(35.175.212.130) 您好!臺灣時間:2021/05/17 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭文笙
研究生(外文):Wen-Seng Cheng
論文名稱:乙二醇/1,3-丙二醇/對苯二甲酯共聚酯等溫結晶過程組型變化及結晶行為
論文名稱(外文):Conformation and Crystallization of Ethylene glycol/1,3-Propanediol/Dimethyl Terephthalate copolyesters Under Isothermal Crystallization Conditions
指導教授:石天威石天威引用關係
指導教授(外文):Tien-Wei Shyr
學位類別:碩士
校院名稱:逢甲大學
系所名稱:紡織工程所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:組型PET/PTT無規共聚酯結晶行為
外文關鍵詞:crystallizationconformationrandom copolyesters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討不同共聚比例的乙二醇/1,3-丙二醇/對苯二甲酯(ethylene glycol/1,3-propanediol/dimethyl terephthalate)之無規共聚酯等溫結晶過程的組型變化、結晶與熔融行為、與結晶動力學。
實驗以原位紅外光譜儀(In-situ Fourier Transform Infrared Spectrometer, In-situ FTIR)觀察共聚酯的組型變化與排列方式,以微差掃描熱分析儀(Differential Scanning Calorimetre, DSC)觀察共聚酯結晶與熔融行為並計算結晶動力學,以廣角X光繞射儀(Wide Angle X-ray Diffractometer, WAXD)觀察共聚酯之晶體結構並計算結晶度。
根據In-situ FTIR、DSC與WAXD的結果顯示,共聚酯中組成成分較多的單元可排列形成穩定組型進而影響結晶結構,在EG含量為15.0-52.7 %間(即ET30-ET70),ET共聚酯以gauche組型進行排列,在EG含量為65.9- 81.6 %間(即ET80-ET90)則以trans組型進行排列,同時發現等溫結晶過程冷結晶的結晶速率遠大於熔融結晶,EG含量:52.7 % (ET70)與EG含量:65.9 % (ET80)之冷結晶度分別為20.27 %與10.53 %。冷結晶熔融溫度、平衡熔點與結晶速率於ET70有一最低值;在EG含量:65.9 % (ET80)中可同時觀察到PET trans組型與PTT gauche組型之特徵吸收峰,使共聚酯不易規整排列形成結晶,故於ET80結晶度有一最低值。
This study focused on conformation, crystallization, and melting behaviors of a series of (ethylene glycol/1,3-propanediol/dimethyl terephthalate) random copolyesters under isothermal crystallization conditions.
The conformation and arrangement were investigated using an In-situ Fourier transform infrared spectrometer (In-situ FTIR). The crystallization and melting behaviors were studied using a differential scanning calorimeter (DSC). The crystallization kinetics was calculated as well. The structure and crystallinity were studied and measured using a wide angle x-ray diffractometer (WAXD).
Based on the In-situ FTIR, DSC, and WAXD studies, it can be seen that the major constitutional repeating unit of copolyesters conducted the arrangement of molecular conformation. In ET30-ET70 (EG content: 15.0-52.7 %) copolyesters, the molecular chain arranged mainly as a gauche conformation. In ET80-ET90 (EG content: 65.9-81.6 %) copolyesters, the molecular chain arranged mainly as a trans conformation. Cold-crystallization was much faster than melt-crystallization in crystallization rate under isothermal crystallization conditions. The crystallinity of ET70 (EG content: 52.7 %) and ET80 (EG content: 65.9 %) were 20.27 % and 10.53 %, respectively. The minimum cold-crystallization melting temperature, the equilibrium melting temperature, and the crystallization rate occurred in ET70. The characteristic bands of PET trans conformation and PTT gauche conformation were observed in ET80 (EG content: 65.9 %). It was suggested that the crystal structure was difficult to form in ET80. The minimum crystallinity therefore occurred in ET80.
第一章 緒論 1
1.1 前言 1
1.2 PET、PTT之結晶結構與組型 2
1.3 PET/PTT共聚酯之發展歷史 3
1.4 共聚酯之序列結構 5
1.5 共聚酯之結晶結構 6
1.6 熔融結晶與冷結晶 7
1.7 組型分析 8
1.8 研究動機與目的 9
第二章 相關理論 10
2.1 Avrami 等溫結晶動力學 10
2.2 多重熔融峰現象解析 13
2.3 平衡熔點(equilibrium melting temperature) 14
第三章 實驗 16
3.1 實驗流程 16
3.2 實驗材料 17
3.3 實驗儀器 17
3.3.1 原位傅立葉轉換紅外光譜分析儀 17
3.3.2 微差掃描熱分析儀 18
3.3.3 廣角X光繞射儀 18
3.4 實驗方法 19
3.4.1 原位紅外光譜樣品製備與實驗 19
3.4.2 DSC等溫結晶實驗 20
3.4.3 XRD試片製作 23
第四章 結果與討論 24
4.1 共聚酯之特徵吸收峰 24
4.1.1 共聚酯特徵吸收峰分析 24
4.1.2 共聚酯等溫結晶過程之組型變化 28
4.1.3 小結 38
4.2 共聚酯等溫過程之結晶與熔融行為 38
4.2.1 等溫熔融結晶與冷結晶 39
4.2.2 等溫冷結晶之熱性質分析 44
4.2.3 多重熔融峰現象 46
4.2.4 共聚酯之平衡熔點 50
4.2.5 Avrami等溫冷結晶動力學 52
4.2.6 小結 57
4.3 共聚酯之冷結晶度分析 58
第五章 結論 62
參考文獻 64
1.T. W. Shyr, C. M. Lo, S. R. Ye, Polymer. 2005; 46: pp. 5284-5298.
2.C. Y. Ko, M. Chen, H. C. Wang, I. M. Tseng, Polymer. 2005; 46: pp. 8752-8762.
3.T. W. Shyr, C. M. Lo, S. R. Ye, J. Bian, Journal of Polymer Science: Part B: Polymer Physics. 2007; 45: pp. 405-419.
4.D. P. Daubeny, R. Bunn C. W., Brown C. J., Proc. R. Soc. London. Ser. A. 1954; 226: pp. 531-542.
5.M. D. Sefcik, J. Schaefer, E. O. Stejskal, R. A. McKay, Macromolecules. 1980; 13: pp. 1132-1137.
6.K. Schmidt-Rohr, W. Hu, N. Zumbulyadis, Science. 1998; 280: pp. 714-717.
7.Y. Chatani, Y. Higashihata, M. Takase, H. Tadokoro, T. Hirahara, Annual Meeting of the Society of Polymer Science. 1977, Japan, Kyoto, Preprint: p. 427.
8.I. J. Desborough, I. H. Hall, Polymer. 1979; 20: pp. 545-552.
9.Poulin-Dandurand, Suzie, Perez, Serge, Revol, Jean-Francois, Brisse, Francois, Polymer. 1979; 20: pp. 419-426.
10.J. S. Kim, M. Lewin, B. J. Bulkin, Journal of Polymer Science Part B: Polymer Physics. 1986; 24: pp. 1783-1789.
11.J. G. Smith, C. J. Kibler, B. J. Sublett, Journal of Polymer Science Part A-1: Polymer Chemistry. 1966; 4: pp. 1851-1859.
12.E. Ponnusamy, T. Balakrishnan, Journal of Macromolecule Science Chemistry. 1985; A22: pp. 373-378.
13.E. Ponnusamy, T. Balakrishnan, Polymer Journal. 1985; 17: pp. 473-477.
14.J. W. Lee, S. W. Lee, B. Lee, M. Ree, Macromolecular Chemistry and Physics. 2001; 202: pp. 3072-3080.
15.T. M. Wu, Y. W. Lin, Journal of Polymer Science: Part B: Polymer Physics. 2004; 42: pp. 4255-4271.
16.G. F. Wei, L. Y. Wang, G. K. Chen, L. X. Gu, Journal of Applied Polymer Science. 2006; 100: pp. 1511-1521.
17.G. F. Wei, D. B. Hua, L. X. Gu, Journal of Applied Polymer Science. 2006; 101: pp. 3330-3335.
18.X. D. Chen, K. Yang, G. Hou, Y. J. Chen, Y. P. Dong, Z. F. Liao, Journal of Applied Polymer Science. 2007; 105: pp. 3069-3076.
19.董佳欣, ET與EB共聚酯等溫結晶結構之研究, 紡織工程研究所碩士論文. 逢甲大學, 2007.
20.R. A. Newmark, Journal of Polymer Science: Polymer Chemistry Edition. 1980; 18: pp. 559-563.
21.G. Natta, P. Corradini, D. Sianesi, D. Morero, Journal of Polymer Science. 1961; 51: pp. 527-539.
22.J. P. Sibilia, L. P. Roldan, S. Chandrasekaran, Journal of Polymer Science: Polymer Physics. 1972; 10: pp. 549-563.
23.Y. H. Zhang, L. X. Gu, European Polymer Journal. 2000; 36: pp. 759-765.
24.J. D. Hoffman, R. L. Miller, Polymer. 1997; 38: pp. 3151-3212.
25.W. W. Graessley, Journal of Polymer Science: Part A-2, Polymer Physics. 1980; 18: pp. 27-34.
26.E. M. Woo, Y. S. Sun, C. P. Yang, Progress Polymer Science. 2001; 26: pp. 945-983.
27.R. M. Ho, C. P. Lin, H. Y. Tsai, E. M. Woo, Macromolecules. 2000; 33: pp. 6517-6526.
28.J. M. Zhang, Y. X. Duan, H. Sato, D. Y. Shen, S. K. Yan, I. Noda, Y. Ozaki, Journal of Physical Chemistry B. 2005; 109; pp. 5586-5591.
29.J. Xu, B. H. Guo, R. Yang, Q. Wu, G. Q. Chen, Z. M. Zhang, Polymer. 2002; 43: pp. 6893-6899.
30.N. Yoshie, A. Asaka, K. Yazawa, Y. Kuroda, Y. Inoue, Polymer. 2003; 44: pp. 7405-7412.
31.N. Yoshie, A. Asaka, Y. Inoue, Macromolecules. 2004; 37: pp. 3770-3779.
32.B. J. Bulkin, M. Lewin, J. S. Kim, Macromolecules. 1987; 20: pp. 830-835.
33.T. Wu, Y. Li, Q. Wu, G. Wu, European Polymer Journal. 2005; 41: pp. 2216-2223.
34.Y. Jiang, Q. Gu, L. Li, D. Y. Shen, X. G. Jin, C. M. Chan, Polymer. 2003; 44: pp. 3509-3513.
35.M. Avrami, Journal of Chemical Physics. 1940; 9: p. 177.
36.M. Avrami, Journal of Chemical Physics. 1939; 7: p. 1103.
37.M. Avrami, Journal of Chemical Physics. 1940; 8: p. 212.
38.于伯齡、姜膠東, 實用熱分析. 紡織工業出版社. 1988: p. 215.
39.何曼君、陳維孝、董西俠, 高分子物理. 復旦大學出版社. 1990: p. 71.
40.C. X. Zhou, S. B. Clough, Polymer Engineering and Science. 1988; 28: pp. 65-68.
41.Y. Munehisa, T. Shinsuke, O. Kazuhito, T. ShiN''Ichi, U. Fukuoka, Journal of Polymer Science, Part B: Polymer Physics. 2001; 39: pp. 2005-2015.
42.W. M. Prest, D. J. Luca, Journal of Applied Physics. 1975; 46: pp. 4136-4143.
43.R. S. Stein, A. Misra, Journal of Polymer Science Part A-2: Polymer Physics. 1980; 18: pp. 327-342.
44.R. J. Young, P. A. Lovell, Introduction to Polymers. Chapman & Hall, 1990: p. 286.
45.L. H. Sperling, Introduction to Physical Polymer Science. 2001.
46.R. J. Young, P. A. Lovell, Introduction to Polymers. Chapman & Hall, 1990.
47.U. W. Gedde, Polymer Physics. 1996: p. 171.
48.J. D. Hoffman, G. T. Davis, J. I. Lauritzen, Treatise on Solid-State Chemistry, N. D. Hannary, Ed., Plenum, New York, 1976.
49.J. D. Hoffman, Kolloid-Zeit & Zeit fuer Polymere. 1969; 231(1-2): pp. 564-592.
50.K. C. Cole, A. Ajji, R. Pellerin, Macromolecules. 2002; 35: pp. 770-784.
51.M. Yamen, S. Ozkaya, N. Vasanthan, Journal of Polymer Science: Part B: Polymer Physics. 2008; 46: pp. 1497-1504.
52.K. J. Kim, J. H. Baea, Y. H. Kimb, Polymer. 2001; 42: pp. 1023-1033.
53.M. Ziari, O. V. Asselen, M. Jansen, H. Goosens, P. Schoenmakers, Macromolecular Symposia. 2008; 265: pp. 290-296.
54.P. Supaphol, J. E. Spruiell, Polymer. 2001; 42: pp. 699-712.
55.H. G. Kim, R. E. Robertson, Journal of Polymer Science, Part B: Polymer Physics. 1998; 36: pp. 1757-1767.
56.P. L. Wu, E. M. Woo, Journal of Polymer Science, Part B: Polymer Physics. 2003; 41: pp. 80-93.
57.W. T. Chung, W. J. Yeh, P. D. Hong, Journal of Applied Polymer Science. 2002; 83; pp. 2426-2433.
58.N. Lotti, Journal of Thermal Analysis and Calorimetry. 2002; 69: pp. 441-453.
59.Y. Ozaki, Polymer. 2007; 48: pp. 4777-4785.
60.J. M. Huang, Journal of Polymer Research. 1999; 6: pp. 259-266.
61.C. Chen, M. K. Cheung, P. H. Yu, Polymer International. 2005; 54: pp.1055-1064.
62.T. Watanabe, Y. He, T. Fukuchi, Y. Inoue, Macromolecular Bioscience. 2001; 1: pp. 75-83.
63.Y. Kong, J. N. Hay, Polymer. 2003; 44: pp. 623-633.
64.P. D. Hong, W. T. Chung, C. F. Hsu, Polymer. 2002; 43: pp. 3335-3343.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top