(3.92.96.236) 您好!臺灣時間:2021/05/07 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王膺凱
研究生(外文):Ying-Kai Wang
論文名稱:聚丙烯/擬熱可塑型聚乙烯醇/二氧化鈦犙混體之模口膨脹效應
論文名稱(外文):Effect on the Die Swelling of Polypropylene/ Pseudo-Thermoplastic Polyvinyl Alcohol/ Titanium Dioxide Polymer Blends
指導教授:林清安林清安引用關係
指導教授(外文):Chin-an Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:紡織工程所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:模口膨脹聚丙烯膨潤比擬熱可塑型聚乙烯醇
外文關鍵詞:pseudo-thermoplastic polyvinyl alcoholswell ratiopolypropylenedie swelling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  高分子模口膨脹是成型加工中常見的現象,而造成模口膨脹的因素可分為兩大類:一類屬於原材料規格、種類、性能以及吐出量對模口膨脹的影響;另一類屬於加工參數對模口膨脹的影響。
  本研究主要針對具有吸濕性以及光觸媒效能的聚丙烯纖維,經由熔融紡絲法紡嘴擠出後產生的模口膨脹行為進行探討,當剪切速率、紡絲溫度、剪切黏度、毛細管長度、�炰V比例改變,以及二氧化鈦的添加對於�炰V體膨潤比變化的影響性。
  由研究結果可得知:聚丙烯/擬熱可塑型聚乙烯醇/二氧化鈦(PP/PTPVA/TiO2) �炰V體的膨潤比會隨著剪切速率的上升而增加,主要是在毛細管前流線收斂、速度梯度增加的影響。紡絲溫度的上升造成分子鏈的解纏結作用,膨潤比因而下降,但對於擬熱可塑型聚乙烯醇的影響性並不明顯。剪切黏度的上升使�炰V體的流動阻力增加,膨潤比隨之減少。毛細管長度與熔體鬆弛時間成正比,當管長增加,�炰V體之膨潤比下降。聚丙烯、擬熱可塑型聚乙烯醇�洃顐珣答�1:1時,因為分子鏈間作用力的影響,膨潤比會呈現最大值。添加1%二氧化鈦之後,�炰V體膨潤比因二氧化鈦的潤滑作用而下降。
Die swelling is a regular phenomenon in polymer forming process. The reasons for this phenomenon are two: One is the influence of the specification, variety, capability, and the dosage of raw materials, the other is the effect of the manufacturing parameters.
In this study, we focused on the die swelling phenomenon of polypropylene fibers with hygroscopicity and photo-catalyst ability when extracted from spinneret by melt spinning. The influence on swell ratios of different shear rate, spinning temperature, shear viscosity, length of capillary, blending ratios, and the adding of titanium dioxide were discussed.
From the experiments, the swell ratios of polypropylene/ pseudo-thermoplastic polyvinyl alcohol/ titanium dioxide blend (PP/PTPVA/TiO2) would increase with the increase of shear rate. It’s because the molecular chains converged before entering into the capillary tube, and the velocity gradient raised. The increase of spinning temperature would lead to the disentanglement of the molecular chains, and the decrease of the swell ratios. For PTPVA, the effect of spinning temperature was not obvious. When shear viscosity increased, the flow resistance of PP/PTPVA/TiO2 blends would increase, and the swell ratios decreased. There is a direct proportion between the length of capillary tube and the relaxation. When the tube length increased, the swell ratios of blends would decrease.
摘要-----------------------------------------------------------------------------------------------------------------------Ⅰ
Abstract--------------------------------------------------------------------------------------------------------------------Ⅱ
目錄------------------------------------------------------------------------------------------------------------------------Ⅲ
圖目錄---------------------------------------------------------------------------------------------------------------------Ⅴ
表目錄---------------------------------------------------------------------------------------------------------------------Ⅵ
第一章 緒論-------------------------------------------------------------------------------------------------------------1
1-1 前言-------------------------------------------------------------------------------------------------------------------1
1-2 模口膨脹現象------------------------------------------------------------------------------------------------------3
1-2-1 模口膨脹的形成------------------------------------------------------------------------------------------------3
1-2-2 模口膨脹的研究現況------------------------------------------------------------------------------------------5
1-3 聚丙烯纖維介紹---------------------------------------------------------------------------------------------------8
1-4 �炰V改性高分子--------------------------------------------------------------------------------------------------10
1-5 二氧化鈦光觸媒簡介--------------------------------------------------------------------------------------------12
1-6 研究動機------------------------------------------------------------------------------------------------------------14
第二章 理論-------------------------------------------------------------------------------------------------------------16
2-1 擬熱可塑型聚乙烯醇--------------------------------------------------------------------------------------------16
2-2 高分子的流動行為------------------------------------------------------------------------------------------------18
2-2-1 流動機理-鏈段的躍遷-----------------------------------------------------------------------------------------18
2-2-2 高分子流動中的彈性形變-----------------------------------------------------------------------------------19
2-2-3 熔體於管道中的流動------------------------------------------------------------------------------------------20
2-3 影響模口膨脹的因素--------------------------------------------------------------------------------------------21
2-4 毛細管黏度計測定原理-----------------------------------------------------------------------------------------26
第三章 實驗-------------------------------------------------------------------------------------------------------------27
3-1 實驗流程------------------------------------------------------------------------------------------------------------27
3-1-1 聚丙烯╱擬熱可塑型聚乙烯醇�炰V纖維製備----------------------------------------------------------27
3-1-2 聚丙烯╱擬熱可塑型聚乙烯醇╱二氧化鈦�炰V纖維製備------------------------------------------28
3-2 實驗設備------------------------------------------------------------------------------------------------------------29
3-3 熔融紡絲條件------------------------------------------------------------------------------------------------------29
3-4 實驗材料------------------------------------------------------------------------------------------------------------30
3-5 紡絲原料製備------------------------------------------------------------------------------------------------------32
3-6 模口膨脹之測定---------------------------------------------------------------------------------------------------33
3-7 樣本配方------------------------------------------------------------------------------------------------------------35
第四章 結果與討論----------------------------------------------------------------------------------------------------36
4-1 聚丙烯纖維的模口膨脹分析-----------------------------------------------------------------------------------36
4-1-1 聚丙烯模口膨脹對剪切速率的依賴性-------------------------------------------------------------------36
4-1-2 聚丙烯模口膨脹對紡絲溫度的依賴性-------------------------------------------------------------------38
4-1-3 聚丙烯模口膨脹對毛細管長度的依賴性----------------------------------------------------------------40
4-1-4 聚丙烯模口膨脹對表觀剪切黏度的依賴性-------------------------------------------------------------42
4-2 紡絲溫度對擬熱可塑型聚乙烯醇模口膨脹的影響------------------------------------------------------44
4-3 聚丙烯╱擬熱可塑型聚乙烯醇�炰V體的模口膨脹探討-----------------------------------------------47
4-3-1 紡絲溫度對聚丙烯╱擬熱可塑型聚乙烯醇�炰V體膨潤比的影響--------------------------------47
4-3-2 �炰V比例對聚丙烯╱擬熱可塑型聚乙烯醇�炰V體膨潤比的影響--------------------------------52
4-4 聚丙烯╱擬熱可塑型聚乙烯醇╱二氧化鈦�炰V體膨潤比探討--------------------------------------56
4-4-1 二氧化鈦對聚丙烯╱擬熱可塑型聚乙烯醇�炰V體膨潤比之影響--------------------------------56
4-4-2 添加二氧化鈦之聚丙烯╱擬熱可塑型聚乙烯醇膨潤比對毛細管長度之依賴性-------------59
第五章 結論-------------------------------------------------------------------------------------------------------------62
建議------------------------------------------------------------------------------------------------------------------------64
參考文獻-----------------------------------------------------------------------------------------------------------------66
[1] Z. 塔德莫爾,聚合物加工原理,化學工業出版社,1995
[2] 江體乾,工業流變學,化學工業出版社,1995
[3] 金日光,高聚物流變學及其在加工中的應用,化學工業出版社,1986
[4] 梁基照,聚合物短口擠出脹大方程,合成橡膠工業,1995,18(3): 171-173
[5] 梁基照,混煉膠長口型擠出脹大的預測,合成橡膠工業,1997,20 (3): 44-45
[6] 徐佩弦,高聚物流變學及其應用,北京化�啎u業出版社,2003
[7] P. Santelicds, Die Swell of Viscoelastic Polymers, ANTE, 94: 1885-1889
[8] 金光日,聚合物加工流變學基礎,北京化學工業出版社,1996
[9] Y Sasaki, et al, Numerical Study of Extrudate Swell, ANTE, 94: 1212-1215
[10]R. R. Huilgol. Some Qualitive and Quantitive Features of Die Swell, Polym. Eng. Sci, 1978, 18(8): 643-648
[11]Garcia-rejon, R. W. Diraddo, M. E. Rgan. Effect of Die Geometry and Flow Characteristics on Viscoelastic Annular Swell, J. Non-Newtonian Fluid Mech. 1995, 60: 107-128
[12]Ji-Zao Liang, Effect of the Die Angle on the Extrusion Swell of Rubber Compounds, Journal of Materials Processing Technology, 1995, 52: 207-212
[13]Intawong, NT. Sombatsompop, N. Experimental Studies on Radial Extrudate Swell and Velocity Profiles of Flowing PS Melt in an Electro-magnetized Die of an Extrusion Rheometer, POLYM ENG SCI 44 (12): 2298-2307 DEC 2004
[14]Tanner R. I., A Theory of Die Swell, Journal of Polymer Science, 1970, 8:2067~2078.
[15]Meissner J. Basic Parameters, Melt Rheology, Processing and End-use Properties of Three Similar Low Density Polyethylene Samples, Pure Applied Chemistry, 1975, 42:551~612.
[16]Huang D. C., White J. L., Extrudate Swell from Slit and Capillary Dies: an Experimental and Theoretical Study, Polymer Engineering and Science, 1979, 19(9):609~616
[17]R. Wildemuth, M. C. Williams, Viscosity of Suspensions Modeled with a Shear-dependent Maximum Packing Fraction, Rheology Acta, 1984, 23:627~635.
[18]Crocher M. J., Davies A. R., Walters K, Numerical Simulation of Non-Newtonian Flow, Amsteedam: Elsevier, 1984, 173~252.
[19]Chang P.W., Pattern T.W., Finlayson B. A., Collocation and Galekin Finite Element Method for Viscoelastic Fluid Flow I. Description of Method and Problems with Fixed Geometry, Composite Fluids, 1979, 7(4): 267~283.
[20]Coleman C. J., A Finite Element Routine for Analyzing Non-Newtonian Flow, Journal of Non-Newtonian Fluid Mechanism, 1981, 8:261~272.
[21]Luo X. L., Tanner R. J., A Streamline Element Scheme for solving Viscoelastic Flow Problems Part I Differential Constitutive Equations, Journal of Non-Newtonian Fluid Mechanism, 1986, 21: 179~199
[22]Luo X. L., Tanner R. J., A Streamline Element Scheme for solving Viscoelastic Flow Problems Part II Integral Constitutive Models, Journal of Non-Newtonian Fluid Mechanism, 1986, 22: 61~89
[23]Kalika D. S., Denn M. M., Wall Slip and Extrudate Distortion in Linear Low-density Polyethylene, Journal of Rheology, 1987, 31: 815~834
[24]王文廣,塑膠材料的選用[M].第一版,北京化學工業出版社,2001
[25]趙孝彬,杜磊,張小平,聚合物共混物的相容性及相分離,高分子通報,2001,4:75•78
[26]古德興,熱可塑型聚乙烯醇與熱可塑型聚乙烯醇/聚丙烯�浀X熔體之流變性質,逢甲大學紡織工程研究所博士論文,2005.6
[27]Paul D R, Barlow J W, Keskkula H, Polymer Blends, Encyclopedia of Polymer Science and Engineering[M], New York: Wiley, 1988, 399-461
[28]Koning C, Duin M V. Pagnoulle C. et a1, Strategies for Compatibilization of polymer blends[J], Prog. Polym. Sci., 1998, 23: 707-757
[29]吳培熙,張留成,聚合物共混改性[M]. 北京中國輕工業出版社,1996
[30]光觸媒(基本原理),Japan Patent Office,2003
[31]原著Taoda Hiroshi,張晶、楊健譯,光觸媒圖解,商周出版,p.24~25,2003
[32]高濂,鄭珊,張青紅著,納米氧化鈦光催化材料及應用,化學工業出版社,p.13,2002
[33]陳富亮編著,最新奈米光觸媒應用技術,普林斯頓國際有限公司,2003
[34]蔡筱蘄,中空微多孔性對奈米二氧化鈦聚丙烯纖維之光觸媒效能的影響,逢甲大學紡織工程研究所之碩士論文,2005
[35]李莉,熔法紡高強高模聚乙烯醇纖維結構與性能的研究,四川大學博士學位論文,2006
[36]董紀震、趙耀明、陳雪英、曾憲�噩末s,合成纖維生產工藝學,第二版,下冊,中國紡織出版社,p.517~519,1994
[37]K. J. Saunders, Organic Polymer Chemistry, Chapman and Hall, p.111~113, 1976
[38]PVA特性與應用簡介,長春石油化學股份有限公司,p16
[39]D. Han, Rheology in polymer processing, Academic press, New York, 1976.
[40]張樹鈞等編著,改性纖維與特種纖維,中國石化出版社,1995,p.7
[41]朱復華,擠出理論及應用,北京,北京輕工業出版社,2001
[42]梁伯潤,高分子物理學,中國紡織出版社,p.217,1999
[43]趙良知,聚合物熔體在圓錐短口模的擠出脹大唯象研究,華南理工大學博士學位論文,p.36~37,2003
[44]吳立峰,顏料在塑膠著色中的應用和測試,p.260~262,化學工業出版社,2005.10
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔