO3(x≦0.100)”, Materials Research Bulletin, 43 (2008) 2078-2084.
118.S.A. O’Neill, I.P. Parkin, R.J.H. Clark, A. Mills and N. Elliott, “Atmospheric pressure chemical vapour deposition of thin films of Nb2O5 on glass”, Journal of Materials Chemistry, 13 (2003) 2952-2956.
119.H. Wang and C. Xie, “The effect of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles”, Physica E, 40 (2008) 2724-2729.
120.B.G. Choi, I.H. Kim, D.H Kim, K.S. Lee, T.S. Lee, B. Cheonga, Y.J. Baik and W.M. Kim, “Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter”, Journal of the European Cearamic Society, 25 (2005) 2161-2165.
121.張智傑、何主亮、陳克昌,“應用於電致色變之濺鍍氧化鉭薄膜的鋰離子傳導能力”,中華民國防蝕工程學會94年年會論文集,第1120~1129頁,2005年8月25、26日,台灣台中。
122.余宣毅,“以RF 磁控濺鍍沉積AZO 透明導電膜之研究”,大同大學材料工程學系碩士論文,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊