(3.235.139.152) 您好!臺灣時間:2021/05/11 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃詩茹
研究生(外文):Shih-Ju Huang
論文名稱:316L不�袗�從線材到纖維的晶體結構轉變
論文名稱(外文):Crystal Structure of 316L Stainless Steel from Wire to Fiber
指導教授:石天威石天威引用關係
指導教授(外文):Tien-Wei Shyr
學位類別:碩士
校院名稱:逢甲大學
系所名稱:紡織工程所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:微應變應變-誘導麻田散鐵相變晶粒度316L晶體結構不�袗�纖維冷抽加工
外文關鍵詞:microstrainstainless steel fiber316Lcrystallite sizestrain-induced martensite transformationcrystal structurecold drawing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以316L沃斯田鐵不�袗�由直徑190 μm之線材,經多道次冷抽加工與熱處理製程,逐步將直徑減縮為179、112、75、50、34、20、8及6 μm。探討此一系列不�袗�纖維於冷抽加工過程中,晶體結構與拉伸性質之變化。以X-ray繞射實驗搭配MDI Jade 5.0軟體進行不�袗�纖維相鑑定之定性分析,再由FIZ-FindIt軟體獲得各相之晶胞參數、空間群及單位晶格原子數,並匯入Rietveld全譜擬合精算法所建立之MAUD (Materials Analysis Using Diffraction)軟體中,做為對X-ray繞射譜圖,纖維經各道冷抽後之相定量分析的參考模型,藉此獲得各相之體積分率與微結構參數,如晶粒度、微應變、和織構等。
分析結果顯示,不�袗�纖維於冷抽加工過程中,發生應變-誘導麻田散鐵相變,隨著冷抽道次增加,α''-麻田散鐵相的體積分率隨之增加。於熱處理後,部份的α''-麻田散鐵相發生逆變態回復至γ-沃斯田鐵基相。此外,於75 μm熱處理後之不�袗�纖維,開始出現微量的介金屬化合物-σ相。拉伸試驗結果顯示,隨著α''-麻田散鐵相比例增加,不�袗�纖維之拉伸破壞強度隨之提高。熱處理溫度的高低對於γ-沃斯田鐵之晶粒度與微應變有顯著的影響,且熱處理溫度較低時(680 °C),未能充分消除內應力,不�袗�纖維之拉伸破壞強度和伸長率與熱處理前之纖維比較,差異不大。
In this study, the diameter of 316L austenitic stainless steel wire was decreased from 190 μm to 179, 112, 75, 50, 34, 20, 8, and 6 μm using a multi-path cold drawing process. An intermediate heat treatment was used between cold drawing processes. The crystal structures and tensile properties of both wire and fibers were studied. First, the crystalline phases of stainless steel wire and fibers were identified using a MDI Jade 5.0. The crystal structure model of each phase was constructed based on the FIZ-FindIt software, and then loaded on MAUD (Materials Analysis Using Diffraction) to refine the monitoring X-ray diffraction profile of the sample. The Rietveld full pattern refinement method was used to analyze the quantification of each phase. The volume fraction of each crystalline phase and microstructure parameters, such as crystallite size, microstrain, and texture of each phase could therefore be obtained.
The results of analyses showed that strain-induced martensite transformation occurred during a multi-path cold drawing process. The volume fraction of α''-martensite increased with a decrease in fiber diameter. There was a small portion of α''-martensite which reversed to γ-austenitic matrix during heat treatment. It is worth noting that the third crystalline phase started to form, which was identified as a sigma phase, when the diameter of the stainless steel fiber was decreased to 75 μm. The results of tensile tests showed that the ultimate tensile strength of stainless steel fiber was increased with an increase in α''-martensite. The crystallite size and microstrain of γ-austenitic phase fibers were obviously affected by the temperature of the heat treatment. However, when the temperature of the heat treatment was lower than 680 °C, the effect of heat treatment on the ultimate tensile strength and the elongation ratio of stainless steel fiber were not significance.
誌 謝 i
摘 要 ii
Abstract iii
目 錄 iv
圖目錄 vi
表目錄 viii
符號與縮寫對照表 ix
第一章 序論 1
1.1 前言 1
1.2 沃斯田鐵系不�袗� 3
1.3 麻田散鐵相變 5
1.4 應變-誘導麻田散鐵 8
第二章 結構解析與文獻回顧 11
2.1 晶粒度與微應變 11
2.2 優選順向 15
2.3 晶體結構定量分析-Rietveld法 20
2.3.1原理 20
2.3.2 Rietveld法的應用 23
2.4 研究目的 25
第三章 實驗方法與步驟 26
3.1 實驗流程 26
3.2 實驗材料 28
3.3 實驗設備 31
3.3.1 廣角X-ray 繞射儀 31
3.3.2 微拉伸試驗機 32
第四章 結果與討論 33
4.1 晶相鑑定 33
4.2 晶相之定量分析 39
4.3 晶粒度與微應變分析 43
4.4 織構分析 51
4.5 拉伸性質分析 59
第五章 結論 67
參考文獻 69
附 錄 77
1.程彥鈞,“導電紗在電子紡織品中的訊號傳輸技術”,電子月刊,第10卷,第2期,頁174-178,2004。
2.程彥鈞,“電子紡織品的研發趨勢與市場導向分析”,電子月刊,第21卷,第6期,頁259-273,2006。
3.李少濠、黃廣淼、劉洛瑩,“超細線材製程技術發展及應用現況”,工程,第77卷,頁26 - 42,2004。
4.K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, “Strengthing via the formation of srain-induced martensiten stainless steels”, Mater. Sci. Eng. A, Vol. 387-389, pp. 873-881, 2004
5.B. Ravi Kumar, B. Mahato, N.R. Bandyopadhyay, D.K. Bhattacharya, “Comparison of rolling texture in low and medium stacking fault energy austenitic stainless steels”, Mater. Sci. Eng. A, Vol. 394, pp. 296-301, 2005
6.M. Milad, N. Zreiba, F. Elhalouani, C. Baradai, “The effect of cold work on structure and properties of AISI 304 stainless steel”, J. Mater. Process. Tech., Vol. 203, pp. 80-85, 2008
7.L. Lutterotti and S. Gialanella, “X-ray diffraction characterization of heavily deformed metallic specimens”, Acta Mater., Vol. 46, pp. 101-110, 1998
8.K. Tao, Donald W. Brown, Sven C. Vogel and Hahn Choo, “Texture evolution during strain-induced martensitic phase transformation in 304L stainless steel at a cryogenic temperature”, Metall. Mater. Trans. A, Vol. 37A, pp. 3469-3475, 2007
9.H. Liu, C. Kuo, “Quantitative multiphase determination using the Rietveld method with high accuracy”, Mater. Lett., Vol. 26, pp. 171-175, 1996
10.P. Sahu, “Lattice imperfections in intermetallic Ti-Al alloys: An X-ray diffraction study of the microstructure by the Rietveld method”, Intermetallics, Vol. 14, pp. 180-188, 2006
11.陳冠佑,沃斯田鐵系不�袗�經電子束銲接與電弧銲接的冶金微織構與機械性質之分析,中山大學材料科學研究所碩士論文,2000。
12.S. G. Chowdhury, Samar Das, P. K. De, “Cold rolling behavior and textural evolution in AISI 316L austenitic stainless steel”, Acta Mater., Vol. 53, pp. 3951-3959, 2005
13.許耀臣,304L不�袗�電漿電弧銲接件在不同溫度及應變速率下的機械性質與破壞行為,成功大學機械工程學系碩士論文,2003。
14.I. Mészáros, J. Prohászka, “Magnetic investigation of the effect of α''-martensite on the properties of austenitic stainless steel”, J. Mater. Process. Tech., Vol. 161, pp. 162-168, 2005
15.H. Bhadeshia, Robert Honeycombe, “Steel: Microstructure and Properties”, 3rd edition, Butterworth-Heinemann, 2006
16.D. A. Porter, K. E. Easterling, ”Phase Transformations in Metals and Alloys”, 2nd edition, CRC Press, 1992
17.H. K. D. H. Bhadeshia, “Worked Examples in the Geometry of Crystals”, 2nd edition., Inst. Metals, London, 2001
18.崔忠圻,金屬學與熱處理,機械工業出版社,北京,2007。
19.A. F. PADILHA, R. L. PLAUT, P. R. RIOS, “Annealing of cold-worked austenitic stainless steels”, ISIJ Int., Vol. 43, No. 2, pp. 135-143, 2003
20.蔡明欽,鋼-顯微組織與性質,五南圖書出版,2004,台北。
21.J. Y. Choi, W. Jin, “Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels”, Scr. Mater., Vol. 36, No. 1, pp. 99-104, 1996
22.劉偉、李志斌、王翔、鄒驊、王立新,金屬學報,第45卷,第3期,頁285-291,2009。
23.M. Topic, R.B. Tait, C. Allen, “The fatigue behaviour of metastable (AISI-304) austenitic stainless steel wires”, Inte. J. Fatigue, Vol. 29, pp. 656-665, 2007
24.M. Amitava, P. K. Srivastava, De P.K., D.K. Bhattacharya, D.C. Jiles, “Ferromagnetic properties of deformation-induced martensite transformation in AISI 304 stainless steel”, Metall. Trans., Vol. 35A, pp. 599-605, 2004
25.J. Gubicza, N. Q. Chinh, Gy. Krállics, I. Schiller, T. Ungár, “Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation”, Curr. Appl. Phys., Vol. 6, pp. 194-199, 2006
26.金重勳,熱處理,復文書局,台南市,2004。
27.吳詩惇,金屬超塑性變形理論,國防工業出版社,北京,1997。
28.X. H. Chen, J. Lu, L. Lu, K. Lu, “Tensile properties of a nanocrystalline 316L austenitic stainless steel”, Scripta Mater., Vol. 52, pp. 1039-1044, 2005
29.宋維錫主編,金屬學,冶金工業出版社,北京,2005。
30.G. Langford and M. Cohen, “Microstructural analysis by high-voltage electron diffraction of severely drawn iron wires”, Metall. and Trans. A, Vol. 6, pp. 901-910, 1975
31.許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,新竹縣,2006。
32.B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction, 3rd ed., Prentice Hall, 2001
33.A. L. Ortiz, L. Shaw, “X-ray diffraction analysis of severely plastically deformed aluminum alloy”, Acta Mater., Vol. 52, pp. 2185-2197, 2004
34.丘利、胡玉和,X射線衍射技術及設備,冶金工業出版社,北京,1998。
35.F. Yang, C. Ma, J.Q. Jiang, H.P. Feng, S.Y. Zhai, “Effect of cumulative strain on texture characteristics during wire drawing of eutectoid steels”, Scripta Mater., Vol. 59, pp. 850-853, 2008
36.http://www.texture.de/
37.林鼎洋,鈦鎳形狀記憶合金變態時熱膨脹係數及電阻變化之研究,台灣大學材料科學與工程學研究所碩士論文,2002。
38.S. Spriano, R. Doglione, M. Baricco, “Texture, hardening and mechanical anisotropy in A. A. 8090-T851 plate”, Mater. Sci. Eng. A, Vol. 257, pp. 134-138, 1998
39.張新明、李賽毅,“金屬材料織構的研究及其發展”,中國科學基金,第3期,1995。
40.C. Blochwitz, S. Jacob, W. Tirschler, “Grain orientation effects on the growth of short fatigue cracks in austenitic stainless steel”, Mater. Sci. Eng. A, Vol. 496, pp. 59-66, 2008
41.彭繼華、李文芳、Jean-Luc Bechade、Rauchy Morry,織構對鋯合金拉伸和爆破性能的影響,材料研究與應用,第1卷,第2期,頁122-126,2007。
42.http://aluminium.matter.org.uk/
43.M. Hatherly, W. B. Hutchinson, “An Introduction to Texture in Metals”, Inst. Metal., p. 6, 1979
44.周詩博,冷軋鋁箔之再結晶組織與機械性質,中山大學料科學與工程研究所碩士論文,2001。
45.D. N. Wasnik, I. K. Gopalakrishnan, J. V. Yakhmi, V. Kain and I. Samajdar, “Cold Rolled Texture and Microstructure in Types 304 and 316L Austenitic Stainless Steels”, ISIJ International, Vol. 43, No. 10, pp. 1581-1589, 2003
46.A. S. Paula, J. H. P. G. Canejo, K. K. Mahesh, R. J. C. Silva, F. M. Braz Fernandes, R. M. S. Martins, A. M. A. Cardoso, N. Schell, “Study of textural evolution in Ti-rich NiTi using synchrotron radiation”, Nucl. Instrum. Meth. B, Vol. 246, pp. 206-210, 2006
47.張健、奚正平、張文彥、楊延安、周穎剛,奧氏體不�袗�纖維/銅複合體磁學性能研究,功能材料,第35卷,頁499-502,2004。
48.H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement”, Acta Cryst., Vol. 22, pp. 151-152, 1967
49.劉粵惠、劉平安編著,X射線衍射分析原理與應用,化學工業出版社,北京,2003。
50.N. C. Popa, “The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement, J. Appl. Cryst., Vol. 31, pp. 176-180, 1998
51.P. Sahu, M. De, M. Zdujić, “Microstructural characterization of the evoluted phases of ball-milled α-Fe2O3 powder in air and oxygen atmosphere by Rietveld analysis”, Mater. Chem. Phys., Vol. 82, pp. 864-876, 2003
52.李宜芳,1-x(Bi0.5Na0.5)TiO3–xBa(Ti0.95Zr0.05)O3 系統之合成、晶體結構、及壓電性質,成功大學資源工程學系碩士論文,2006。
53.http://www.ing.unitn.it/~maud/Tutorial
54.E. Menéndez, J. Sort, M.O. Liedke, J. Fassbender, S. Suriñach, M.D. Baró, J. Nogués, “Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel”, J. Mater. Res., Vol. 24, pp. 565-573, 2009
55.H. S. Wang, R. C. Wei, C.Y. Huang and J.R. Yang, “Cross-sectional transmission electron microscopy of ultra-fine wires of AISI 316L stainless steel”, Philos. Mag., Vol. 86, pp.237-251, 2006
56.陳俞冀,沃斯田鐵系不�袗�線材纖維化過程對結構與物理性質之影響,逢甲大學紡織工程所碩士論文,2007。
57.B. Weiss, R. Stickler, “Phase instabilities during high temperature exposure of 316 austenitic stainless steel”, Metal. Trans., Vol. 3, pp. 851-866, 1972
58.A. F. Padilha, P. R. RIOS, “Decomposition of Austenite in Austenitic Stainless Steels”, ISIJ Int., Vol.42, pp. 325-337, 2002
59.J. L. Garin, R. L. Mannheim, “Sigma-phase precipitation upon industrial-like heating of cast heat-resistant steels”, J. Meter. Process. Tech., Vol. 209, pp. 3143-3148, 2009
60.J. A. Spitznagel and R. Stickle, “Correlation between precipitation reactions and bulk density changes in type 18-12 austenitic stainless steels”, Metal. Mater. Trans. B, Vol. 5, No. 6, pp. 1363-1371, 1974
61.J. Janovec, B. Šuštaršič, J. Medved, M. Jenko, “Phases in austenitic stainless steels”, Meteriali in Tehnologije, Vol. 37, pp. 307-312, 2003
62.E. Bosco, S. Enzo, M. Baricco, “X-ray analysis of microstructure in Au-Fe melt spun alloys”, J. Magn. Magn. Mater., Vol. 262, pp. 136-141
63.陳君榮,台灣中部橫貫公路低度變質泥岩中片狀矽酸鹽礦物之X光微組構及再結晶作用,成功大學地球科學所碩士論文,2002。
64.E. Nagy, V. Mertinger, F. Tranta, J. Sólyom,
“Deformation induced martensitic transformation in stainless steels”, Mater. Sci. Eng. A, Vol. 378, pp. 308-313, 2004
65.石爾璽、呂秋光、邱顯堂、劉熾章、龔展暉、賴鋕平,纖維物理,中國紡織工業研究中心,台北,2000。
66.蔡秋明,織布準備學,p. 9,良遠文化,台中,1998
67.于偉東、儲才元,紡織物理,東華大學出版社,上海,2001。
68.李榮顯,塑性加工學,三民書局,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔